首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Different cardiac troponin I (cTnI) assays give different results. Only 1 manufacturer has marketed troponin T (cTnT) assays. Therefore, cTnT often is preferred for detection of myocardial infarction in human patients. Studies of cTnT in horses are limited.

Objectives

To compare a cTnI and a high‐sensitive cTnT assay (hs‐cTnT) in horses.

Animals

Cardiac troponin I and cTnT were determined in 35 healthy horses (group 1), 23 horses suspected to have primary myocardial damage (group 2a), and 41 horses with secondary myocardial damage caused by structural heart disease (group 2b).

Methods

All cTnI samples were analyzed at laboratory A (limit of detection [LOD]: 0.03 ng/mL), whereas cTnT samples were analyzed at 2 laboratories with the same hs‐cTnT assay (laboratory B, LOD: 10.0 pg/mL; laboratory C, LOD: 4.0 pg/mL).

Results

The median cTnI concentration in group 2a (0.90 ng/mL; range, 0.03–58.27 ng/mL) was significantly higher (P < .001) than in group 1 (0.03 ng/mL; range, 0.03–0.09 ng/mL) or group 2b (0.05 ng/mL; range, 0.03–30.92 ng/mL), and the optimal cut‐off for detection of primary myocardial damage was 0.095 ng/mL (sensitivity: 90.5%, specificity: 100%). Using an LOD of 10.0 pg/mL for all cTnT samples, a cut‐off value of 10.5 pg/mL was found, but sensitivity was low (42.9%). When only samples analyzed at laboratory C (n = 58) were included, a cut‐off of 6.6 pg/mL was found (sensitivity: 81%, specificity: 100%).

Conclusions and Clinical Importance

Despite large quantitative differences, cTnI and cTnT are both useful for detection of myocardial damage in horses.  相似文献   

2.
Cardiac troponin I (cTnI), a myocardial polypeptide, is a highly sensitive and specific biomarker of myocardial injury in people and dogs. The structure of cTnI is highly conserved across species, and equine myocardium has high reactivity with human immunoassays. The purpose of this study was to describe cTnI concentrations in normal pastured and race-training Thoroughbred horses. Ten horses on pasture and 10 horses in race training were studied. Horses were considered normal on the basis of physical examination, training performance, electrocardiography (ECG), and echocardiography. Serum cTnI concentrations were determined with a colorimetric immunoassay. The assay has an analytical sensitivity of 0.04 ng/mL. Serum cTnI concentrations in race-training horses were not significantly different from those of pastured horses. When groups were combined, mean cTnI concentration (+/- SD) was 0.047 +/- 0.085 ng/mL. and the median was 0 (range, 0-0.35 ng/mL). The 90th percentile for both groups combined was 0.11 ng/mL. This study establishes a preliminary reference range for serum cTnI in normal Thoroughbred horses.  相似文献   

3.
The objective of this study was to determine the influence of transportation on the serum concentrations of the cardiac biomarkers troponin I (cTnI) and creatine kinase-myocardial band (CK-MB) and on cortisol and lactate in horses. For this purpose, 10 horses were transported for 300 km. Blood samples were collected 24 hours before transport (T0), just before transport (T1), during transport at 50 km (T2), 100 km (T3), 200 km (T4), and 300 km (T5). An additional blood sample (T6) was collected 24 hours after transport. The median resting basal cTnI values in the horses were at T0, 0.000 ± 0.007 ng/mL and at T1, 0.01 ± 0.007 ng/mL. The median resting basal CK-MB values in the horses were at T0, 0.19 ± 0.05 ng/mL and at T1, 0.16 ± 0.05 ng/mL. Statistical analyses showed no significant differences of cTnI and CK-MB among the measured values (T0–T6). On the other side, the cortisol and lactate concentrations increased significantly (P < .01) at T2, T3, T3, and T4 compared with the resting values at T0. At T6, cortisol and lactate concentrations had returned to pretransport values, with no statistically significant differences compared with pretransport concentrations. In conclusion, the 300-km transportation of the horses did not influence the levels of the cardiac biomarkers, cTnI and CK-MB. The serum concentrations of cortisol and lactate, on the other side, increased significantly. The possible influence of transportation for longer distances or under more stressful conditions (higher temperature or in horses not used for transportation) on cTnI and CK-MB concentrations needs to be further investigated.  相似文献   

4.
This study was designed to investigate the effect of racing on the serum concentrations of cardiac troponin I (cTnI) and creatine kinase myocardial (CK-MB) in healthy racing camels (Camelus dromedarius). Twenty-three racing camels scheduled for a 5 km race were investigated in this study. From each camel, 3 blood samples were collected: 24 h before racing (T0), within 2 h after the race (T1) and 24 h post-race (T2). Following the 5 km race, 91.3 % of the racing camels had increases in serum cTnI concentrations, while concentrations remained unchanged in 8.7 %. The cTnI concentration (median 0.06 ng/mL; range, 0.03–0.15 ng/mL) was significantly higher (P?<?0.001) than the pre-race values (median 0.04 ng/mL; range, 0.01–0.07 ng/mL). Twenty-four hours post-race, the cTnI concentrations had returned very nearly to their pre-race values (median 0.04 ng/mL; range, 0.00–0.09 ng/mL) and were not significantly different (P?=?0.35) from the pre-race values. Following the 5 km race, increases in CK-MB mass were seen in 17.4 % of the camels, with no changes in 4.3 % and decreases in 78.3 %. The CK-MB mass (median 0.41 ng/mL; range, 0.19–0.60 ng/mL) did not differ significantly (P?=?0.84) when compared to the pre-race values (median 0.42 ng/mL; range, 0.32–0.55 ng/mL). Twenty-four hours post-race, the CK-MB mass concentrations (median 0.41 ng/mL; range, 0.15–0.55 ng/mL) did not differ significantly (P?>?0.05) compared to pre-race or immediate post-race values. Resting cTnI concentrations in the racing camels were initially low, but increased above the baseline level in most of the camels immediately after racing, and returned to pre-race values within the 24-h post-race period. CK-MB is a less sensitive biomarker for myocardial activity as compared with cTnI. These findings could be of importance when evaluating racing camels with suspected cardiac disease after recent hard exercise.  相似文献   

5.
Cardiac troponin-I (cTnI) is a sensitive and specific circulating marker of cardiac injury. The amind acid sequence of canine troponin-I suggests that immunoassays designed for humans may be able to quantify canine cTnI. We sought to validate the AccuTnI™ system for use in the canine species. Samples of purified canine free cTnI, cardiac troponin I-C (cTnI-C), and cardiac troponin I-T-C (cTnI-T-C) were used to assess the performance characteristics of the assay. Intra-assay precision was 4.2 ± 3.0% and inter-assay precision was 4.5 ± 2.7%. The assay demonstrated linearity of serial dilutions from 0.015 to 30 ng/ml for all forms of cTnI (R, 0.998 to 0.999). Mean recovery of cTnI was 92.5 ± 10.5%, of cTnI-C was 147.2 ± 19.8%, and of cTnI-T-C was 97.3 ± 23.5%. Specificity of the assay for the cardiac form of troponin-I was confirmed using samples spiked with canine skeletal muscle troponin-I. The AccuTnI™ assay was evaluated in 27 canine patients. Dogs with heart disease (cardiomyopathy or severe mitral valve disease, n = 13) had a higher mean cTnI concentration than controls (disease cTnI = 0.68 ng/ml, range 0.03–5.47 ng/ml vs. control cTnI = 0.03 ng/ml, range 0.01–0.08 ng/ml; P = 0.0003). The AccuTnI™ assay possesses sufficient test performance for use with canine plasma and can distinguish a cohort of dogs with heart disease from a cohort of healthy controls. The results of this study suggest that further investigations into the clinical use of the AccuTnI™ assay for the diagnosis of canine heart disease are warranted.  相似文献   

6.
ObjectivesLittle is known about cardiac biomarkers in camels despite their extensive use as draft animals. This study was designed to establish reference ranges for the cardiac biomarkers cardiac troponin I (cTnI) and creatine kinase myocardial b fraction (CK-MB) in healthy camels and to investigate their changes in response to road transportation.AnimalsTwenty-five healthy camels transported for a 5 h round-trip journey.MethodsNone of the camels had evidence of cardiac abnormalities on cardiac auscultation, echocardiography or electrocardiography. Three blood samples were obtained from each camel: 24 h before transportation (T0), within 2 h after unloading (T1) and 24 h after transportation (T2).ResultsThe mean cTnI concentration in the camels was 0.032 ± 0.023 ng/mL. All the camels had resting cTnI concentrations of <0.08 ng/mL. At T1, the cTnI concentration was significantly higher (P < 0.001) in all 25 camels compared to values at T0. The CK-MB concentration in the camels was 0.19 ± 0.05 ng/mL. All the camels had resting CK-MB concentrations of <0.33 ng/mL. At T1, the CK-MB concentration was higher in 3/25 camels compared to values at both T0 and T2. Concerning the hematobiochemical variables, significant increases were detected at T1 in total white blood cells, total protein, globulin, magnesium and phosphorus. Cardiac troponin I, CK-MB and all the hematobiochemical parameters had returned to their pre-transport values at T2.Conclusions5 h road transportation might have transient adverse effects on the cardiac muscle of healthy camels.  相似文献   

7.
ObjectivesTo determine normal resting values for cardiac troponin I (cTnI) in healthy Standardbred, Thoroughbred and Warmblood horses and investigate if racing has an influence on cTnI concentrations.BackgroundMeasuring cTnI concentrations in plasma is the gold standard for detecting myocardial injury in humans. Cardiac troponin I is highly conserved between species and has gained interest as a marker for cardiac injury in horses. Increased levels of cTnI have been reported in association with endurance and short-term strenuous exercise on a treadmill in horses. However, the effect of true racing conditions has not yet been reported.Animals, materials and methodsBlood samples for analysis of cTnI concentrations in plasma were collected from 67 Standardbred racehorses, 34 Thoroughbred racehorses and 35 Warmblood dressage horses at rest. Blood samples were also collected prior to and after racing in 22 Standardbred racehorses and 6 Thoroughbred racehorses.ResultsAll horses except one had resting plasma cTnI concentrations <0.022 μg/L. Mild increases in cTnI concentrations were seen in some horses 1–2 h after the race (1/17 Standardbreds and 2/6 Thoroughbreds) as well as 10–14 h after the race (4/21 Standardbreds and 1/6 Thoroughbreds).ConclusionsResting cTnI concentrations in horses are low but mildly elevated cTnI concentrations may be detected in some horses 1–14 h after racing. These findings could be of importance when evaluating horses with suspected cardiac disease that recently have performed hard exercise.  相似文献   

8.
Background: C‐reactive protein (CRP) and cardiac troponin I (cTnI) are biomarkers of systemic inflammation and cardiac damage, respectively. Objective: To investigate the effects of short‐duration high‐intensity exercise on plasma cTnI and serum CRP concentrations in sprint racing sled dogs. Animals: Twenty‐two Alaskan sled dogs of 2 different teams participating in a 2‐day racing event. Methods: In this prospective field study, cephalic venipuncture was performed on all dogs before racing and immediately after racing on 2 consecutive days. Plasma cTnI and serum CRP concentrations were evaluated at each time point. Results: There was a mild, significant rise (P < .01) in median cTnI concentrations from resting (0.02 ng/mL; 0.0–0.12 ng/mL) on both days after racing (day 1 = 0.06, 0.02–0.2 ng/mL; day 2 = 0.07, 0.02–0.21 ng/mL). Serum CRP concentrations showed a mild significant increase (P < .01) on day 2 after racing mean (9.2 ± 4.6 μg/mL) as compared with resting (6.5 + 4.3 μg/mL) and day 1 after racing (5.0 + 2.9 μg/mL). Neither cTnI or CRP concentrations exceeded the upper reference range for healthy dogs. Conclusions and Clinical Relevance: Strenuous exercise of short duration did not result in cTnI concentrations above the reference range for healthy dogs. Although increased after 2 days of short‐duration strenuous exercise, CRP did not reach concentrations suggestive of inflammation, as reported previously in the endurance sled dogs. Therefore, we surmise that moderate exercise does not present a confounding variable in the interpretation of cTnI and CRP concentrations in normal dogs.  相似文献   

9.
Objectives – To (1) determine a reference interval for cardiac troponin I (cTnI) using a point‐of‐care device in normal dogs and compare the results with those published by the manufacturer and (2) determine if cTnI differs among dogs with cardiogenic and noncardiogenic respiratory distress. Design – Prospective observational study. Setting – Emergency and referral veterinary hospital. Animals – Twenty‐six clinically normal dogs and 67 dogs in respiratory distress. Interventions – All dogs underwent whole blood sampling for cTnI concentrations. Measurements and Results – Normal dogs had a median cTnI concentration of 0.03 ng/mL (range 0–0.11 ng/mL). Thirty‐six dogs were diagnosed with noncardiogenic respiratory distress with a median cTnI concentration of 0.14 ng/mL (range 0.01–4.31 ng/mL). Thirty‐one dogs were diagnosed with cardiogenic respiratory distress with a median cTnI concentration of 1.74 ng/mL (range 0.05–17.1 ng/mL). A significant difference between cTnI concentrations in normal dogs and dogs with noncardiogenic respiratory distress was not detected. Significant differences in cTnI concentrations were found between normals versus cardiogenic and cardiogenic versus noncardiogenic respiratory distress groups. Significant differences in cTnI concentrations were identified in >10 when compared with the <5 and the 5–10 years of age groups. Receiver operating curve analysis identified cTnI concentrations >1.5 ng/mL as the optimal “cut‐off point” having a sensitivity of 78% and specificity of 51.5%. The area under the receiver operating curve was 0.72. Overall test accuracy was 65%. Conclusions – cTnI concentrations were significantly increased in dogs with cardiogenic respiratory distress versus dogs with noncardiogenic respiratory distress and normal dogs. A significant difference between normal dogs and dogs with noncardiogenic causes of respiratory distress was detected. Although highly sensitive when cTnI concentrations exceed 1.5 ng/mL, the test has low specificity. Assessment of cTnI by the methodology used cannot be recommended as the sole diagnostic modality for evaluating the cause of respiratory distress in dogs.  相似文献   

10.
Cardiac troponin I (cTnI) has proven to be a highly specific and sensitive marker for myocardial cellular damage in many mammalian species. The structure of cTnI is highly conserved across species, and assays for human cTnI (including the one used in the current study) have been validated in the dog. Blood concentrations of cTnI rise rapidly after cardiomyocyte damage, and assay of cTnI potentially may be valuable in many clinical diseases. The purpose of this study was to establish the normal range of cTnI in heparinized plasma of dogs and cats. Forty one clinically normal dogs and 21 cats were included in the study. One to 3 milliliters of blood were collected by venipuncture into lithium heparin vacutainers for analysis of cTnI (Stratusz CS). The range of plasma cTnI concentrations in dogs was <0.03 to 0.07 ng/mL with a mean of 0.02 ng/mL, with the upper tolerance limit (0.07 ng/mL) at the 90th percentile with 95% confidence. In cats, the range was <0.03 to 0.16 ng/mL with a mean of 0.04 ng/mL, and the upper tolerance limit (0.16 ng/mL) at the 90th percentile as well with 90% confidence. This study establishes preliminary normal ranges of plasma cTnI in normal dogs and cats for comparison to dogs and cats with myocardial injury or disease.  相似文献   

11.
ObjectiveAtrial natriuretic peptide (ANP) and cardiac troponin I (cTnI) serve as biomarkers for increased cardiac pressure/volume loading and for myocardial stress or damage. The objective was to describe the time course of plasma ANP concentrations (CpANP) and plasma cTnI concentrations (CpcTnI) in horses with mitral regurgitation (MR) compared to healthy horses at rest and after exercise, and to describe the relationship of CpANP with cardiac dimensions and intracardiac pressures.Animals15 healthy Warmblood horses and 7 Warmblood horses with MR.MethodsCardiac dimensions at rest were measured using echocardiography. All horses underwent standardized treadmill exercise. Biomarker concentrations and intracardiac pressures were measured at rest and after exercise. Hypotheses were tested using statistical methods. The level of significance was P < 0.05.ResultsHorses with MR showed increased left atrial (LA) and left ventricular (LV) dimensions but similar exercise capacity compared to healthy horses. Pulmonary capillary wedge pressures (PCWP) and CpANP increased with exercise. Horses with MR had higher PCWP and higher CpANP at rest and after exercise compared to healthy horses, with the maximum difference in CpANP reached 10 min after exercise. CpANP was significantly related to PCWP and – although inconsistently and only in healthy horses – to echocardiographic indices of LA and LV size and function. CpcTnI was low throughout the study in both groups.ConclusionsCpANP is increased in horses with MR and is related to LA pressures and to left heart dimensions. MR is not necessarily associated with exercise intolerance and exercise-induced myocardial stress or damage.  相似文献   

12.
Cardiac troponin-I (cTnI) is a highly sensitive and specific marker of myocardial injury and can be detected in plasma by immunoassay techniques. The purpose of this study was to establish a reference range for plasma cTnI in a population of healthy dogs using a human immunoassay system and to determine whether plasma cTnI concentrations were high in dogs with acquired or congenital heart disease, specifically cardiomyopathy (CM), degenerative mitral valve disease (MVD), and subvalvular aortic stenosis (SAS). In total, 269 dogs were examined by physical examination, electrocardiography, echocardiography, and plasma cTnI assay. In 176 healthy dogs, median cTnI was 0.03 ng/mL (upper 95th percentile = 0.11 ng/mL). Compared with the healthy population, median plasma cTnI was increased in dogs with CM (0.14 ng/mL; range, 0.03-1.88 ng/mL; P < .001; n = 26), in dogs with MVD (0.11 ng/mL; range, 0.01-9.53 ng/mL; P < .001; n = 37), and in dogs with SAS (0.08 ng/mL; range, 0.01-0.94 ng/mL; P < .001; n = 30). In dogs with CM and MVD, plasma cTnI was correlated with left ventricular and left atrial size. In dogs with SAS, cTnI demonstrated a modest correlation with ventricular wall thickness. In dogs with CM, the median survival time of those with cTnI >0.20 ng/mL was significantly shorter than median survival time of those with cTnI <0.20 ng/mL (112 days versus 357 days; P = .006). Plasma cTnI is high in dogs with cardiac disease, correlates with heart size and survival, and can be used as a blood-based biomarker of cardiac disease.  相似文献   

13.
Equestrian competitions require both physical activity and mental adaptation in horses. Cortisol, heart rate, and heart rate variability (HRV) are accepted stress parameters and, in this study, have been determined in horses (n = 13) participating in equestrian competitions for up to 3 consecutive days. Participation in competitions caused an increase in salivary cortisol concentrations (e.g., on day 1 from 1.0 ± 0.2 before to 2.2 ± 0.4 ng/mL after the competition, days 1 and 2: P < 0.001, day 3: P < 0.05) and an increase in heart rate (days 1 and 2: P < 0.001, day 3: P = 0.01). A consistent decrease in HRV occurred only in response to the final competition on day 3 (P < 0.01). When horses competing in dressage and show jumping were compared, cortisol release and HRV did not differ between groups, but after the competition, heart rate was lower in dressage than in show jumping horses (P < 0.05). Heart rate increased not only during the actual competition but already when horses were prepared in their stables (e.g., day 1: ?60 minutes, 38.6 ± 2; ?5 minutes, 77 ± 7; competition, 81 ± 10 beats per minute; P < 0.01). In conclusion, participation in equestrian competitions caused an increase in cortisol release and heart rate and a decrease in HRV variables. However, competitions were not a major stressor compared with other anthropogenic challenges such as transport, to which horses are exposed regularly.  相似文献   

14.
Point-of-care (POC) systems for the joint measurement of Troponin and D-dimers have not been studied in horses. The aim of this study was to perform the validation of a POC system (AQT90 FLEX) for the measurement of cardiac troponin I (cTnI) and D-dimers in the serum of horses with gastrointestinal diseases. The main objective was to evaluate whether or not this system can distinguish healthy animals from diseased animals. A sample of 33 horses was included in the study: control group (n = 10) and horses with gastrointestinal disorders (n = 21), which were classified according to their outcome in survivors (subgroup A = 9) and nonsurvivors (subgroup B = 12). Considering the diagnosis of the process, ill horses were classified into three groups: inflammatory (I = 7), obstructive (O = 9), and strangulating diseases (S = 5). The clinical usefulness of AQT90 FLEX was validated by the study of linearity, coefficient of variation, and detection limits. Later, concentrations of D-dimers and cTnI were measured. A significant increase in both parameters was detected in ill animals (cTnI: control: 0.014 ± 0.01 μg/mL, survivors: 0.27 ± 0.37 μg/mL, nonsurvivors: 0.60 ± 1.21 μg/mL; D-dimers: control: 104.90 ± 30.82 ng/mL, survivors: 1,217.22 ± 1,213.28 ng/mL, nonsurvivors: 1,613.67 ± 1,426.75 ng/mL), although there were no statistically significant differences in concentrations according to diagnosis and outcome. In conclusion, AQT90 FLEX POC analyzer can be used in horses with gastrointestinal diseases to measure cTnI and D-dimer concentrations. It is a quick, practical, and minimally invasive tool that helps in determining the severity of illness.  相似文献   

15.
Measurement of plasma cardiac troponin I concentration ([cTnI]) is a sensitive and specific means for detecting myocardial damage in many mammalian species. Studies have shown that [cTnI] increases rapidly after cardiomyocyte injury. The molecular structure of cTnl is highly conserved across species, and current assays developed for its detection in humans have been validated in many species. In this study, [cTnI] was quantified using a 2-site sandwich assay in plasma of healthy control cats (n = 33) and cats with moderate to severe hypertrophic cardiomyopathy (HCM) (n = 20). [cTnI] was significantly higher in cats with HCM (median, 0.66 ng/mL; range, 0.05-10.93 ng/mL) as compared with normal cats (median, <0.03 ng/mL; range, <0.03-0.16 ng/mL) (P < .0001). An increase in [cTnI] was also highly sensitive (sensitivity = 85%) and specific (specificity = 97%) for differentiating cats with moderate to severe HCM from normal cats. [cTnI] was weakly correlated with diastolic thickness of the left ventricular free wall (r2 = .354; P = .009) but not with the diastolic thickness of the interventricular septum (P = .8467) or the left atrium: aorta ratio (P = .0652). Furthermore, cats with congestive heart failure at the time of cTnI analysis had a significantly higher [cTnI] than did cats that had never had heart failure and those whose heart failure was controlled at the time of analysis (P = .0095 and P = .0201, respectively). These data indicate that cats with HCM have ongoing myocardial damage. Although the origin of this damage is unknown, it most likely explains the replacement fibrosis that is consistently identified in cats with moderate to severe HCM.  相似文献   

16.
Background: Cardiac troponin I (cTnI) is a polypeptide found specifically in cardiac muscle tissue that has been used as a diagnostic and prognostic indicator of cardiomyopathy. Increases in cTnI are associated with myocardial pathologic processes. However, high serum cTnI concentrations have been observed in normal Greyhounds.
Hypothesis: We hypothesized that Greyhounds have cTnI concentrations higher than non-Greyhound dogs, and that a separate reference range should be established for Greyhounds.
Animals: Blood samples were collected from the jugular vein from a group of 20 healthy Greyhound blood donors.
Methods: Analysis of serum cTnI was performed with an immunoassay system with a detection level of 0.01 ng/mL, as described previously. The Greyhound values were compared with 2 groups of Boxers with and without arrhythmogenic right ventricular cardiomyopathy (ARVC), and to a group of non-Boxer control dogs from a previous study.
Results: The mean cTnI concentration in Greyhounds was significantly higher ( P < .0001) than that in non-Greyhound control dogs, although not significantly different from normal Boxers ( P = .50), or Boxers with ARVC ( P = .58). Greyhound serum cTnI concentrations were in the range found in Boxers with ARVC. The proposed reference range for cTnI in Greyhounds is 0.05–0.16 ng/mL.
Conclusions and Clinical Importance: Greyhounds have a reference range for serum cTnI concentrations that differs from that of other previously published reference ranges for dogs of other breeds. Until a broader database and more precise reference range can be established, caution should be exercised in interpreting serum cTnI concentrations in Greyhounds with suspected cardiac disease.  相似文献   

17.
Background: Atenolol often is used empirically in cats with hypertrophic cardiomyopathy (HCM) before the onset of heart failure, although evidence of efficacy is lacking. Cardiac biomarkers play a critical role in the early detection of subclinical cardiac disease, in the prediction of long‐term prognosis, and in monitoring the response to therapy in humans. Hypothesis: Circulating concentrations of the biomarkers N‐terminal pro‐B type natriuretic peptide (NT‐proBNP) and cardiac troponin I (cTnI) will decrease after chronic administration of atenolol PO to cats with severe HCM but no signs of heart failure. Animals: Six Maine Coon or Maine Coon cross cats with severe HCM. Methods: Cats were treated with atenolol (12.5 mg PO q12 h) for 30 days. No cat had left ventricular dynamic outflow tract obstruction caused by systolic anterior motion of the mitral valve. The concentrations of NT‐proBNP and cTnI were assayed before and on the last day of drug administration. Results: There was no statistically significant change in NT‐proBNP (median before, 394 pmol/L; range, 71–1,500 pmol/L; median after, 439 pmol/L; range, 24–1,500 pmol/L; P = .63) or in cTnI (median before, 0.24 ng/mL; range, 0.10–0.97 ng/mL; median after, 0.28 ng/mL; range, 0.09–1.0 ng/mL; P = .69) after administration of atenolol. Conclusions: Atenolol administration did not decrease NT‐proBNP or cTnI concentrations in cats with severe left ventricular hypertrophy caused by hypertrophic cardiomyopathy. These results suggest that atenolol did not decrease myocardial ischemia and myocyte death in these cats. A larger clinical trial is warranted to verify these findings.  相似文献   

18.
Background: Commercially available cardiac troponin I (cTnI) assays developed for use in humans have not yet been validated for use in cattle.
Hypotheses: The ADVIA Centaur TnI-Ultra immunoassay can be used for the detection of bovine cTnI. In healthy cattle, serum cTnI is undetectable or is present only in trace amounts.
Methods: Purified bovine cTnI and cTnI-free bovine serum were used for the evaluation of assay performance including intra- and inter-assay precision, sensitivity, interference, linearity, and recovery. Effects of storage at 23, 4, −20, and −80 °C for 2 days, and at −20 and −80 °C for 7 and 14 days and repeated freeze-thaw cycles on recovery of cTnI were analyzed. Serum cTnI concentrations in 30 healthy dairy cows were determined.
Results: Intra- and inter-assay precisions (mean ± SD) were 4.48 ± 2.26 and 13.36 ± 6.59%, respectively. The assay demonstrated linearity at 0.5, 2, 15, and 30 ng/mL cTnI. Mean recovery was 100.81, 85.26, 87.72, and 114.42%, respectively. Skeletal muscle homogenate added to serum of known cTnI concentration did not alter the concentration of the analyte ( P > .05). Concentration of cTnI significantly decreased when samples were stored at 4 and 23 °C for 2 days ( P < .05). Repeated freeze-thaw cycles and storage at −20 °C for 7 days had no significant influence on cTnI concentration ( P > .05). Serum cTnI concentration in healthy cattle was ≤0.03 ng/mL.
Conclusion and Clinical Importance: ADVIA Centaur can be used reliably for the detection of serum cTnI concentration in cattle.  相似文献   

19.
Background: Cardiac troponin I (cTnI) is useful for detection of cardiac myocyte damage, but its efficacy in detecting various stages of dilated cardiomyopathy (DCM) in Doberman Pinschers is unclear. Objectives: To evaluate the diagnostic value of cTnI in various stages of DCM in Dobermans. Animals: Six hundred and fifty‐three cTnI measurements of 336 Doberman Pinschers. Methods: Using a longitudinal study design, staging of the disease was based upon 24‐hour‐ambulatory‐ECG (Holter) and echocardiography. A total of 447 cTnI measurements were performed in 264 healthy Dobermans, and 206 cTnI measurements in 75 Dobermans with cardiomyopathy. Eighty‐eight cTnI samples were from dogs with >100 ventricular premature contractions (VPCs)/24 hour, but without echocardiographic changes (“VPC group”). Additional 19 samples originated from dogs with only echocardiographic changes (“ECHO group”), and 56 samples from dogs with both VPCs and echocardiographic changes (“VPC plus ECHO group”). Twenty samples were from dogs with clinical signs (“clinical group”). The group “incipient” included 23 dogs, that were considered to be normal according to Holter and echocardiography at the time of the exam, but that developed DCM within 1.5 years. Results: cTnI values of dogs in all disease groups, including the “incipient” (0.30 ± 0.20) and “VPC group” (0.36 ± 0.34), were significantly (P= .04, P < .001) higher than the control group (0.07 ± 0.16). A cut‐off value of >0.22 ng/mL had a sensitivity of 79.5% and a specificity of 84.4% to detect all forms of cardiomyopathy. Conclusions and Clinical Importance: cTnI measurement is a valuable diagnostic test that can detect cardiomyopathy in dogs that are otherwise clinically normal.  相似文献   

20.
Background: Whether electrical cardioversion of cardiac arrhythmias results in cardiomyocyte damage is unknown.
Objective: To describe effect of transvenous electrical cardioversion (TVEC) on plasma cardiac troponin I (cTnI) concentration in horses.
Animals: All horses presented to the Cornell University Hospital for Animals for cardioversion of atrial fibrillation between May 2006 and October 2008 were eligible for inclusion in the study. Owners of 14 horses elected for TVEC and each horse was then enrolled (16 procedures).
Methods: Prospective observational study measuring concentrations of plasma cTnI before and after TVEC.
Results: Median cTnI concentration increased from 0.045 ng/mL at baseline (range 0.0–0.20 ng/mL) to 0.11 ng/mL after TVEC (range 0.0–3.73 ng/mL) ( P = .036). This increase was not associated with the number of shocks delivered, maximal energy delivered, cumulative energy delivered, chronicity of atrial fibrillation before cardioversion, or positioning of the pulmonary artery catheter.
Conclusions: The increase in cTnI is unlikely to be clinically important. The increase might be correlated with persistent atrial dysfunction after TVEC, suggesting that a longer convalescent period after the procedure could be warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号