首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biological control agents (BCAs) have gained increasing interest as an alternative to chemical pesticides in agriculture. Before widespread environmental use, risk assessment of effects on target and non-target organisms are needed. However, the knowledge about the effect of BCAs on non-target soil Protozoa is insufficient to support thorough risk assessment. In this study we report on the effects of Pseudomonas fluorescens DR54 that is a potential BCA active against root pathogenic fungi. We present evidence of negative effects of P. fluorescens DR54 on growth of the amoebae Hartmanella vermiformis and Acanthamoeba sp. cultures and natural assemblages of soil protozoans. The observed effects were larger than those of the P. fluorescens type strain DSM50090 and Enterobacter aerogenes SC and were tentatively attributed to viscosinamide, which is an antimicrobial compound with surfactant properties produced by P. fluorescens DR54.  相似文献   

2.
The impact of biocontrol strain Pseudomonas fluorescens CHA0 and of its genetically modified, antibiotic-overproducing derivative CHA0/pME3424 on a reconstructed population of the plant-beneficial Sinorhizobium meliloti bacteria was assessed in gnotobiotic systems. In sterile soil, the final density of the reconstructed S. meliloti population decreased by more than one order of magnitude in the presence of either of the Pseudomonas strains when compared to a control without addition of P. fluorescens. Moreover, there was a change in the proportion of each individual S. meliloti strain within the population. Plant tests also revealed changes in the nodulating S. meliloti population in the presence of strains CHA0 or CHA0/pME3424. In both treatments one S. meliloti strain, f43, was significantly reduced in its root nodule occupancy. Analysis of alfalfa yields showed a slight but statistically significant increase in shoot dry weight when strain CHA0 was added to the reconstructed S. meliloti population whereas no such effect was observed with CHA0/pME3424.  相似文献   

3.
Sorghum was inoculated withPseudomonas bacteria, including strains harboring an As-resistance plasmid, pBS3031, to enhance As-extraction by the plants.Pseudomonas strains (P.fluorescens 38a, P.putida 53a, and P.aureofaciens BS1393) were chosen because they are antagonistic to a wide range of phyto-pathogenic fungi and bacteria, and they can stimulate plant growth. The resistance of natural rhizospheric pseudomonads to sodium arsenite was assessed. Genetically modifiedPseudomonas strains resistant to As(III)/As(V) were obtained via conjugation or transformation. The effects of the strains on the growth of sorghum on sodium-arsenite-containing soils were assessed. The conclusions from this study are: (1) It is possible to increase the survivability of sorghum growing in sodium-arsenite-containing soil by using rhizosphere pseudomonads. (2) The presence of pBS3031 offers the strains a certain selective advantage in arsenite-contaminated soil. (3) The presence of pBS3031 impairs plant growth, due to the As-resistance mechanism determined by this plasmid: the transformation of the less toxic arsenate into the more toxic, plant-root-available arsenite by arsenate reductase and the active removal of arsenite from bacterial cells. (4) Such a mechanism makes it possible to develop a bacteria-assisted phytoremediation technology for the cleanup of As-contaminated soils and is the only possible way of removing the soil-sorbed arsenates from the environment.  相似文献   

4.
Twenty-one strains of fluorescent pigment-producing Pseudomonas (abbreviated to FPP-Pseudomonas) species were isolated from soil and roots of apple and peach trees using selective media. FPP-Pseudomonas strains were identified as Pseudomonas fluorescens. Moreover, on the basis of the utilization of several organic compounds, these strains were divided into three groups.

P. fluorescens strains isolated from the roots were assigned to mainly groups 1 and 2, and most of the isolates from the soil to group 3. All the strains of group 2 exhibited antifungal activity (in vitro) against three soilborne plant pathogenic fungi: Rhizoctonia solani, Verticillium dahliae, and Rosellinia necatrix. These results suggest that the strains of group 2 play an important role as antifungal rhizobacteria.  相似文献   

5.
The organic matter supply can promote the dispersal and activity of applied plant growth–promoting rhizobacteria (PGPR), but the complementary effect of organic fertilization and PGPR application on the turnover of P is scarcely known. The effects of the application of two PGPR strains (Pseudomonas fluorescens strain DR54 and Enterobacter radicincitans sp. nov. strain DSM 16656) alone and in combination with organic fertilization (cattle manure and biowaste compost) on growth and P uptake of maize (Zea mays L.) and oilseed rape (Brassica napus L.) were investigated under semi–field conditions. Furthermore, P pools and phosphatase activities in soil and the arbuscular mycorrhizal colonization of maize were examined. The organic‐fertilizer amendments increased the growth and P uptake of both plant species and the soil P pools. The application of the E. radicincitans strain increased P uptake of oilseed rape when no organic fertilizer was added. Furthermore, the application of both bacterial strains increased the activities of phosphatases under both plant species. Here, the effect of the PGPR application even exceeded the effect of organic fertilization. The magnitude of this effect varied between the different fertilizing treatments and between the two bacterial strains. Phosphatase activities were increased to the greatest extent after application of P. fluorescens in the unfertilized soil. Under rape increases of 52% for acid phosphatase activities (ACP), 103% for alkaline phosphatase activities (ALP), and 133% for phosphodiesterase (PDE) were observed therewith. In the unfertilized soil, the application of P. fluorescens also resulted in a strong increase of the arbuscular mycorrhizal colonization of maize. We conclude that application of PGPR can promote the P mobilization and supply of crops in P‐deficient soils, however, in combination with organic fertilization these effects might be masked by a general improved P supply of the crops. Interactive effects of applied bacterial strains and organic fertilization depend on the sort of organic fertilizer and crop species used.  相似文献   

6.
The antimicrobial metabolites 2,4-diacetylphloroglucinol (2,4-DAPG) and pyoluteorin contribute to the ability of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogens. P. fluorescens strain CHA0 and its derivatives CHA89 (antibiotics-deficient) and CHA0/pME3424 (antibiotics overproducing) were investigated as potential biocontrol agents against Meloidogyne javanica the root-knot nematode. Exposure of root-knot nematode to culture filtrates of P. fluorescens under in vitro conditions significantly reduced egg hatch and caused substantial mortality of M. javanica juveniles. Nutrient broth yeast extract (NBY) medium amended with 2% (w/v) glucose or 1 mM EDTA markedly repressed hatch inhibition activity of the strain CHA0 but not that of CHA0/pME3424 or CHA89. On the other hand, NBY medium amended with glucose significantly enhanced nematicidal activity of the strain CHA0/pME3424. Neither glucose nor EDTA had an influence on the nematicidal activity of the strains CHA0 and CHA89. Under in vitro conditions, antibiotic overproducing strain CHA0/pME3424 and CHA0 expressed phl‘-’lacZ reporter gene but strain CHA89 did not. Expression of the reporter gene reflects actual production of DAPG. In general, CHA0/pME3424 expressed reporter gene to a greater extent compared to its wild type counterpart CHA0. Regardless of the bacterial strains, reporter gene expression was markedly enhanced when NBY medium was amended with glucose but EDTA had no such effect. A positive correlation between the degree of juvenile mortality and extent of phl‘-’lacZ reporter gene expression was also observed in vitro. Strain CHA0 produced zones of 4-6 mm on MM medium containing gelatin while strain CHA0/pME3424 and CHA89 did not. When MM medium containing gelatin was amended with 2% glucose of 1 mM EDTA size of haloes produced by the strain CHA0 reduced to 2 mm. Under glasshouse conditions aqueous cell suspension of the strains CHA0 or CHA0/pME3424 at various inoculum levels (107, 108 or 109 cfu ml−1) significantly reduced root-knot development. CHA89 caused significant reduction in galling when applied at 109 cfu ml−1. To better understand the mechanism of nematode suppression, split root bioassay was performed. Split-root experiments, that guarantee a spatial separation of inducing agent and a challenging pathogen, showed that soil treatment of one half of the root system with cell suspension of CHA0 or CHA0/pME3424 resulted in a significant systemic induced resistance leading to reduction of M. javanica infection of tomato roots in the non-baterized nematode treated half. The results clearly suggest that the antibiotic 2,4-DAPG from P. fluorescens CHA0 act as the inducing agents of systemic resistance in tomato roots. Populations of CHA0 and its derivatives declined progressively by 10-fold between first and fourth harvests (0-21 days after inoculation). However, bacterial populations increased at final harvest (28 days after application).  相似文献   

7.
苹果树腐烂病拮抗细菌鉴定及其抑菌作用效果测定   总被引:8,自引:0,他引:8  
为了开发一种高效低毒的苹果树腐烂病生防制剂,通过对峙培养法、形态学及分子生物学的方法进行了苹果树腐烂病菌拮抗菌的分离筛选及鉴定,采用离体枝条法测定了拮抗菌对苹果树腐烂病的防效,并采用显微观察和液体培养法分别研究了拮抗菌对苹果树腐烂病菌的抑菌机理和无菌滤液对苹果树腐烂病菌生长的影响。分离筛选结果表明,从甘肃省各苹果产区果园土壤和苹果树枝条上分离得到23株细菌,2株对苹果树腐烂病菌具有较好拮抗作用,分别为LZ-1201和TS-1203,其对苹果树腐烂病菌菌丝生长抑制率分别为79.00%和85.00%。鉴定结果表明,菌株LZ-1201和TS-1203分别为枯草芽孢杆菌(Bacillus subtilis)和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。离体枝条防效测定表明,拮抗菌无菌滤液对苹果树腐烂病的防效随着稀释倍数增大而降低,原液防效最高,分别为74.43%和77.07%。抑菌作用机理结果表明,两株拮抗菌均可导致苹果树腐烂病菌丝膨大畸形、原生质浓缩、释放及溶解。拮抗菌无菌滤液对腐烂病菌生长的影响测定结果表明,无菌滤液对腐烂病菌分生孢子萌发和菌丝生长量均有显著抑制作用(P0.05),其无菌滤液稀释40倍时对腐烂病菌分生孢子萌发和菌丝生长量的抑制率均高于60%,表明该拮抗菌具有很好的生防潜力。  相似文献   

8.
Plant growth–promoting rhizobacteria (PGPR) may enhance the plant availability of phosphorus (P) in soil. A greenhouse pot experiment was conducted cultivating maize (Zea mays L.) on a P-deficient soil. Three bacterial treatments (control without PGPR and application of either Enterobacter radicincitans sp. nov. strain DSM 16656 or Pseudomonas fluorescens strain DR54) were tested in conjunction with three P treatments [no P addition, inorganic P as triplesuperphosphate (TSP), and organic P as phytin] at two different growth stages of maize (V6 and V9). Amendment with TSP enhanced growth, P uptake, and highly bioavailable P pools in soil to a greater extent than phytin. In contrast, arbuscular mycorrhiza (AM) formation of maize roots after phytin application doubled those for the TSP treatment or the control without P. Application of PGPR was also able to increase AM formation and P uptake of maize, especially when no P source was added. Furthermore, P. fluorescens inoculation resulted in an increase of highly soluble soil P pools at the early growth stage. Greater impacts of phytin on P nutrition of maize may exist in a longer term as a result of slow P release and promotion of AM fungi. Benefits to maize P nutrition derived from PGPR application can be expected under P deficiency.  相似文献   

9.
The growth and nitrogenous excretion of a common soil flagellate, Spumella sp., isolated from a Scottish podzol and fed with the common soil bacterium, Pseudomonas fluorescens, were investigated. Video-enhanced light microscopy and transmission electron microscopy were used to study the digestion process. Ingestion of the bacteria occurred rapidly at the base of the two flagella and involved the formation of a small protrusion, which surrounded the prey. The first signs of digestion appeared a few minutes after ingestion with the degradation of the outer membrane of the bacteria. Digestion was complete within 30–60 min, and the indigestible bacterial residues were then released into the medium. Ammonium nitrogen was the major form of nitrogen excreted. Some apparently intact P. fluorescens bacteria were also egested. For each division 130 bacteria were required. No feeding activities were observed at 5°C. Of the total bacterial protein, 42% was incorporated into biomass of flagellates.  相似文献   

10.
We investigated whether the prey-predator dynamics of bacteria and protozoa were affected by inorganic mercury at concentrations of 0, 3.5 and 15 mg Hg(II) kg soil−1. The amount of bioavailable Hg was estimated using a biosensor-assay based on the mer-lux gene fusion. The numbers of bacterial CFUs on the general medium 1/100 tryptic soy agar (TSA) were significantly decreased when the soil had been amended with Hg. In contrast, no effect was seen on the number of CFUs on the Pseudomonas-specific medium Gould's S1 agar. Protozoan numbers estimated by the most probable number (MPN) method with 1/100 TSB as growth medium were also negatively affected by Hg. The different fractions of protozoa were affected to different degrees suggesting that amoebae were less sensitive than slow-growing flagellates, which again were less sensitive than the fast-growing flagellates. In contrast, Hg did not induce any detectable changes in the diversity of flagellate morphotypes. In the treatment with 15 mg Hg kg−1 a transiently increased number of bacteria was seen at day 6 probably concomitant with a decrease in the numbers of protozoa. This might indicate that Hg affected the prey-predator dynamics in communities of culturable bacteria and protozoa in soil. Furthermore, we showed that the number of Pseudomonas spp. was not affected by Hg whereas the number of bacteria growing on a general medium was.  相似文献   

11.
刘冬晖  李凤巧  靳志丽  李孝刚 《土壤》2022,54(4):750-755
植物微生物组是维护植物生长发育、提升抗逆防病的重要调控因素。为发挥植物微生物促进烟草生长、改善烟草根区微生态功能作用,本研究从烟草根表分离筛选可培养细菌组,并对不同菌株的促生能力进行测定。结果表明:(1)从烟草根表分离并鉴定出可培养菌株310株,隶属于31个属,其中主要为芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas);(2)对比分析发现假单胞菌属、芽孢杆菌属、寡养单胞菌属(Stenotrophomonas)和成对杆菌属(Dyadobacter)为4种供试土壤烟草根表共有的细菌类群;(3)对进一步筛选得到的16株菌株进行促生能力的测定,发现6株菌具有固氮能力,5株菌产铁载体,4株菌可溶解无机磷,4株菌产IAA;(4)盆栽试验验证16株菌株的促生效果,其中37.5%的菌株对烟草生长具有显著促进作用,烟草株高、总鲜物质量和地下部干物质量分别比对照提高35.1%、27.9%和30.7%。总之,从烟草根表分离获得多种具有促生能力的菌株,为未来构建促进烟草健康生长的复合菌剂提供了理论基础。  相似文献   

12.
The effects of seed inoculation with the Pseudomonas fluorescens strains F113lacZY [a genetically marked biocontrol agent producing the anti-fungal agent 2,4-diacetylphloroglucinol (DAPG)] and F113G22 [a genetically modified (GM) derivative strain of F113lacZY incapable of producing DAPG] on associated nematode communities were investigated over 17 days of plant growth. Plant growth measurements and colony forming unit counts (CFU) derived from rhizosphere soil indicated only small and transient perturbations as a result of introductions of the GM bacteria. Total nematode numbers were increased significantly in the rhizosphere of inoculated plants compared with the non-inoculated control treatments. These increases were mainly due to increases in bacterial feeding nematodes. This indicates that inoculation with the GM P. fluorescens strains induced high bacterial growth rates in the rhizosphere of plants inoculated with these strains. No indication of greater root colonisation by fluorescent Pseudomonas spp. could be found using CFU counts on Pseudomonas-selective media. Numbers of fungal feeding nematodes decreased initially, probably as a result of lack of intact hyphae in the soil. However, inoculation with the two different GM P. fluorescens strains resulted in a rapid recovery of fungal feeding nematode populations, whereas in the non-inoculated control populations of fungal feeding nematodes remained small. This result is surprising as one of the strains (F113lacZY) produces the anti-fungal agent DAPG and it would be expected that this agent would result in a decrease in fungal activity.  相似文献   

13.
Plant growth-promoting rhizobacteria (PGPR) strains CHA0 (Pseudomonas fluorescens), IE-6 S+ (Pseudomonas aeruginosa) and 569Smr (Bradyrhizobium japonicum) were tested singly and in combinations for biological control against multiple tomato pathogens (root-infecting fungi and root-knot nematodes). Strains CHA0 and IE-6S+ inhibited in vitro growth of 569Smr while IE-6S+ suppressed CHA0. The bacterial species not only inhibited the radial growth of three root-infecting fungi, Macrophomina phaseolina, Fusarium solani and Rhizoctonia solani (AG 8), but also caused substantial mortality of Meloidogyne javanica juveniles. Used as a soil drench the three bacteria not only suppressed root-infecting fungi and root-knot nematodes but also enhanced growth of tomato plants both under glasshouse and field conditions. The suppressive effect was generally more pronounced when the bacteria were employed together. Strain IE-6S+ exhibited better rhizosphere colonization than CHA0 and 569Smr. Populations of CHA0 in the rhizosphere declined when the bacterium was used with either IE-6S+ and/or 569Smr, while populations of IE-6S+ in the rhizosphere were enhanced when used in combination with CHA0 and/or 569Smr. IE-6S+ was the only bacterium that colonized inner root tissues of tomato plants. When using an iron chelator to create iron deficiency in the soil, the biocontrol efficacy of the bacteria against F. solani and R. solani was enhanced while against M. phaseolina and M. javanica this activity remained unchanged. Only strain 569Smr gave significant suppression of M. phaseolina in both iron-deficient and iron-sufficient soils.  相似文献   

14.
生物质炭介导生防微生物抑制辣椒疫霉的作用   总被引:1,自引:0,他引:1  
生物质炭可有效防控土传病害,筛选并鉴定出生物质炭介导下的生防微生物,可为研究生物质炭防病机理和强化生物质炭防病效果提供理论依据。本研究首先进行秸秆生物质炭防控辣椒疫病盆栽试验,利用定量PCR和平板计数明确生物质炭在防控辣椒疫病时可富集的已知生防微生物,再通过选择性培养基初筛和定殖复筛筛选出生物质炭可富集的潜在生防微生物菌株,最后研究各菌株在土壤中对辣椒疫霉的抑制作用。结果表明,秸秆生物质炭使根际辣椒疫霉数量显著降低95.1%、辣椒疫病发生率显著降低91.1%,并使具有生防功能的木霉菌、青霉菌、曲霉菌、芽孢杆菌、假单胞菌和鞘氨醇单胞菌数量显著增加2.22倍、4.09倍、3.89倍、2.45倍、1.45倍和1.30倍。通过平板初筛得到可能被生物质炭富集的22株潜在生防菌株。定殖复筛剔除部分假性生物质炭介导菌株,获得可明确被生物质炭富集的2株木霉菌、3株青霉菌、2株曲霉菌、3株芽孢杆菌、3株假单胞菌、3株链霉菌和2株鞘氨醇单胞菌。木霉菌(TR1和TR3)、青霉菌(PE1)、曲霉菌(AS1和AS2)、芽孢杆菌(BA1、BA2和BA3)、假单胞菌(PS1和PS3)、链霉菌(ST1、ST4和ST5)13个菌株可显著削减土壤辣椒疫霉数量。其中,所有木霉菌和曲霉菌菌株(TR1、TR3、AS1和AS2)及芽孢杆菌(BA1和BA2)、假单胞菌(PS1和PS3)和链霉菌(ST1)9个菌株与生物质炭具有显著的协同抑制辣椒疫霉效果。因此,防控辣椒疫病时,木霉菌、曲霉菌、芽孢杆菌、假单胞菌和链霉菌是生物质炭介导下的主要防病微生物。  相似文献   

15.
Non-target effects of a bacterial (Pseudomonas fluorescens DR54) and a fungal (Clonostachys rosea IK726) microbial control agent (MCA), on the indigenous microbiota in bulk soil and rhizosphere of barley, and subsequent a sugar beet crop, were studied in a greenhouse experiment. MCAs were introduced by seed and soil inoculation. Bulk and rhizosphere soils were sampled regularly during the growth of barley and sugar beet. The soils were assayed for the fate of MCAs and various features of the indigenous soil microbiota. At the end of the experiment (193 d), DR54 and IK726 had declined by a factor of 106 and 20, respectively, and DR54 showed a short-lasting growth increase in the sugar beet rhizosphere. In general, the non-target effects were small and transient. IK726 seemed to have general stimulating effects on soil enzyme activity and the soil microbiota, and resulted in a significant increase in plant dry weight. The plant growth-promoting effect of DR54 was less pronounced and the DR54 displaced indigenous pseudomonads. DR54 stimulated growth of protozoans with a tolerance for the anti-fungal compound viscosinamide produced by DR54. Treatment with the fungicide Fungazil had no effects on plant growth or soil microorganisms. Phospholipid fatty acid (PLFA) analysis detected the perturbations of the soil microbial community structure in the MCA treatments as well as the return to non- perturbed conditions reflecting the decline of inoculant populations. The PLFA technique appears to be suitable for in situ monitoring of MCA non-target effects on the soil microbiota, but should be combined with assays for MCA survival and soil enzyme activity.  相似文献   

16.
Although often neglected, variability in cell lysis efficiency and DNA extraction yield represents the major hurdles of any polymerase chain reaction (PCR)-based quantification protocol in soil and other natural environments. In this study we developed a technique that minimizes the effects of these constraints, providing at the same time a reliable internal control to distinguish between PCR-inhibition and negative results. We used Pseudomonas fluorescens Pf153, a root-colonizing bacterium that shows biocontrol activity against tobacco and cucumber black root rot, as the target organism for PCR quantification. Prior to DNA extraction, the genetically engineered, cognate reference strain P. fluorescens CHA0/c2 was inoculated in a reference soil. CHA0/c2 in the reference soil and Pf153 in the soil sample were lysed in parallel and afterward the lysates were mixed in known proportions. CHA0/c2 carries the plasmid pME6031-cmp2 that contains an allelic variant (competitor) of the Pf153 specific sequence Pf153_2. In a quantitative competitive PCR (QC-PCR) assay the competitor allows the quantification of the target strain down to 0.66 Pf153 CFU/mg soil. Processing the reference strain in the same way as Pf153 enables the exact quantification of the target strain in biocontrol assays performed in natural soil, overcoming differences in DNA extraction efficiency and PCR amplification from different soil environments. This technique is easily adaptable to other Pseudomonas strains simply by replacing the competitor used here with one derived from a SCAR-marker which is specific for the strain of choice.  相似文献   

17.
The objectives of this work were to isolate and characterize walnut phosphate-solubilizing bacteria (PSB) and to evaluate the effect of inoculation with the selected PSB stains to walnut seedlings fertilized with or without insoluble phosphate. Thirty-four PSB strains were isolated and identified under the genera Pseudomonas, Stenotrophomonas, Bacillus, Cupriavidus, Agrobacterium, Acinetobacter, Arthrobacter, Pantoea, and Rhodococcus through a comparison of the 16S ribosomal DNA sequences. All isolated PSB strains could solubilize tricalcium phosphate (TCP) in solid and liquid media. Phosphate-solubilizing activity of these strains was associated with a drop in the pH of medium. A significantly negative linear correlation was found between culture pH and phosphorus (P) solubilized from inorganic phosphate. Three isolates Pseudomonas chlororaphis (W24), Bacillus cereus (W9), and Pseudomonas fluorescens (W12) were selected for shade house assays because of their higher phosphate-solubilizing abilities. Under shade house conditions, application of W24 or W12 remarkably improved plant height, shoot and root dry weight, and P and nitrogen (N) uptake of walnut seedlings. These increases were higher on combined inoculation of PSB with TCP addition. The most pronounced beneficial effect on growth of walnut plants was observed in the co-inoculation of the three PSB strains with TCP addition. In comparison, the isolate of W9 failed to increase available soil P, nutrient levels in plants, or to promote plant growth, suggesting that more insoluble phosphate compounds than tricalcium phosphate should be used as substrates to assess the phosphate-solubilizing ability of PSB under greenhouse conditions. The present results indicated that strains P. chlororaphis or P. fluorescens could be considered for the formulation of new inoculants of walnut, even of more woody plants.  相似文献   

18.
The metabolic capacities of rhizosphere bacteria can depend on intraspecific genetic variability at strain level. We sampled bacteria from the rhizosphere of three populations of four different Lupinus species at two growth stages (flowering: GS1 and fruiting: GS2). Isolates were identified to the genus level by classical biochemical tests. The most abundant genera found were Bacillus, Aureobacterium, Cellulomonas, Pseudomonas, and Arthrobacter. Genetic divergence of rhizobacteria was tested by PCR-RAPDs. The genetic distances were low, with mean values of 37 % for Bacillus, 25 % for Aureobacterium, 46 % for Cellulomonas, 16 % for Pseudomonas, and 23 % for Arthrobacter. Aureobacterium, the most abundant genus, predominated in the rhizosphere of all populations and at both growth stages (GS1 and GS2) of L. angustifolius. The Aureobacterium strains consisted of 11 groups with 90 % similarity indexes. The cluster analysis of these groups shows that strains isolated from different lupin species and sampling times have extraordinary low diversity indexes, or are even identical. This fact, together with the low genetic distance detected in the rhizosphere, reveals a clear specificity in the plant-bacteria interaction. This specificity could be related with several aspects of plant physiology.  相似文献   

19.
Summary The application of 8-hydroxyquinoline (8OHQ) in a low-iron medium is demonstrated to be an important selective agent providing a simple and non-laborious method in the search for plant growth-stimulating and antagonistic fluorescent pseudomonads. Eleven isolates obtained from low-iron plates containing 120 ppm 8OHQ possessed similar or even better antagonistic properties in vitro than the reference strains Pseudomonas fluorescens WCS 374 and pseudobactin-producing strain B10 with plant growth-stimulating properties. One out of four of the best in vitro antagonists showed significant growth stimulation of radish (Raphanus sativus), comparable to that of the plant growth-stimulating reference strains. Iron supply abolished their antagonism in vitro, indicating that siderophores were primarily involved. The selective mode of action of 8OHQ was demonstrated to be iron stress induced by the strong chelation of available iron.  相似文献   

20.
Some functional traits of Pseudomonas fluorescens 92 and BBc6, two strains isolated, respectively, from the basidiome of the ectomycorrhizal fungi Suillus grevillei and Laccaria laccata, were evaluated. A rifampicin-resistant mutant of P. fluorescens 92 (P. fluorescens 92R1) showed a significant in vivo plant growth promotion effect on cucumber plants. Quantitative analysis of enzymatic and physiological activities on different substrates showed that P. fluorescens 92 produced about a three times higher level of avicelase than BBc6, while equivalent amounts of β-glucosidase were produced by both strains. Satisfactory levels of neutral phosphomonoesterase and medium levels of acid phosphomonoesterase were produced by both. Only P. fluorescens BBc6 produced a very low amount of phosphodiesterase. Both strains produced high amounts of IAA and siderophores. Both strains showed on an iron deficient medium a very high antagonistic activity against the phytopathogenic fungus Heterobasidion annosum. Purification of fluorescent siderophores by copper-chelate chromatography showed that P. fluorescens 92 produced one pyoverdin (Pf92) and BBc6 two pyoverdins (PfBI and PfBII). A good inhibitory activity against mycelial growth of H. annosum was also observed when using the pyoverdines purified by affinity chromatography. Further purification by reverse phase high pressure liquid chromatography produced multiple fractionation of the three pyoverdins. Analysis of the reverse-phase purified pyoverdines by electronspray ionization mass spectrometry gave for pyoverdin Pf92 the mass value of 1213.8 and for both PfBI and PfBII the mass value of 1305.7. The presence of iron-chelating forms and sodium adducts were also evidenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号