首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of elevated tropospheric ozone concentration [O3] on root processes in wheat systems of different O3 sensitivity is not well understood. Two wheat cultivars (cv. Y15 and YN19) with contrasting O3 tolerance were grown in a fully open‐air O3 enrichment platform for one season. We found that elevated O3 (EO3) (50% above the ambient O3) significantly decreased the total biomass at all key growth stages and the yield of the O3‐sensitive cultivar YN19 but did not affect those of the O3‐tolerant cultivar Y15. EO3 significantly decreased the root biomass of two wheat cultivars at the jointing and grain‐filling stages. EO3 significantly decreased the root length, length density, surface area and volume of the two cultivars at the jointing stage but increased those of YN19 at the grain‐filling stage. EO3 significantly increased the root activities (specific root respiration rates) of Y15 and YN19 at the jointing, heading and grain‐filling stages. EO3 significantly decreased the contribution of fresh root respiration to soil respiration (CRS) of YN19 at the jointing stage but increased it at the heading stage; however, it did not change the CRS of Y15 at any growth stages. This study indicates that the effects of EO3 on root morphology and activity varied among wheat cultivars, and suggest that we can breed O3‐tolerant cultivars to maintain crop yield under higher [O3] scenarios.  相似文献   

2.
3.
To compare the phenolic responses under oxidative stressors, plants of two Italian cultivars of durum wheat (Claudio and Mongibello) were (a) exposed to ozone (O3) (80 ppb, 5 hr/day for 70 consecutive days), with the aim to investigate the changes of phenolic compound contents in their leaves, or (b) flooded (seven consecutive days). Plants showed O3-induced visible injury, but their photosynthetic performance was not affected by the pollutant. Specifically, Claudio showed a higher O3 tolerance than Mongibello. The major value of the present study is undoubtedly the pioneering investigation of phenolic metabolism of durum wheat under O3. We identified 12 foliar phenolic compounds in all leaf samples (i.e. controls, exposed to O3 and flooded): ten phenolic acids, a flavanol (catechin hydrate) and a phenolic aldehyde (syringaldehyde). Overall, O3 exposure resulted in accumulations of phenolic compounds, especially in Claudio. These responses can be likely considered a fine-regulated repair process that equipped Claudio stressed plants with an antioxidant system capable of scavenging oxidative stress. Different phenolic variations were found in flooded plants, suggesting that phenolic response to environmental constraints is stress specific. Our study confirms that investigations and characterization of specific phenolic profiles of crop cultivars under oxidative stress may be helpful in breeding programmes.  相似文献   

4.
Seeds from the aluminum sensitive cultivar ‘Anahuac’ were treated by gamma-ray radiation. Twenty eight selected Al+3 tolerant mutants were compared to the original Anahuac and the tolerant wheat cultivars IAC-24 and IAC-60 from 1994 to 1996 in acid (Capão Bonito) and limed (Monte Alegre do Sul and Tatui) soil field trials. Grain yield and agronomic characteristics were analyzed. Twenty six mutant lines yielded higher than the sensitive Anahuac cultivar in the acid soils of Capão Bonito. Under limed soil conditions, the mutants had a similar yield to the original sensitive cultivar. The majority of the mutants were similar in yield to the tolerant cultivars IAC-24 and IAC-60 under both conditions. Some of the mutants showed altered agronomic characteristics but even in these cases this will not limit its utilization. The results indicated that tolerant lines with good characteristics may be obtained from a susceptible cultivar by mutation induction, thus allowing cropping in conditions where Al+3 is a limiting factor.  相似文献   

5.
Barley is one of the most popular crops in dryland agricultural systems of Mediterranean areas, where it is assumed that barley, or traditional wheat cultivars, performs better than modern wheat under low‐yielding conditions. It was tested whether variations in net leaf photosynthetic rate (PN) during grain filling provide any basis for the potential better performance of barley and traditional wheat compared to modern wheats in Mediterranean areas. Two groups of field experiments were conducted in Agramunt (NE Spain) during 2005/06 (06) and 2006/07 (07) growing seasons combining low and high nitrogen (N) availabilities under rain‐fed and irrigated conditions. Cultivars used in the first group of experiments were a traditional (Anza) and a modern (Soissons) wheat, whilst in a second group of experiments, a wheat (Soissons) and a barley (Sunrise) modern cultivars were used. Both wheat cultivars showed a similar PN during grain filling but higher than that of the modern barley cultivar. Differences between species in PN were maximized under high‐yielding conditions. There were no differences between cultivars in instantaneous water‐use efficiency. The barley cultivar showed a higher specific leaf area, but lower N content per unit of leaf area, than wheat. Photosynthetic nitrogen‐use efficiency was similar between the traditional and the modern cultivar but lower than barley. Decreases in PN after anthesis were not exactly observable in SPAD measurements. In conclusion, we found no consistent differences between cultivars in terms of post‐anthesis photosynthetic activity to support the assumption of better performance under Mediterranean farm conditions of traditional wheat or barley against modern wheat.  相似文献   

6.
The increasing concentration of cadmium (Cd) in agricultural soil has resulted in crop productivity loss. The activation of the antioxidative enzyme system and its synergy with sulphur assimilation may be required as one of the mechanisms for the alleviation of the effects of Cd. In the present study the activities of antioxidative enzymes and sulphur assimilation were studied in Cd‐treated wheat (Triticum aestivum) cultivars to assess their involvement in determining yield potential. The cultivar WH542 (low yielding type) accumulated Cd to a greater amount in both root and leaf, and also exhibited higher contents of H2O2 and thiobarbituric acid reactive substance and the activity of superoxide dismutase (EC 1.15.1.1) than cultivar PBW343 (high yielding type). The activities of other antioxidative enzymes, catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2) and glutathione peroxidase (EC 1.11.1.9), activity of ATP‐sulfurylase (EC 2.7.7.4), sulphur content, photosynthetic, growth and yield characteristics were higher in PBW343 than in WH542 in Cd treatment compared to the control. The results suggest that the efficient functioning of enzymes of the antioxidative system and sulphur assimilation helped in alleviating the effects of Cd in PBW343, protected photosynthetic ability and maintained high yielding potential of the cultivar.  相似文献   

7.
不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制   总被引:38,自引:4,他引:38  
以粳稻9516、H45、武育粳、转PEPC基因水稻、Kitaake、苏沪香粳,籼稻扬稻6号、香籼、IR64,培矮64S以及杂交稻粤优938、汕优63、X07S/紫徽100、两优培九等14个水稻品种为材料,分别鉴定了芽期(胚根1 cm, 胚芽0.5 cm)、苗期(三叶)和孕穗期的耐冷性,同时选取南京对水稻播种敏感的自然低温条件,进行低温鉴定。结果表明,芽期存活率、苗期的枯死率和孕穗期结实率均为可靠的水稻耐冷性鉴定指标。进一步从叶片的光合速率、PSⅡ光化学效率(Fv/Fm)、脂肪酸组分、活性氧指标(丙二醛,过氧化氢和超氧阴离子和抗氧化物质(抗坏血酸和谷胱甘肽)的变化等方面,研究耐冷性不同的水稻的耐冷生理机制。表明耐冷的水稻品种武育粳含较多的不饱和脂肪酸,在低温逆境下,膜的流动性愈大,低温对其伤害愈小;对杂交稻汕优63而言,其叶内抵御逆境的保护系统抗坏血酸和谷胱甘肽的循环被较大地激活,特别是谷胱甘肽再生的高速运转,与不耐冷的品种香籼相比,汕优63叶内的过氧化物质累积较少,其耐冷性表现中等。看来水稻叶片维持高的脂肪酸不饱和指数和谷胱甘肽的周转循环能力是水稻耐冷的重要特征。  相似文献   

8.
Drought‐induced damages in crop plants are ranked at top amid all losses instigated by diverse abiotic stresses. Terminal drought (drought at reproductive phase) has emerged as a severe threat to the productivity of wheat crop. Different seed enhancement techniques, genotypes and distribution of crop plants in different spacings have been explored individually to mitigate these losses; however, their interaction has rarely been tested in improving drought resistance in wheat. This study was conducted to evaluate the potential role of different seed enhancement techniques and row spacings in mitigating the adversities of terminal drought in two wheat cultivars during two consecutive growing seasons of 2010–2011 and 2011–2012. Seeds of wheat cultivars Lasani‐2008 (medium statured) and Triple Dwarf‐1 (dwarf height) soaked in water (hydropriming) or CaCl2 (osmopriming) were sown in 20‐, 25‐ and 30‐cm spaced rows; just before heading, the soil moisture was maintained at 100 % field capacity (well watered) or 50 % field capacity (terminal drought) till maturity. Terminal drought significantly reduced the yield and related traits compared with well‐watered crop; however, osmopriming improved the crop performance under terminal drought. Among different row spacings, wheat sown in 20‐cm spaced rows performed better during both years of study. Wheat cultivar Lasani‐2008 performed better than cultivar Triple Dwarf‐1 under both well‐watered and stress conditions. Maximum net returns and benefit–cost ratio were recorded from osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows under well‐watered condition. Nonetheless, osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows were better able to produce good yield under terminal drought.  相似文献   

9.
The physiological responses of potato (Solanum tuberosum L) cultivars to soil drought at the tuberization phase and their impact on agronomically important traits were investigated in potted plants under semi‐controlled conditions. Genotype‐dependent responses of potato to water deficiency were evaluated on two pairs (tolerant/sensitive) of Polish cultivars. Each pair of cultivars had a similar genetic background but was extremely different in terms of drought tolerance evaluated on the basis of loss of tuber yield under field conditions. The results clearly indicate different mechanisms of tolerance to water deficiency and the ability to recover from soil drought in two tolerant but genetically unrelated cultivars. When subjected to soil drought, the cultivar Gwiazda had low rates of transpiration and photosynthesis and low levels of stomatal conductance due to hypersensitivity to ABA, but its maximal photochemistry efficiency and PSII performance index were unchanged. Another strategy was displayed by the dehydration‐avoidant cultivar Tajfun, which kept the stomata partially open. Thus, the plants were able to retain a relatively high rate of photosynthesis over transpiration. The parameters measured for cultivar Tajfun for photosynthesis and transpiration were the same after plant rewatering, similar to the control plants. This was not the case for the cultivar Gwiazda. The ability of plants to regenerate after soil drought relief appears to be a good indicator of potato susceptibility to soil drought and allows the yield of potato tubers to be predicted. The physiological traits identified in closely related potato cultivars but differed in their drought tolerance seem to be useful for genetic engineering and breeding programmes.  相似文献   

10.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

11.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

12.
Inadequate availability of oxygen to theroots is a major growth-limiting factor forplants exposed to waterlogging stress. Spring bread wheat genotypes (Triticumaestivum L.) have been found to differ intheir tolerance to waterlogging. Threespring wheat genotypes tolerant towaterlogging (Ducula, Prl/Sara, andVee/Myna) and two sensitive spring wheatgenotypes (Seri-82, and Kite/Glen) wereevaluated for differences in root anatomyand O2 depletion rates from nutrientsolution in growth chamber experimentsconducted under both aerobic and hypoxicconditions. Plants in the aerobictreatment were grown for four to five weeksunder continuous aerobic conditions. Plantsin the hypoxic treatment were initiallygrown aerobically for two to three weeksfollowed by two to three weeks of hypoxicconditions. The percent root porosityranged from 12 to 20% (v/v) for tolerantgenotypes and from 6 to 8% for sensitivegenotypes grown under hypoxic conditions.Decreasing O2 supply increased therate of O2 uptake in waterloggingtolerant cultivars. Anatomical differencesin root structure between tolerant andsensitive genotypes could not be related toobserved differences in O2 use. Although inconclusive, the results suggestthat in addition to oxygen transport, themovement of photosynthate to the rootsunder waterlogged conditions may also beimportant in conferring tolerance.  相似文献   

13.
The behavior of 17 gamma irradiation mutant lines derived from the aluminum sensitive wheat cultivar `Anahuac' was compared with two sensitive and three tolerant cultivars in nutritent solutions containing seven Al3+ concentrations (0; 0.5; 1; 2; 4; 6 and10 mg/liter), at a temperature of 25 °C and 4.0 pH. Tolerance was measured by the continued growth of the primary roots in a solution without aluminum after 48 hours in a solution containing a known concentration of aluminum. 14 mutant lines were as tolerant to the presence of 10 mg/liter of Al3+ in the treatment solutions as were the tolerant `BH-1146', `IAC-60' and `IAC-24' cultivars. Two mutant lines were tolerant and one was sensitive to the presence of 1 mg/liter of Al3+, while the cultivars `Siete Cerros' and `Anahuac' were sensitive to 1 and 0.5 mg/liter Al3+ in the solutions, respectively. F2 seedlings, obtained from cross among one sensitive and twelve tolerant mutant lines to the sensitive cultivars (`Siete Cerros' or `Anahuac') and the tolerant cultivars (`BH-1146' or `IAC-24') were assessed for tolerance to 2 mg/liter Al3+ in nutritient solutions. The twelve tolerant mutant lines and the tolerant `IAC-60' and `IAC-24' cultivars differed from the sensitive `Siete Cerros' or `Anahuac' cultivars by one pair of dominant alleles. The results indicated that tolerance in the induced mutants was due to a single pair of dominant alleles and that these alleles expressed the same tolerance as `BH-1146' and `IAC-24' cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Drought is a severe abiotic stress and the major constraint on wheat (Triticum aestivum L.) productivity world wide. Deciphering the mechanisms of drought tolerance is a challenging task because of the complexity of drought responses, environmental factors and their interactions. The objective of this study was to evaluate the ability of the antioxidative defence system in imparting tolerance against drought‐induced oxidative stress and yield loss in two wheat genotypes, when subjected to long‐term field drought. Drought resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbate level in roots and leaves at different plant developmental stages. Drought‐tolerant genotype having higher antioxidative enzymes activities, and ascorbate level was superior to that of sensitive genotype in maintaining lower H2O2 content and lipid peroxidation and higher growth, yield and yield components under water deficit. Various antioxidative enzymes showed positive correlation with ascorbate and negative with H2O2 content. In developing grains, antioxidative defence response was nearly similar among both the genotypes under control condition; however, sensitive genotype failed to modulate the activities of antioxidative enzymes according to the ROS rush under field drought. Poor capacity of the antioxidative defence system in vegetative and reproductive tissues of sensitive genotype seems to be responsible, at least partly, for reduced yield potential under water deficit.  相似文献   

15.
Abiotic stress tolerance in plants is said to be induced by pre-stress events (priming) during the vegetative phase. We aimed to test whether drought priming could improve the heat and drought tolerance in wheat cultivars. Two wheat cultivars “Gladius” and “Paragon” were grown in a fully controlled gravimetric platform and subjected to either no stress or two drought cycles during the tillering stage. At anthesis, both batches were either subjected to high temperature stress, drought stress or kept as control. No alleviation of grain yield reduction due to priming was observed. Higher CO2 assimilation rates were achieved due to priming under drought stress. Yield results showed that priming was not damage cumulative to wheat. Priming was responsible to alleviated biochemical photosynthetic limitations under drought stress and sustained photochemical utilization under heat stress in “Paragon.” Priming as a strategy in abiotic stress alleviation was better evidenced in the stress susceptible cultivar “Paragon” than tolerant cultivar “Gladius”; therefore, the type of response to priming appears to be cultivar dependable, and thus phenotypical variation should be expected when studying the effects of abiotic priming.  相似文献   

16.
There is a lack of knowledge about factors contributing to the chilling‐induced alleviatory effects on growth of plants under salt stress. Thus, the primary objective of the study was to determine whether chilling‐induced changes in endogenous hormones, ionic partitioning within shoots and roots and/or gaseous exchange characteristics is involved in salt tolerance of two genetically diverses of wheat crops. For this purpose, the seeds of two spring wheat (Triticum aestivum) cultivars, MH‐97 (salt intolerant) and Inqlab‐91 (salt tolerant) were chilled at 3°C for 2 weeks. The chilled, hydroprimed and non‐primed (control) seeds of the two wheat cultivars were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m?1 NaCl salinity. Chilling was very effective in increasing germination rate and subsequent growth when compared with hydropriming and control under salt stress. Results from field experiments clearly indicated the efficacy of chilling over hydropriming in improving shoot dry biomass and grain yield in either cultivar, particularly under salt stress. This increase in growth and yield was related to increased net photosynthetic rate, greater potential to uptake and accumulate the beneficial mineral elements (K+ and Ca2+) in the roots and reduced uptake and accumulation of toxic mineral element (Na+) in the shoots of both wheat cultivars when grown under salt stress. Salt‐stressed plants of both wheat cultivars raised from chilled seed had greater concentrations of indoleacetic acid, abscisic acid, salicylic acid and spermine when compared with hydropriming and control. Therefore, induction of salt tolerance by pre‐sowing chilling treatment in wheat could be attributed to its beneficial effects on ionic homeostasis and hormonal balance. The results presented are also helpful to understand the chilling‐induced cross adaptation of plants in natural environments. Moreover, efficacy of pre‐sowing chilling treatment over hydropriming suggested its commercial utilization as a low risk priming treatment for better wheat crop production under stressful environments.  相似文献   

17.
Stagnant flooding (SF) during vegetative growth triggers stem elongation usually at the cost of tiller production in rice, reducing grain yield. To explore physiological mechanisms associated with tillering suppression under SF, three contrasting genotypes (Swarna and Swarna‐Sub1, both sensitive and IRRI154, tolerant) were evaluated under standing water depths of 0, 5, 30 and 50 cm. SF significantly suppressed tiller formation but increased plant height, root biomass, shoot elongation (ratio of plant height before and after flooding), leaf emergency and non‐structural carbohydrate (NSC) concentration (in root–shoot junction) in all genotypes at the early stage of development. Chlorophyll concentration in the upper leaves (upper most fully expanded leaf at top) was higher than in lower leaves (lowest green leaf at base), but decreased under SF in both. SF increased hydrogen peroxide (H2O2) at the early stage of treatment, with concomitant increase in malondialdehyde (MDA) production by stems and leaves. MDA concentration in root–shoot junction increased but delayed. Tiller number correlated negatively with plant height, shoot elongation, leaf emergency, MDA concentration in leaves and root–shoot junction, root biomass, and NSC concentration in the root–shoot junction. The results suggested existence of compensatory mechanisms between tiller growth and shoot elongation in rice for resilience under SF, where energy is mainly diverted for shoot elongation to escape flooding. The SF‐tolerant genotype produced less H2O2 and maintained energy balance for higher survival and better growth under stagnant flooding.  相似文献   

18.
Winter‐grown canola (Brassica napus L.) production is limited mostly by frost and winter kill in the southern canola‐growing regions of the United States. Tolerance to cold and heat were assessed by studying percentage of pollen viability (PV), in vitro pollen germination (PG) and pollen tube length (PTL) for 12 field‐grown cultivars. Freshly collected pollen from all cultivars were incubated on artificial solid growth media at a constant temperature ranging from 10 to 35 °C at 5 °C interval for 30 h to determine PG and PTL. A modified bilinear model best described the temperature response functions of PG and PTL. Canola cultivars showed significant variability (P < 0.001) for PV (61.3 % to 89.7 %), PG (29.0 % to 48.2 %) and PTL (463 to 931 μm). The average cardinal temperatures, Tmin, Topt and Tmax, for PG and PTL were 6.4, 24.3 and 33.7 °C, respectively. Principal component analysis revealed that maximum PG, PTL, Tmin and Topt of both PG and PTL were the most important factors in determining cold tolerance, whereas Tmax of PG and PTL, and maximum PG and PTL were more responsible in separating the cultivars for heat tolerance. The canola cultivar, KS3077, was the most cold tolerant with the lowest Tmin and the widest temperature adaptability range, and the cultivar Kadore was the most heat tolerant with the highest Tmax for the PG. The identified cold‐ and heat‐tolerant cultivars may be useful in canola‐breeding programmes to develop cultivars suitable for a niche environment.  相似文献   

19.
Abstract The objective was to study soil water conservation and physiological growth of wheat (Triticum aestivum L.) using composted cattle manure applied either as mulch or incorporated with soil at 20 Mg ha?1. Haruhikari, a relatively drought‐sensitive and Hongmangmai, a relatively drought‐tolerant wheat, were the cultivars studied under both adequate and deficit irrigation. Fourteen weeks after sowing (WAS), the number of tillers and leaves was significantly reduced by 19 % and 30 % respectively under deficit irrigation and Hongmangmai produced slightly (10 %) more tillers than Haruhikari. Unlike mulching, the incorporation of manure had favourable effects on plants in terms of shoot dry mass (SDM) by 36 % and number of tillers and leaves by 40 %. Haruhikari produced substantially (29 %) greater root mass under adequate irrigation but Hongmangmai produced slightly (2.7 %) more roots and responded much better to manure use whether under adequate or deficit irrigation. As a result, Hongmangmai suffered less severe reductions in tillers and biomass under water stress. In comparison, the mulched manure treatment saved 15 % and 64 % respectively more water than the control and the treatment incorporating manure, but this advantage in water‐saving did not translate to superior plant growth. Leaf water potential (ψl) under adequate irrigation significantly exceeded that under deficit irrigation by 27 % and the ψl of Haruhikari exceeded that of Hongmangmai by 15 %. However, Hongmangmai may be considered more tolerant of dehydration since it maintained much higher net photosynthetic rates (PN) even with a lower leaf water potential. The reduction in the PN and intracellular carbon dioxide concentration (Ci) of the cultivars under deficit irrigation was on account of decreasing stomatal conductance (gs) and transpiration rate but on average, the gs of Hongmangmai significantly exceeded that of Haruhikari by as much as 0.53 under adequate irrigation and 0.22 under deficit irrigation. In conclusion, we suggest that the drought tolerance of Hongmangmai was related to its superior root growth and greater ability than Haruhikari, to efficiently utilize incorporated manure for growth under water stress.  相似文献   

20.
Tan spot, caused by a necrotrophic fungus Pyrenophora tritici‐repentis (Ptr), has become an important foliar disease of wheat worldwide. Effective control of tan spot can be achieved by deployment of resistant wheat cultivars. An F2:3 population derived from a cross between synthetic hexaploid wheat (SHW), TA4161‐L1 (moderately resistant) and susceptible winter wheat cultivar, ‘TAM105’ was evaluated with race 1 of Ptr under controlled conditions. The population was genotyped using Diversity Arrays Technology (DArT). Presence of transgressive segregants indicated contribution of positive alleles from both parents. Two major QTLs were located on the short arm of chromosomes 1A and 6A and designated as QTs.ksu‐1A and QTs.ksu‐6A, respectively. Two additional QTLs were identified on chromosome 7A. Resistant alleles of all the QTLs were contributed by TA4161‐L1. Novel QTLs on 6A and 7A can be a valuable addition to known resistance genes and utilized in breeding programmes to produce highly resistant cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号