首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A long‐term experiment comparing no‐till with conventional tillage systems across five rotations was evaluated 11 years after initiation. The objectives of the present paper are (1) to report differences in soil chemical properties (namely soil organic matter, total nitrogen, phosphorus, potassium and pH) that have resulted by converting from conventional to no‐till under contrasting cropping systems and (2) to draw tentative conclusions and recommendations on fertility status and fertilizer use and management. Soil in the no‐till system had increased surface soil organic C levels relative to conventional tillage regardless of rotation. In addition, depending on the rotation, the N and P content of the soil improved with no‐till compared with conventional tillage. In other words, no‐till has helped to retain soil organic matter (SOM), conserved more N, and resulted in increased extractable P and exchangeable K concentrations in the upper root‐zone. Hence, wheat produced in a no‐till system may receive more nutrients from decomposition of SOM and acidification of the seed zone. It is possible that lesser amounts of fertilizer nutrients will be needed because of the greater efficiency of nutrient cycling in no‐till systems relative to conventional systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

3.
Soil physical fractionation techniques may provide indicators of changing soil organic carbon (SOC) content; however, they have not been widely tested on volcanic soils (Andisols). In this study, we assessed two fractions as potential indicators in volcanic soils, using two sites in Chile converted from natural grassland to arable and mixed crop rotations, 8 and 16 yr previously. In the 8‐yr experiment, SOC had declined under all rotations, with smaller changes where the rotation included 3 or 5 yr of perennial pasture. Whereas the average SOC was only 76% of the level in the preceding natural grassland, the corresponding value after 16 yr for the second site was 98% (and 93% under continuous arable), probably reflecting its high allophane clay content. The fractionation procedure tested proved applicable to both Andisols, but the intra‐aggregate light fraction (IA‐SOM, isolated in sodium iodide solution at 1.80 g/cm3 after ultrasonic dispersion) accounted for a very small proportion of total SOC (<1%). We suggest that in Andisols, the free light fraction (FR‐SOM, isolated in sodium iodide at solution of the same density, but prior to ultrasonic dispersion) is stabilised to a greater extent than in nonvolcanic soils, and the intra‐aggregate fraction plays a more minor role as a pool of intermediate turnover. The relative value of each fraction needs to be confirmed through dynamic experiments, using more sites, and including situations where SOC content is initially low.  相似文献   

4.
Abstract

The impact of conservation tillage, crop rotation, and cover cropping on soil‐quality indicators was evaluated in a long‐term experiment for cotton. Compared to conventional‐tillage cotton, other treatments had 3.4 to 7.7 Mg ha?1 more carbon (C) over all soil depths. The particulate organic matter C (POMc) accounts for 29 to 48 and 16 to 22% of soil organic C (SOC) for the 0‐ to 3‐and 3‐ to 6‐cm depths, respectively. Tillage had a strongth influence on POMc within the 0‐ to 3‐cm depth, but cropping intensity and cover crop did not affect POMc. A large stratification for microbial biomass was observed varing from 221 to 434 and 63 to 110 mg kg?1 within depth of 0–3 and 12–24 cm respectively. The microbial biomass is a more sensitive indicator (compared to SOC) of management impacts, showing clear effect of tillage, rotation, and cropping intensity. The no‐tillage cotton double‐cropped wheat/soybean system that combined high cropping intensity and crop rotation provided the best soil quality.  相似文献   

5.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

6.
Plant nutrition requires organic nitrogen to be mineralized before roots can absorb it. A 13‐year field study was conducted on typical rain‐fed Mediterranean Vertisol to determine the effects of tillage system, crop rotation and N fertilizer rate on the long‐term NH4+–N content in the soil profile (0–90 cm). The experiment was designed as a randomized complete block with a split–split plot arrangement and three replications. The main plots tested the effects from the tillage system (no‐tillage and conventional tillage); the subplots tested crop rotation with 2‐year rotations (wheat–wheat, wheat–fallow, wheat–chickpea, wheat–faba bean and wheat–sunflower) and the sub‐subplots examined the N fertilizer rate (0, 50, 100 and 150 kg N/ha). Soil NH4+–N content was greatest in the rainiest years and greater under the no‐tillage (NT) system than the conventional tillage (CT) system (57 and 48 kg/ha, respectively). The deepest soil (30–60 and 60–90 cm) contained a greater NH4+–N content (21.0 and 21.4 kg/ha, respectively) than the shallowest soil (19.5 kg/ha in 0–30 cm). This observation may be related to Vertisol characteristics, especially crack formation that allows greater mineralization in the deepest layers by displacing organic matter.  相似文献   

7.
The impacts of tillage and organic fertilization on soil organic matter (SOM) are highly variable and still unpredictable, and their interactions need to be investigated under various soil, climate and cropping system conditions. Our work examined the effect of reduced tillage and animal manure on SOM stocks and quality in the 0–40 cm layer of a loamy soil under mixed cropping system and humid temperate climate. The soil organic carbon (SOC) and N stocks, particulate organic matter (POM), and C and N mineralization potential (301 days at 15 °C) were measured in a 8‐yr‐old split‐plot field trial, including three tillage treatments [mouldboard ploughing (MP), shallow tillage (ST), no tillage (NT)] and two fertilization treatments [mineral (M), poultry manure 2.2 t/ha/yr C (O)]. No statistically significant interactive effects of tillage and fertilization were measured except on C mineralization. NT and ST showed greater SOC stocks (41.2 and 39.7 t/ha C) than MP (37.1 t/ha C) in the 0–15 cm increment, while no statistical differences were observed at a greater depth. N stocks exhibited similar distribution patterns with regard to tillage effect. Animal manure, applied at a rate representative of typical field application rates, had a smaller impact on SOC and N stocks than tillage. The mean SOC and N stocks were higher under O than M, but the differences were statistically significant only in the 0–5 cm increment. MP showed lower C‐POM stocks than NT and ST in the 0–5 cm increment, whereas greater C‐POM stocks were measured under MP than under NT or under ST in the 20–25 cm increment. Organic fertilization had no impact on C‐POM or N‐POM stocks. In the 0–25 cm increment, NT showed a lower C and N mineralization potential than MP. Our work shows that the sensitivity of SOM to reduced tillage for the whole soil profile can be relatively small in a loamy soil, under humid‐temperate climate. However, POM was particularly sensitive to the differential effects of tillage practices with depth, and indicative of differentiation in total SOM distribution in the soil profile.  相似文献   

8.
Soil tillage has been shown to affect long‐term changes in soil organic carbon (SOC) content in a number of field experiments. This paper presents a simplified approach for including effects of tillage in models of soil C turnover in the tilled‐soil layer. We used an existing soil organic matter (SOM) model (CN‐SIM) with standard SOC data for a homogeneous tilled layer from four long‐term field experiments with conventionally tilled (CT) and no‐till (NT) treatments. The SOM model was tested on data from long‐term (>10 years) field trials differing in climatic conditions, soil properties, residue management and crop rotations in Australia, Brazil, the USA and Switzerland. The C input for the treatments was estimated using data on crop rotation and residue management. The SOM model was applied for both CT and NT trials without recalibration, but incorporated a ‘tillage factor’ (TF) to scale all decomposition and maintenance parameters in the model. An initial value of TF = 0.57 (parameter uncertainty, PU = 0.15) for NT (with TF set to 1.0 for CT) was used on the basis of a previous study with observations of soil CO2 respiration. The simulated and observed changes in SOC were then compared using slopes of linear regressions of SOC changes over time. Results showed that the SOM model captured observed changes in SOC content from differences in rotations, N application and crop residue management for conventional tillage. On the basis of SOC change data a mean TF of 0.48 (standard deviation, SD = 0.12) was estimated for NT. The results indicate that (i) the estimated uncertainty of tillage effects on SOC turnover may be smaller than previously thought and (ii) simple scaling of SOM model parameters may be sufficient to capture the effects of soil tillage on SOM turnover in the tilled layer. Scenario analyses showed that the average extra C input needed to compensate for soil tillage was 762 (SD = 351) kg C ha−1 year−1. Climatic conditions (temperature and precipitation) also affected how much extra C was needed, with substantially larger inputs being required for wetter and warmer climates.  相似文献   

9.
No-tillage and manure application effect on soil organic carbon (SOC) and total nitrogen (N) concentrations were studied under a 27-year-old 4-year rotation consisting corn (Zea mays L.)-soybean (Glycine max L.)-wheat (Triticum aestivum L.)-field pea (Pisum sativum L.). Under each crop, four applied N treatments were control, annual urea-N applications at the rate of 45 and 89 kg N ha?1, and composted beef cattle feedlot manure-N at the rate 179 kg N ha?1 applied once every four year. For each fertilizer treatment, no-till (NT) and conventional till (CT) were compared for basic soil properties, SOC, and total N within 0–15 cm soil. Manure application significantly reduced soil bulk density and increased SOC and total N over urea-N. Particulate organic matter, mineralizable N, and permanganate-oxidizable C fractions significantly related with SOC. Long-term manure additions and no-tillage had potential to improve soil compaction and maintain SOC over chemical fertilizer N and CT.  相似文献   

10.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

11.
Soil degradation and associated depletion of soil organic carbon (SOC) have been major concerns in intensive farming systems because of the subsequent decline in crop yields. We assessed temporal changes in SOC and its fractions under different tillage systems for wheat (Triticum aestivum L.) – maize (Zea mays L.) cropping in the North China Plain. Four tillage systems were established in 2001: plow tillage (PT), rotary tillage (RT), no‐till (NT), and plow tillage with residues removed (PT0). Concentrations of SOC, particulate organic carbon (POC), non‐POC (NPOC), labile organic carbon (LOC), non‐LOC (NLOC), heavy fraction carbon (HFC) and light fraction carbon (LFC) were determined to assess tillage‐induced changes in the top 50 cm. Concentrations of SOC and C fractions declined with soil depth and were significantly affected by tillage over time. The results showed that SOC and its fractions were enhanced under NT and RT from 0 to 10 cm depth compared with values for PT and PT0. Significant decreases were observed below 10 cm depths (P < 0.05) regardless of the tillage system. The SOC concentration under NT for 0–5 cm depth was 18%, 8%, and 10% higher than that under PT0 after 7, 9, and 12 yr of NT adoption, respectively. Apparent stratification of SOC occurred under NT compared with PT and PT0 for depths >10 cm. All parameters were positively correlated (P < 0.01); linear regressions exhibited similar patterns (P < 0.01). Therefore, to maintain and improve SOC levels, residue inputs should be complemented by the adoption of suitable tillage systems.  相似文献   

12.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

13.
Sequestration of soil organic carbon (SOC) is an important strategy to improve soil quality and to mitigate climate change. To investigate changes in SOC under conservation agriculture (CA), we measured SOC concentrations after seven years of rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotations in the eastern Indo‐Gangetic Plains (IGP) of India under various combinations of tillage and crop establishment methods. The six treatments were as follows: conventional till transplanted rice followed by conventional till wheat (CTR‐CTW), CTR followed by zero‐till wheat (CTR‐ZTW), ZT direct‐seeded rice followed by CTW (ZTDSR‐CTW), ZTDSR followed by ZT wheat both on permanent raised beds with residue (PBDSR‐PBW+R), and ZTDSR followed by ZTW both with (ZTDSR‐ZTW+R) and without residues (ZTDSR‐ZTW). We hypothesized that CA systems (i.e. ZT with residue retention) would sequester more carbon (C) than CT. After seven years, ZTDSR‐ZTW+R and PBDSR‐PBW+R increased SOC at 0–0.6 m depth by 4.7 and 3.0 t C/ha, respectively, whereas the CTR‐CTW system resulted in a decrease in SOC of 0.9 t C/ha. Over the same soil depth, ZT without residue retention (ZTDSR‐ZTW) only increased SOC by 1.1 t C/ha. There was no increase in SOC where ZT in either rice or wheat was followed by CT in the next crop (i.e. CTR‐ZTW and ZTDSR‐CTW), most likely because the benefit of ZT is lost when followed by tillage. Tillage and crop establishment methods had no significant effect on the SOC stock below the 0.15‐m soil layer. Over the seven years, the total carbon input from above‐ground residues was ca. 14.5 t/ha in ZTDSR‐ZTW+R and PBDSR‐PBW+R, almost sixfold greater than in the other systems. Our findings suggest that the increased biomass production achieved through a combination of ZT and partial residue retention offers an opportunity to increase SOC whilst allowing residues to be used for other purposes.  相似文献   

14.
It is well known that no-tillage (NT) practices can promote greater stocks of soil organic matter (SOM) in the soil surface layer compared to conventional tillage (CT) by enhancing the physical protection of aggregate-associated C in temperate soils. However, this link between tillage, aggregation and SOM is less well established for tropical soils, such as Oxisols. The objective of this study was to investigate the underlying mechanisms of SOM stabilization in Oxisols as affected by different crop rotations and tillage regimes at two sites in southern Brazil. Soils were sampled from two agricultural experiment sites (Passo Fundo and Londrina) in southern Brazil, with treatments comparing different crop rotations under NT and CT management, and a reference soil under native vegetation (NV). Free light fraction (LF) and intra-aggregate particulate organic matter (iPOM) were isolated from slaking-resistant aggregates. Of the total C associated with aggregates, 79–90% was found in the mineral fraction, but there were no differences between NT and CT. In contrast, tillage drastically decreased LF-C concentrations in the 0–5 cm depth layer at both sites. In the same depth layer of NT systems at Londrina, the concentrations of iPOM-C were greater when a legume cover crop was included in the rotation. At Londrina, the order of total iPOM-C levels was generally NV > NT > CT in the 0–5 cm depth interval, but the difference between NT and CT was much less than in Passo Fundo. At Passo Fundo, the greatest concentrations and differences in concentrations across tillage treatments were found in the fine (53–250 μm) iPOM fractions occluded within microaggregates. In conclusion, even though no aggregate hierarchy exists in these Oxisols, our results corroborate the concept of a stabilization of POM-C within microaggregates in no-tillage systems, especially when green manures are included in the rotation.  相似文献   

15.
Tillage effect on organic carbon in a purple paddy soil   总被引:18,自引:0,他引:18  
The distribution and storage of soil organic carbon (SOC) based on a long-term experiment with various tillage systems were studied in a paddy soil derived from purple soil in Chongqing, China. Organic carbon storage in the 0-20 and 0-40 cm soil layers under different tillage systems were in an order: ridge tillage with rice-rape rotation (RT-rr) 〉 conventional tillage with rice only (CT-r) 〉 ridge tillage with rice only (RT-r) 〉 conventional tillage with rice-rape rotation (CT-rr). The RT-rr system had significantly higher levels of soil organic carbon in the 0-40 cm topsoil, while the proportion of the total remaining organic carbon in the total soil organic carbon in the 0-10 cm layer was greatest in the RT-rr system. This was the reason why the RT-rr system enhanced soil organic carbon storage. These showed that tillage system type was crucial for carbon storage. Carbon levels in soil humus and crop-yield results showed that the RT-rr system enhanced soil fertility and crop productivity. Adoption of this tillage system would be beneficial both for environmental protection and economic development.  相似文献   

16.
Over the past 20 years, conservation tillage has been used on the loess plateau of north‐west China to improve the sustainability of local agriculture. There had been particular concern about loss of soil organic matter associated with traditional tillage. We examined the influence of four tillage treatments: conventional tillage (CT), subsoiling tillage (SST), rotary tillage (RT) and no‐tillage (NT), with two straw residue management treatments (return and removal) on the distribution with soil depth (0–20 cm, 20–40 cm) of total organic carbon, labile organic carbon (KMnO4‐C) and bound organic carbon. The study was carried out on a Loutu soil (Earth‐cumuli‐Orthic Anthrosol) over seven consecutive years of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) crop rotation. By the end of this period, conservation tillage (SST, RT and NT) led to greater storage of soil organic carbon (SOC) (22.7, 14.9 and 16.3% with straw return in contrast to 21.4, 15.8 and 12.3% with no straw return, respectively) compared with CT in the surface soil (0–20 cm). The reduced tillage treatments (SST and RT) both increased significantly the highly labile organic carbon (HLOC) content of the surface soil (50% in both SST and RT) and mildly labile organic matter (MLOC) (49.4 in SST and 53.5% in RT) when straw was removed. The largest pool of bound carbon was observed in the Humin‐C pool, and the smallest in the free humic acids C (FHA‐C) in each tillage treatment. Conservation tillage led to an increased content of FHA‐C and CHA‐C. Results from correlation analyses indicate that SOC enrichment might have resulted from the increase in HLOC, MLOC, FHA‐C and CHA‐C over a short period. Labile organic carbon was associated with the organic carbon that was more loosely combined with clay (FHA‐C and CHA‐C). We conclude that both SST and RT are effective in maintaining or restoring organic matter in Loutu soils in this region, and the effect is greater when they are used in combination with straw return.  相似文献   

17.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

18.
Soya bean (Glycine max (L.) Merr.) monoculture can lead to a decrease in labile fractions of soil organic carbon (SOC). This study sought to evaluate the effects of cover crops (CC), application of fertilizer, and crop rotation on SOC, particulate organic carbon (POC), and soil carbon input in soya bean-based crop sequences under a no-till cropping system in the Argentinean Humid Pampas. Five crop sequences at two sites differing in initial SOC were evaluated: continuous soya bean (Sb), continuous soya bean fertilized with phosphorus (P) and sulphur (S) (Sbf), grass CC / PS-fertilized soya bean (CC/Sbf), nitrogen (N)-fertilized CC / PS-fertilized soya bean (CCf/Sbf) and NPS-fertilized crop rotation with high intensification sequence index (ISI) (Rot). At 0–5 cm, SOC and POC were higher (p < .05) in the sequences with higher residue-C supply (CC/Sbf; CCf/Sbf and Rot) at both sites. Changes in SOC at 0–20 cm simulated by AMG model closely tracked measured results at 0–20 cm. Findings from this study suggest that the inclusion of CC or crop rotation with high ISI improved C balance in soils under crop sequences with soya bean predominance.  相似文献   

19.
耕作与轮作方式对黑土有机碳和全氮储量的影响   总被引:10,自引:1,他引:9  
土壤有机碳(SOC)及全氮(TN)对土壤肥力、作物产量、农业可持续发展以及全球碳、氮循环等都具有重要影响。为探索不同耕作和轮作方式对耕层黑土SOC和TN储量的影响,本文以吉林省德惠市进行了8 a的田间定位试验中层黑土为研究对象,对免耕、垄作和秋翻三种耕作方式及玉米-大豆轮作和玉米连作两种轮作方式下SOC和TN在各土层的含量变化进行了分析,并采用等质量土壤有机质储量计算方法,对比分析了不同处理对0~30 cm SOC和TN储量的影响。结果表明,与试验开始前相比,玉米-大豆轮作系统中,秋翻下SOC和TN储量均有所降低;免耕显著增加了0~5 cm SOC及TN含量,但SOC在亚表层亏损,导致其储量并未增加;而垄作处理下SOC及TN含量在0~5、5~10 cm的均显著增加,0~30 cm储量亦分别增加了4.9%和10.7%。玉米连作系统的两种耕作处理(免耕和秋翻)下SOC和TN储量均有所增加,且TN储量增幅均高于玉米-大豆轮作系统,其中免耕下TN储量增幅是玉米-大豆轮作的3.2倍。所有处理下C/N均呈降低趋势,其中垄作0~5 cm C/N由12.05降至11.04,降低幅度分别是免耕和秋翻的3.2和2.8倍。综上可知,对质地黏重排水不良的中层黑土,玉米-大豆轮作系统下免耕并不是促进SOC固定的有效形式,而垄作则促进了黑土SOC和TN的积累,这不仅有利于土壤肥力的改善,而且是使农田黑土由CO2"源"变为"汇"的有效形式之一。与玉米-大豆轮作相比,玉米连作下三种耕作方式都有利于SOC和TN积累。  相似文献   

20.
Long‐term effects of crop rotation and fertilization are mostly observed with respect to the amount of soil organic matter (SOM) and measured in terms of soil organic carbon (SOC). In this paper, we analyze the SOM composition of samples from long‐term agricultural field experiments at sandy and clayey sites that include complex crop rotations and farm‐yard manure applications. The organic matter (OM) composition of the soil samples, OM(Soil), and that of sequentially extracted water, OM(W), and sodium pyrophosphate, OM(PY), soluble fractions was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The fraction OM(PY) represented between 13 and 34% of SOC, about 10 times that of OM(W). Site specific differences in OM(Soil) composition were larger than those between crop rotations and fertilizer applications. The smaller C=O group content in FTIR spectra of OM(W) compared with OM(PY) suggests that analysis of the more stable OM(PY) fraction is preferable over OM(W) or OM(Soil) for identifying long‐term effects, the OM(Soil) and OM(W) fractions and the content of CH groups being less indicative. Farm‐yard manure application leads to a more similar content of C=O groups in OM(PY) between crop rotations and fertilizer plots at both sites. Short‐term effects from soil tillage or potato harvesting on composition of OM require further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号