首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.

Context

Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest products at regional, landscape and global scales.

Objectives

LINKAGES 2.2 was revised to create LINKAGES 3.0 and used it to evaluate tree species growth potential and total biomass production under alternative climate scenarios. This information is needed to understand species potential under future climate and to parameterize forest landscape models (FLMs) used to evaluate forest succession under climate change.

Methods

We simulated total tree biomass and responses of individual tree species in each of the 74 ecological subsections across the central hardwood region of the United States under current climate and projected climate at the end of the century from two general circulation models and two representative greenhouse gas concentration pathways.

Results

Forest composition and abundance varied by ecological subsection with more dramatic changes occurring with greater changes in temperature and precipitation and on soils with lower water holding capacity. Biomass production across the region followed patterns of soil quality.

Conclusions

Linkages 3.0 predicted realistic responses to soil and climate gradients and its application was a useful approach for considering growth potential and maximum growing space under future climates. We suggest Linkages 3.0 can also can used to inform parameter estimates in FLMs such as species establishment and maximum growing space.
  相似文献   

2.

Context

Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climate-induced changes through promoting carbon sequestration, forest resilience, and facilitated change.

Objectives

We modeled direct and indirect effects of climate change on avian abundance through changes in forest landscapes and assessed impacts on bird abundances of forest management strategies designed to mitigate climate change effects.

Methods

We coupled a Bayesian hierarchical model with a spatially explicit landscape simulation model (LANDIS PRO) to predict avian relative abundance. We considered multiple climate scenarios and forest management scenarios focused on carbon sequestration, forest resilience, and facilitated change over 100 years.

Results

Management had a greater impact on avian abundance (almost 50% change under some scenarios) than climate (<3% change) and only early successional and coniferous forest showed significant change in percent cover across time. The northern bobwhite was the only species that changed in abundance due to climate-induced changes in vegetation. Northern bobwhite, prairie warbler, and blue-winged warbler generally increased in response to warming temperatures but prairie warbler exhibited a non-linear response and began to decline as summer maximum temperatures exceeded 36 °C at the end of the century.

Conclusion

Linking empirical models with process-based landscape change models can be an effective way to predict climate change and management impacts on wildlife, but time frames greater than 100 years may be required to see climate related effects. We suggest that future research carefully consider species-specific effects and interactions between management and climate.
  相似文献   

3.

Context

Forests in the northeastern United States are currently in early- and mid-successional stages recovering from historical land use. Climate change will affect forest distribution and structure and have important implications for biodiversity, carbon dynamics, and human well-being.

Objective

We addressed how aboveground biomass (AGB) and tree species distribution changed under multiple climate change scenarios (PCM B1, CGCM A2, and GFDL A1FI) in northeastern forests.

Methods

We used the LANDIS PRO forest landscape model to simulate forest succession and tree harvest under current climate and three climate change scenarios from 2000 to 2300. We analyzed the effects of climate change on AGB and tree species distribution.

Results

AGB increased from 2000 to 2120 irrespective of climate scenario, followed by slight decline, but then increased again to 2300. AGB averaged 10 % greater in the CGCM A2 and GFDL A1FI scenarios than the PCM B1 and current climate scenarios. Climate change effects on tree species distribution were not evident from 2000 to 2100 but by 2300 some northern hardwood and conifer species decreased in occurrence and some central hardwood and southern tree species increased in occurrence.

Conclusions

Climate change had positive effects on forest biomass under the two climate scenarios with greatest warming but the patterns in AGB over time were similar among climate scenarios because succession was the primary driver of AGB dynamics. Our approach, which simulated stand dynamics and dispersal, demonstrated that a northward shift in tree species distributions may take 300 or more years.
  相似文献   

4.

Context

Due to the spatial heterogeneity of the disturbance regimes and community assemblages along topoclimatic gradients, the response of forest ecosystem to climate change varies at the landscape scale.

Objectives

Our objective was to quantify the possible changes in forest ecosystems and the relative effects of climate warming and fire regime changes in different topographic positions.

Methods

We used a spatially explicit model (LANDIS PRO) combined with a gap model (LINKAGES) to predict the possible response of boreal larch forests to climate and fire regime changes, and examined how this response would vary in different topographic positions.

Results

The result showed that the proportion of landscape occupied by broadleaf species increased under warming climate and frequent fires scenarios. Shifts in species composition were strongly influenced by both climate warming and more frequent fires, while changes in age structure were mainly controlled by shifts in fire regime. These responses varied in the different topographic positions, with forests in valley bottoms being most resilient to climate-fire changes and forests in uplands being more likely to shift their composition from larch-dominant to mixed forests. Such variation in the topographic response may be induced by the heterogeneities of the environmental conditions and fire regime.

Conclusions

Fire disturbance could alter the equilibrium of ecosystems and accelerate the response of forests to climate warming. These effects are largely modulated by topographic variations. Our findings suggest that it is imperative to consider topographic complexities when developing appropriate fire management policies for mitigating the effects of climate change.
  相似文献   

5.

Context

Forest landscape models (FLMs) are important tools for simulating forest changes over broad spatial and temporal scales. The ability of FLMs to accurately predict forest changes may be significantly influenced by the formulations of site-scale processes including seedling establishment, tree growth, competition, and mortality.

Objective

The objectives of this study were to investigate the effects of site-scale processes and interaction effects of site-scale processes and harvest on landscape-scale forest change predictions.

Methods

We compared the differences in species’ distribution (quantified by species’ percent area), total aboveground biomass, and species’ biomass derived from two FLMs: (1) a model that explicitly incorporates stand density and size for each species age cohort (LANDIS PRO), and (2) a model that explicitly tracks biomass for each species age cohort (LANDIS-II with biomass succession extension), which are variants from the LANDIS FLM family with different formulations of site-scale processes.

Results

For early successional species, the differences in simulated distribution and biomass were small (mostly less than 5 %). For mid- to late-successional species, the differences in simulated distribution and biomass were relatively large (10–30 %). The differences in species’ biomass predictions were generally larger than those for species’ distribution predictions. Harvest mediated the differences on landscape-scale predictions.

Conclusions

The effects of site-scale processes on landscape-scale forest change predictions are dependent on species’ ecological traits such as shade tolerance, seed dispersal, and growth rates.
  相似文献   

6.

Context

Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to influence future forest conditions. Climate change compounds this uncertainty.

Objectives

We explored how continued forest recovery dynamics affect forest biomass and species composition and how climate change may alter this trajectory.

Methods

Using a spatially explicit landscape simulation model incorporating an ecophysiological model, we simulated forest processes in New England from 2010 to 2110. We compared forest biomass and composition from simulations that used a continuation of the current climate to those from four separate global circulation models forced by a high emission scenario (RCP 8.5).

Results

Simulated forest change in New England was driven by continued recovery dynamics; without the influence of climate change forests accumulated 34 % more biomass and succeed to more shade tolerant species; Climate change resulted in 82 % more biomass but just nominal shifts in community composition. Most tree species increased AGB under climate change.

Conclusions

Continued recovery dynamics will have larger impacts than climate change on forest composition in New England. The large increases in biomass simulated under all climate scenarios suggest that climate regulation provided by the eastern forest carbon sink has potential to continue for at least a century.
  相似文献   

7.

Context

Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.

Objectives

We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.

Methods

We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.

Results

19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.

Conclusions

We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.
  相似文献   

8.

Context

Climate change is not occurring over a homogeneous landscape and the quantity and quality of available land cover will likely affect the way species respond to climate change. The influence of land cover on species’ responses to climate change, however, is likely to differ depending on habitat type and composition.

Objectives

Our goal was to investigate responses of forest and grassland breeding birds to over 20 years of climate change across varying gradients of forest and grassland habitat. Specifically, we investigated whether (i) increasing amounts of available land cover modify responses of forest and grassland-dependent birds to changing climate and (ii) the effect of increasing land cover amount differs for forest and grassland birds.

Methods

We used Bayesian spatially-varying intercept models to evaluate species- and community-level responses of 30 forest and 10 grassland birds to climate change across varying amounts of their associated land cover types.

Results

Responses of forest birds to climate change were weak and constant across a gradient of forest cover. Conversely, grassland birds responded strongly to changing climatic conditions. Specifically, increasing temperatures led to higher probabilities of localized extinctions for grassland birds, and this effect was intensified in regions with low amounts of grassland cover.

Conclusions

Within the context of northeastern forests and grasslands, we conclude that forests serve as a possible buffer to the impacts of climate change on birds. Conversely, species occupying open, fragmented grassland areas might be particularly at risk of a changing climate due to the diminished buffering capacity of these ecosystems.
  相似文献   

9.

Context

We address the issue of adapting landscapes for improved insect biodiversity conservation in a changing climate by assessing the importance of additive (main) and synergistic (interaction) effects of land cover and land use with climate.

Objectives

We test the hypotheses that ant richness (species and genus), abundance and diversity would vary according to land cover and land use intensity but that these effects would vary according to climate.

Methods

We used a 1000 m elevation gradient in eastern Australia (as a proxy for a climate gradient) and sampled ant biodiversity along this gradient from sites with variable land cover and land use.

Results

Main effects revealed: higher ant richness (species and genus) and diversity with greater native woody plant canopy cover; and lower species richness with higher cultivation and grazing intensity, bare ground and exotic plant groundcover. Interaction effects revealed: both the positive effects of native plant canopy cover on ant species richness and abundance, and the negative effects of exotic plant groundcover on species richness were greatest at sites with warmer and drier climates.

Conclusions

Impacts of climate change on insect biodiversity may be mitigated to some degree through landscape adaptation by increasing woody native vegetation cover and by reducing land use intensity, the cover of exotic vegetation and of bare ground. Evidence of synergistic effects suggests that landscape adaptation may be most effective in areas which are currently warmer and drier, or are projected to become so as a result of climate change.
  相似文献   

10.

Context

Predicting climate-driven species’ range shifts depends substantially on species’ exposure to climate change. Mountain landscapes contain a wide range of topoclimates and soil characteristics that are thought to mediate range shifts and buffer species’ exposure. Quantifying fine-scale patterns of exposure across mountainous terrain is a key step in understanding vulnerability of species to regional climate change.

Objectives

We demonstrated a transferable, flexible approach for mapping climate change exposure in a moisture-limited, mountainous California landscape across 4 climate change projections under phase 5 of the Coupled Model Intercomparison Project (CMIP5) for mid-(2040–2069) and end-of-century (2070–2099).

Methods

We produced a 149-year dataset (1951–2099) of modeled climatic water deficit (CWD), which is strongly associated with plant distributions, at 30-m resolution to map climate change exposure in the Tehachapi Mountains, California, USA. We defined climate change exposure in terms of departure from the 1951–1980 mean and historical range of variability in CWD in individual years and 3-year moving windows.

Results

Climate change exposure was generally greatest at high elevations across all future projections, though we encountered moderate topographic buffering on poleward-facing slopes. Historically dry lowlands demonstrated the least exposure to climate change.

Conclusions

In moisture-limited, Mediterranean-climate landscapes, high elevations may experience the greatest exposure to climate change in the 21st century. High elevation species may thus be especially vulnerable to continued climate change as habitats shrink and historically energy-limited locations become increasingly moisture-limited in the future.
  相似文献   

11.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   

12.

Context

Resilience, the ability to recover from disturbance, has risen to the forefront of scientific policy, but is difficult to quantify, particularly in large, forested landscapes subject to disturbances, management, and climate change.

Objectives

Our objective was to determine which spatial drivers will control landscape resilience over the next century, given a range of plausible climate projections across north-central Minnesota.

Methods

Using a simulation modelling approach, we simulated wind disturbance in a 4.3 million ha forested landscape in north-central Minnesota for 100 years under historic climate and five climate change scenarios, combined with four management scenarios: business as usual (BAU), maximizing economic returns (‘EcoGoods’), maximizing carbon storage (‘EcoServices’), and climate change adaption (‘CCAdapt’). To estimate resilience, we examined sites where simulated windstorms removed >70% of the biomass and measured the difference in biomass and species composition after 50 years.

Results

Climate change lowered resilience, though there was wide variation among climate change scenarios. Resilience was explained more by spatial variation in soils than climate. We found that BAU, EcoGoods and EcoServices harvest scenarios were very similar; CCAdapt was the only scenario that demonstrated consistently higher resilience under climate change. Although we expected spatial patterns of resilience to follow ownership patterns, it was contingent upon whether lands were actively managed.

Conclusions

Our results demonstrate that resilience may be lower under climate change and that the effects of climate change could overwhelm current management practices. Only a substantial shift in simulated forest practices was successful in promoting resilience.
  相似文献   

13.

Context

No single model can capture the complex species range dynamics under changing climates—hence the need for a combination approach that addresses management concerns.

Objective

A multistage approach is illustrated to manage forested landscapes under climate change. We combine a tree species habitat model—DISTRIB II, a species colonization model—SHIFT, and knowledge-based scoring system—MODFACs, to illustrate a decision support framework.

Methods

Using shortleaf pine (Pinus echinata) and sugar maple (Acer saccharum) as examples, we project suitable habitats under two future climate change scenarios (harsh, Hadley RCP8.5 and mild CCSM RCP4.5 at ~2100) at a resolution of 10 km and assess the colonization likelihood of the projected suitable habitats at a 1 km resolution; and score biological and disturbance factors for interpreting modeled outcomes.

Results

Shortleaf pine shows increased habitat northward by 2100, especially under the harsh scenario of climate change, and with higher possibility of natural migration confined to a narrow region close to the current species range boundary. Sugar maple shows decreased habitat and has negligible possibility of migration within the US due to a large portion of its range being north of the US border. Combination of suitable habitats with colonization likelihoods also allows for identification of potential locations appropriate for assisted migration, should that be deemed feasible.

Conclusion

The combination of these multiple components using diverse approaches leads to tools and products that may help managers make management decisions in the face of a changing climate.
  相似文献   

14.

Context

Climate change will have diverse and interacting effects on forests over the next century. One of the most pronounced effects may be a decline in resistance to chronic change and resilience to acute disturbances. The capacity for forests to persist and/or adapt to climate change remains largely unknown, in part because there is not broad agreement how to measure and apply resilience concepts.

Objectives

We assessed the interactions of climate change, resistance, resilience, diversity, and alternative management of northern Great Lake forests.

Methods

We simulated two landscapes (northern Minnesota and northern lower Michigan), three climate futures (current climate, a low emissions trajectory, and a high emissions trajectory), and four management regimes [business as usual, expanded forest reserves, modified silviculture, and climate suitable planting (CSP)]. We simulated each scenario with a forest landscape simulation model. We assessed resistance as the change in species composition over time. We assessed resilience and calculated an index of resilience that incorporated both recovery of pre-fire tree species composition and aboveground biomass within simulated burned areas.

Results

Results indicate a positive relationship between diversity and resistance within low diversity areas. Simulations of the high emission climate future resulted in a decline in both resistance and resilience.

Conclusions

Of the management regimes, the CSP regime resulted in some of the greatest resilience under climate change although our results suggest that differences in forest management are largely outweighed by the effects of climate change. Our results provide a framework for assessing resistance and resilience relevant and valuable to a broad array of ecological systems.
  相似文献   

15.

Context

Primates are an important component of biodiversity in tropical regions. However, many studies on the effects of habitat change on primates ignore the relative influence of landscape composition and configuration.

Objectives

This study addresses the question: how important are landscape-scale forest area and composition relative to patch-scale (1–1080 ha) and site-scale (transect of 1 km) habitat variables for the occupancy and abundance of four primate species in the Colombian Llanos.

Methods

Using a randomly stratified survey design, 81 fragments were surveyed for primate occupancy and abundance. We used zero-inflated models to test the relative influence of landscape-scale, patch-scale and site-scale variables on occupancy and abundance for each species. A 95% confidence set of models was constructed using the cumulative Akaike weight for each model and the relative importance of each set of variables calculated for each primate species.

Results

Occupancy was determined by a combination of site-scale, patch-scale and landscape-scale variables but this varied substantially among the primate species.

Conclusion

Our study highlights the importance of managing primates at a range of scales that considers the relative importance of site-, patch- and landscape-scale variables.
  相似文献   

16.

Context

Although biodiversity in cities is essential to ensure the healthy functioning of ecosystems and biosecurity over time, biodiversity loss resulting from human interventions in land cover patterns is widespread in urban landscapes. In the Southern Hemisphere, climate change is likely to accelerate the process of landscape upheavals, and consequently biodiversity loss.

Objectives & Methods

The aim of this research is to test the potentials of landscape pattern composition and configuration in safeguarding indigenous avifauna against the local impacts of climate change in urban landscapes, with reference to New Zealand. To build up a platform for landscape pattern interpretation, the literature was reviewed and semi-structured interviews with six subject-matter experts were conducted to provide information about the most important avifauna in the study area, key information on their ecological traits and niches, possible impacts of climate change on their primary habitats, and spatial requirements for ongoing species survival as the climate continues to change. A spatial analysis of land cover patterns was undertaken in Wellington, New Zealand using GIS and FRAGSTATS.

Results

Although there are still opportunities for biodiversity conservation in the study area, the current land cover patterns are unlikely to safeguard the selected species against climate change impacts.

Conclusions

Eight implications for avifauna persistence under climate change are discussed for the first time in relation to a New Zealand context. These implications can give rise to a higher level of informed decision-making on a wide range of practices for biodiversity conservation related to uncertainties associated with climate change.
  相似文献   

17.

Context

Biodiversity in arid regions is usually concentrated around limited water resources, so natural resource managers have constructed artificial water catchments in many areas to supplement natural waters. Because invasive species may also use these waters, dispersing into previously inaccessible areas, the costs and benefits of artificial waters must be gauged and potential invasion- and climate change-management strategies assayed.

Objectives

We present a network analysis framework to identify waters that likely contribute to the spread of invasive species.

Methods

Using the Sonoran Desert waters network and the American bullfrog (Lithobates catesbeianus)—a known predator, competitor, and carrier of pathogens deadly to other amphibians—as an example, we quantified the structural connectivity of the network to predict regional invasion potential under current and two future scenarios (climate change and management reduction) to identify waters to manage and monitor for invasive species.

Results

We identified important and vulnerable waters based on connectivity metrics under scenarios representing current conditions, projected climate-limited conditions, and conditions based on removal of artificial waters. We identified 122,607 km2 of land that could be used as a buffer against invasion and 67,745 km2 of land that could be augmented by artificial water placement without facilitating invasive species spread.

Conclusions

Structural connectivity metrics can be used to evaluate alternative management strategies for invasive species and climate mitigation.
  相似文献   

18.

Context

Forest landscapes are increasingly managed for fire resilience, particularly in the western US which has recently experienced drought and widespread, high-severity wildfires. Fuel reduction treatments have been effective where fires coincide with treated areas. Fuel treatments also have the potential to reduce drought-mortality if tree density is uncharacteristically high, and to increase long-term carbon storage by reducing high-severity fire probability.

Objective

Assess whether fuel treatments reduce fire intensity and spread and increase carbon storage under climate change.

Methods

We used a simulation modeling approach that couples a landscape model of forest disturbance and succession with an ecosystem model of carbon dynamics (Century), to quantify the interacting effects of climate change, fuel treatments and wildfire for carbon storage potential in a mixed-conifer forest in the western USA.

Results

Our results suggest that fuel treatments have the potential to ‘bend the C curve’, maintaining carbon resilience despite climate change and climate-related changes to the fire regime. Simulated fuel treatments resulted in reduced fire spread and severity. There was partial compensation of C lost during fuel treatments with increased growth of residual stock due to greater available soil water, as well as a shift in species composition to more drought- and fire-tolerant Pinus jeffreyi at the expense of shade-tolerant, fire-susceptible Abies concolor.

Conclusions

Forest resilience to global change can be achieved through management that reduces drought stress and supports the establishment and dominance of tree species that are more fire- and drought-resistant, however, achieving a net C gain from fuel treatments may take decades.
  相似文献   

19.

Context

Temperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.

Objectives

The goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.

Methods

We conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.

Results

We uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.

Conclusions

Future distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.
  相似文献   

20.

Context

Alaskan landscapes are changing due to climate change impacts. Maintaining or restoring landscape connectivity is a widely suggested climate change adaptation strategy because species are shifting their distributions to align with emerging conditions. Natural resource managers in Alaska have an opportunity to proactively design connected landscapes as infrastructure networks and economic development continue to increase in the state.

Objectives

We provide an example of strategic, multijurisdictional planning to maintain landscape connectivity at a large spatial scale.

Methods

We use geodiversity to model climate-resilient landscape linkages between conservation lands within and adjacent to a 59-million-acre planning area.

Results

The resulting landscape linkage design consists of as little as 1% of the planning area, but can connect over 64 million acres of conservation land allowing the Bureau of Land Management to leverage the current land designations to maximize the conservation value of the entire landscape.

Conclusions

Maintaining landscape connectivity is above and beyond the mandates and responsibilities of a single organization or land owner. Bridging institutions and partnerships, such as the Northwest Boreal Landscape Conservation Cooperative, can facilitate the coordination needed for this type of multi-jurisdictional planning effort. The opportunity to manage proactively, rather than waiting for system degradation and then responding reactively, should not be undervalued. The implementation of this work will serve as a model for other relatively intact systems and moreover showcases the potential of twenty-first century models of conservation and sustainability.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号