首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P-type ATPases extract energy by hydrolysis of adenosine triphosphate (ATP) in two steps, formation and breakdown of a covalent phosphoenzyme intermediate. This process drives active transport and countertransport of the cation pumps. We have determined the crystal structure of rabbit sarcoplasmic reticulum Ca2+ adenosine triphosphatase in complex with aluminum fluoride, which mimics the transition state of hydrolysis of the counterion-bound (protonated) phosphoenzyme. On the basis of structural analysis and biochemical data, we find this form to represent an occluded state of the proton counterions. Hydrolysis is catalyzed by the conserved Thr-Gly-Glu-Ser motif, and it exploits an associative nucleophilic reaction mechanism of the same type as phosphoryl transfer from ATP. On this basis, we propose a general mechanism of occluded transition states of Ca2+ transport and H+ countertransport coupled to phosphorylation and dephosphorylation, respectively.  相似文献   

2.
Modulation of the activity of potassium and other ion channels is an essential feature of nervous system function. The open probability of a large conductance Ca(2+)-activated K+ channel from rat brain, incorporated into planar lipid bilayers, is increased by the addition of adenosine triphosphate (ATP) to the cytoplasmic side of the channel. This modulation takes place without the addition of protein kinase, requires Mg2+, and is mimicked by an ATP analog that serves as a substrate for protein kinases but not by a nonhydrolyzable ATP analog. Addition of protein phosphatase 1 reverses the modulation by MgATP. Thus, there may be an endogenous protein kinase activity firmly associated with this K+ channel. Some ion channels may exist in a complex that contains regulatory protein kinases and phosphatases.  相似文献   

3.
BAX and BAK are "multidomain" proapoptotic proteins that initiate mitochondrial dysfunction but also localize to the endoplasmic reticulum (ER). Mouse embryonic fibroblasts deficient for BAX and BAK (DKO cells) were found to have a reduced resting concentration of calcium in the ER ([Ca2+]er) that results in decreased uptake of Ca2+ by mitochondria after Ca2+ release from the ER. Expression of SERCA (sarcoplasmic-endoplasmic reticulum Ca2+ adenosine triphosphatase) corrected [Ca2+]er and mitochondrial Ca2+ uptake in DKO cells, restoring apoptotic death in response to agents that release Ca2+ from intracellular stores (such as arachidonic acid, C2-ceramide, and oxidative stress). In contrast, targeting of BAX to mitochondria selectively restored apoptosis to "BH3-only" signals. A third set of stimuli, including many intrinsic signals, required both ER-released Ca2+ and the presence of mitochondrial BAX or BAK to fully restore apoptosis. Thus, BAX and BAK operate in both the ER and mitochondria as an essential gateway for selected apoptotic signals.  相似文献   

4.
We characterized an activation mechanism of the human LTRPC2 protein, a member of the transient receptor potential family of ion channels, and demonstrated that LTRPC2 mediates Ca2+ influx into immunocytes. Intracellular pyrimidine nucleotides, adenosine 5'-diphosphoribose (ADPR), and nicotinamide adenine dinucleotide (NAD), directly activated LTRPC2, which functioned as a Ca2+-permeable nonselective cation channel and enabled Ca2+ influx into cells. This activation was suppressed by intracellular adenosine triphosphate. These results reveal that ADPR and NAD act as intracellular messengers and may have an important role in Ca2+ influx by activating LTRPC2 in immunocytes.  相似文献   

5.
Localized all-or-none calcium liberation by inositol trisphosphate   总被引:14,自引:0,他引:14  
Laser confocal microscopy was used to monitor calcium ion (Ca2+) liberation from highly localized (micrometer) regions of intact Xenopus oocytes in response to photo-released inositol 1,4,5-trisphosphate (InsP3). Local Ca2+ release varied in an all-or-none manner with increasing amount of InsP3, in contrast to signals recorded from larger areas, which grew progressively as the concentration of InsP3 was raised above a threshold. Liberation of Ca2+ was restricted to within a few microns of the site of InsP3 release and, in response to agonist activation, localized regions of the oocyte showed asynchronous oscillations in cytoplasmic Ca2+ release. Results obtained with this technique provided direct evidence that InsP3-induced Ca2+ liberation was quantized and suggest that the InsP3-sensitive Ca2+ pool may be a collection of independent, localized compartments that release Ca2+ in an all-or-none manner.  相似文献   

6.
A wide variety of nonexcitable cells generate repetitive transient increases in cytosolic calcium ion concentration ([Ca2+]i) when stimulated with agonists that engage the phosphoinositide signalling pathway. Current theories regarding the mechanisms of oscillation disagree on whether Ca2+ inhibits or stimulates its own release from internal stores and whether inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DG) also undergo oscillations linked to the Ca2+ spikes. In this study, Ca2+ was found to stimulate its own release in REF52 fibroblasts primed by mitogens plus depolarization. However, unlike Ca2+ release in muscle and nerve cells, this amplification was insensitive to caffeine or ryanodine and required hormone receptor occupancy and functional IP3 receptors. Oscillations in [Ca2+]i were accompanied by oscillations in IP3 concentration but did not require functional protein kinase C. Therefore, the dominant feedback mechanism in this cell type appears to be Ca2+ stimulation of phospholipase C once this enzyme has been activated by hormone receptors.  相似文献   

7.
alpha-klotho was identified as a gene associated with premature aging-like phenotypes characterized by short lifespan. In mice, we found the molecular association of alpha-Klotho (alpha-Kl) and Na+,K+-adenosine triphosphatase (Na+,K+-ATPase) and provide evidence for an increase of abundance of Na+,K+-ATPase at the plasma membrane. Low concentrations of extracellular free calcium ([Ca2+]e) rapidly induce regulated parathyroid hormone (PTH) secretion in an alpha-Kl- and Na+,K+-ATPase-dependent manner. The increased Na+ gradient created by Na+,K+-ATPase activity might drive the transepithelial transport of Ca2+ in cooperation with ion channels and transporters in the choroid plexus and the kidney. Our findings reveal fundamental roles of alpha-Kl in the regulation of calcium metabolism.  相似文献   

8.
Oxygen (O2) consumption and net K+ uptake were measured simultaneously upon reintroduction of K+ into a K+-depleted suspension of renal tubules. The K+/O2 stoichiometries of 11.8 +/- 0.2 and 8.4 +/- 0.6 were obtained for reduced nicotinamide adenine dinucleotide- and flavoprotein-linked substrates, respectively. These values complement classical K+ to adenosine triphosphate (ATP) and ATP/O2 stoichiometries, thereby demonstrating a remarkably efficient coupling between the processes of Na+- and K+-dependent adenosinetriphosphatase-mediated ion transport and oxidative phosphorylation within the intact cell.  相似文献   

9.
The molecular pathways involved in retrograde signal transduction at synapses and the function of retrograde communication are poorly understood. Here, we demonstrate that postsynaptic calcium 2+ ion (Ca2+) influx through glutamate receptors and subsequent postsynaptic vesicle fusion trigger a robust induction of presynaptic miniature release after high-frequency stimulation at Drosophila neuromuscular junctions. An isoform of the synaptotagmin family, synaptotagmin 4 (Syt 4), serves as a postsynaptic Ca2+ sensor to release retrograde signals that stimulate enhanced presynaptic function through activation of the cyclic adenosine monophosphate (cAMP)-cAMP-dependent protein kinase pathway. Postsynaptic Ca2+ influx also stimulates local synaptic differentiation and growth through Syt 4-mediated retrograde signals in a synapse-specific manner.  相似文献   

10.
The calcium ion pump of fragmented sarcoplasmic reticulum can be coupled to hydrolysis of p-nitrophenyl phosphate, in the absence of added adenosine triphosphate. Comparison of the activities obtained with the two substrates suggests an analogous mechanism of transport. Independent of the substrate, a 2 : 1 ratio between calcium ion transport and substrate hydrolysis is displayed by the system, and an identical amount of work is required for ion transport against a given gradient. A phosphate ester appears necessary for substrate utilization in the pump mechanism, whereas the structure of the substrate determines the rates of activity and the affinity of the system for calcium ion.  相似文献   

11.
【目的】枇杷果实采后生命活动旺盛,衰老速度快,常温下极易变质腐烂。低温贮藏虽然可以有效延长贮藏期,减少腐烂,但会出现果皮难以剥离、果肉木质化并褐变、质地糙硬少汁等品质劣变现象,这是造成冷藏枇杷商品性丧失和损失的主要原因,已成为其市场拓展的限制因素,是当前枇杷果实在冷链集散和流通中急需解决的关键问题。探讨外源NO处理对冷藏枇杷果肉木质化劣变进程的作用机制,并分析木质化劣变与能量代谢的关系,以期为进一步研究采后枇杷果实低温品质劣变进程调控的分子生物学机理和贮运保鲜技术奠定基础。【方法】将‘解放钟’枇杷(Eriobotrya japonica Lindl.)果实在密闭容器中用0(对照组)、15和25 μL•L-1 NO熏蒸2 h后,取出通风20 min,然后将各处理果实置于5℃、相对湿度85%条件下贮藏,测定冷藏期间各处理组果实细胞膜透性、硬度、出汁率、木质素含量、ATP含量、ADP含量、AMP含量、能荷值及琥珀酸脱氢酶(SDH)、细胞色素氧化酶(CCO)、H+-ATPase和Ca2+-ATPase活性的变化,并分析NO处理后木质素含量与能荷值间的相关性。【结果】随着贮藏时间的延长,枇杷果实细胞膜透性和硬度逐渐上升,出汁率逐渐下降,贮藏10 d后木质素含量迅速上升,果实冷害症状明显。与对照组相比, NO处理能延缓细胞膜透性和硬度的上升及出汁率的降低,显著抑制木质素的合成,较好地保持细胞膜的完整性,从而减轻果实冷害的发生。冷藏期间,枇杷果实ATP含量逐渐下降,贮藏前10 d ADP含量迅速下降并最终维持在较低水平,贮藏中后期(15-30 d)SDH、CCO、H+-ATPase和Ca2+-ATPase活性急剧下降,表明线粒体功能受损导致枇杷果实能荷水平迅速下降。与对照组相比,NO处理可以延缓ATP、ADP含量的下降,且显著抑制贮藏中后期SDH、CCO、H+-ATPase和Ca2+-ATPase活性的降低,保持枇杷果实较好的线粒体功能;贮藏30 d后,15 和25 μL•L-1 NO处理的枇杷果实能荷值分别比对照组高11.8%和12.9%。相关性分析表明,15和25 μL•L-1 NO处理的枇杷果实能荷值和木质素含量呈极显著负相关,相关系数(r)分别为 -0.715**、-0.598**。【结论】低温条件下,能量代谢失调与枇杷果实木质化劣变密切相关,NO处理可以通过调节SDH、CCO、H+-ATPase、Ca2+-ATPase线粒体代谢相关酶活性,维持较高的能量水平,从而有效地提高冷藏枇杷果实抗低温的能力,进而延缓果实木质化进程,其中以25 μL•L-1 NO处理效果较好。  相似文献   

12.
Free calcium at rest during "catch" in single smooth muscle cells   总被引:2,自引:0,他引:2  
Tension and intracellular free calcium concentration [( Ca2+]i) were measured simultaneously in single smooth muscle cells isolated from the anterior byssus retractor muscle (ABRM) of Mytilus edulis that were loaded with the fluorescent Ca2+ indicator fura-2. Electrical stimulation evoked a transient elevation of [Ca2+]i associated with a "catch" contraction. During the catch state, however, [Ca2+]i was effectively at its resting level and was unaffected by 5-hydroxytryptamine, which induced a rapid relaxation from catch. The results indicate that a maintained high [Ca2+]i is not required for the maintenance of catch tension in intact ABRM and that there was no significant change in [Ca2+]i upon abolition of catch.  相似文献   

13.
运用非损伤微测技术(NMT),研究了短期盐胁迫下胞外ATP(eATP)、H2 O2 、Ca2 + 与NO 对非泌盐红树木榄根 系K+/Na+ 平衡的调控作用。NaCl(100 mmol/L,24 h)与等渗甘露醇处理的实验表明,木榄根尖对盐胁迫的响应具 有高度的离子特异性。盐胁迫增强了木榄根尖的Na+ 外流,但Na+ 外流被Na+ /H+ 逆向转运蛋白抑制剂Amiloride 和质膜H+ -ATPase 抑制剂Vanadate 抑制,表明Na+ 外流源于根尖表皮细胞质膜Na+ /H+ 逆向转运系统驱动的Na+ 外排。短期盐胁迫处理能诱导木榄根尖K+ 外流,但被氯化四乙胺(TEA,外向K+ 通道抑制剂)明显抑制,证明K+ 外流是由激活的去极化外向型离子通道KORCs 介导。胞外ATP(300 mol/L)、H2 O2 (10 mmol/L)、Ca2 + (10 mmol/ L)与SNP(NO 供体,100 mol/L)均能增加短期盐胁迫下的Na+ 外流,同时抑制K+ 外流。其中,促进Na+ 外流效果 较强的是H2 O2 和Ca2 + ,而Ca2 + 和NO 抑制K+ 外流的效果突出。这些实验结果表明,胞外ATP、H2 O2 、Ca2 + 与NO 这4 种盐胁迫信使是通过上调木榄根系细胞质膜Na+ /H+ 逆向转运体系(Na+ /H+ 逆向转运体和H+ 泵)活性,在促 进Na+ 和H+ 逆向跨膜转运的同时,抑制去极化激活的K+ 离子通道来减少盐诱导的K+ 外流。   相似文献   

14.
Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes   总被引:28,自引:0,他引:28  
Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded in the magnitude, frequency, and spatial organization of changes in the concentration of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular milieu that behaves as a regenerative excitable medium. The minimal critical radius for propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion constant for the excitation signal (2.3 x 10(-6) square centimeters per second) were estimated from measurements of velocity and curvature of circular wavefronts expanding from foci. By modeling Ca2+ release with cellular automata, the absolute refractory period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an excitable medium, such as wave propagation of undiminished amplitude and annihilation of colliding wavefronts, were observed.  相似文献   

15.
P/Q-type presynaptic calcium currents (IpCa) undergo activity-dependent facilitation during repetitive activation at the calyx of the Held synapse. We investigated whether neuronal calcium sensor 1 (NCS-1) may underlie this phenomenon. Direct loading of NCS-1 into the nerve terminal mimicked activity-dependent IpCa facilitation by accelerating the activation time of IpCa in a Ca2+-dependent manner. A presynaptically loaded carboxyl-terminal peptide of NCS-1 abolished IpCa facilitation. These results suggest that residual Ca2+ activates endogenous NCS-1, thereby facilitating IpCa. Because both P/Q-type Ca2+ channels and NCS-1 are widely expressed in mammalian nerve terminals, NCS-1 may contribute to the activity-dependent synaptic facilitation at many synapses.  相似文献   

16.
Molecular etiologies of heart failure, an emerging cardiovascular epidemic affecting 4.7 million Americans and costing 17.8 billion health-care dollars annually, remain poorly understood. Here we report that an inherited human dilated cardiomyopathy with refractory congestive heart failure is caused by a dominant Arg --> Cys missense mutation at residue 9 (R9C) in phospholamban (PLN), a transmembrane phosphoprotein that inhibits the cardiac sarcoplasmic reticular Ca2+-adenosine triphosphatase (SERCA2a) pump. Transgenic PLN(R9C) mice recapitulated human heart failure with premature death. Cellular and biochemical studies revealed that, unlike wild-type PLN, PLN(R9C) did not directly inhibit SERCA2a. Rather, PLN(R9C) trapped protein kinase A (PKA), which blocked PKA-mediated phosphorylation of wild-type PLN and in turn delayed decay of calcium transients in myocytes. These results indicate that myocellular calcium dysregulation can initiate human heart failure-a finding that may lead to therapeutic opportunities.  相似文献   

17.
Proton pumps in the plasma membrane of plants and yeasts maintain the intracellular pH and membrane potential. To gain insight into the molecular mechanisms of proton pumping, we built an atomic homology model of the proton pump based on the 2.6 angstrom x-ray structure of the related Ca2+ pump from rabbit sarcoplasmic reticulum. The model, when fitted to an 8 angstrom map of the Neurospora proton pump determined by electron microscopy, reveals the likely path of the proton through the membrane and shows that the nucleotide-binding domain rotates by approximately 70 degrees to deliver adenosine triphosphate (ATP) to the phosphorylation site. A synthetic peptide corresponding to the carboxyl-terminal regulatory domain stimulates ATPase activity, suggesting a mechanism for proton transport regulation.  相似文献   

18.
采用RACE技术,从三角帆蚌(Hyriopsis cumingii)鳃组织中成功克隆得到一种肌浆网Ca2+-ATP酶(sarco/endoplasmic reticulum calcium ATPase,SERCA)基因的全长cDNA序列,共3 326 bp,包含201-bp 5’-UTR区域、3 060-bp编码框(ORF)和65-bp 3’-UTR。ORF共编码1 019个氨基酸,预测无信号肽。该基因氨基酸序列呈现出典型的Ca2+-ATP酶特征,由Cation_ATPase_N、E1-E2_ATPase、Hydrolase、Cation_ATPase_C四种类型结构域组成,其内含SERCAs的常见结构组成包括磷酸化区域、异硫氰酸荧光素位点、FSBA结合位点、受磷蛋白结合区以及毒胡萝卜素位点。分析显示,该基因序列高度保守且与海洋软体动物具有最高同源性。荧光定量PCR检测,该基因在三角帆蚌外套膜、斧足、鳃、肝胰腺、性腺等5个组织中均有表达,且在鳃、外套膜、肝胰腺组织中表达较高。不同Ca2+浓度处理试验的结果表明,随水体中Ca2+浓度逐渐升高,该基因在外套膜中的表达水平呈先下降后上升趋势,并在Ca2+浓度为60 mg·L-1时达到最低值,80 mg·L-1时达到最高值。同时在60 mg·L-1 Ca2+浓度条件下,外套膜中SERCA基因的表达量随时间推移先上升,并于48 h时达到最高,而后逐渐下降。上述结果为进一步深入研究SERCA基因的功能及其调控机理奠定了基础。  相似文献   

19.
Confocal laser-scanned microscopy and long-wavelength calcium (Ca2+) indicators were combined to monitor both sustained and rapidly dissipating Ca2+ gradients in voltage-clamped sympathetic neurons isolated from the bullfrog. After a brief activation of voltage-dependent Ca2+ channels, Ca2+ spreads inwardly, and reaches the center of these spherical cells in about 300 milliseconds. Although the Ca2+ redistribution in the bulk of the cytosol could be accounted for with a radial diffusion model, local nonlinearities, suggesting either nonuniform Ca2+ entry or spatial buffering, could be seen. After electrical stimulation, Ca2+ signals in the nucleus were consistently larger and decayed more slowly than those in the cytosol. A similar behavior was observed when release of intracellular Ca2+ was induced by caffeine, suggesting that in both cases large responses originate from Ca2+ release sites near or within the nucleus. These results are consistent with an amplification mechanism involving Ca2(+)-induced Ca2+ release, which could be relevant to activity-dependent, Ca2(+)-regulated nuclear events.  相似文献   

20.
TRPM4 has recently been described as a calcium-activated nonselective (CAN) cation channel that mediates membrane depolarization. However, the functional importance of TRPM4 in the context of calcium (Ca2+) signaling and its effect on cellular responses are not known. Here, the molecular inhibition of endogenous TRPM4 in T cells was shown to suppress TRPM4 currents, with a profound influence on receptor-mediated Ca2+ mobilization. Agonist-mediated oscillations in intracellular Ca2+ concentration ([Ca2+]i), which are driven by store-operated Ca2+ influx, were transformed into a sustained elevation in [Ca2+]i. This increase in Ca2+ influx enhanced interleukin-2 production. Thus, TRPM4-mediated depolarization modulates Ca2+ oscillations, with downstream effects on cytokine production in T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号