首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 703 毫秒
1.
蒋林  林宁  莫德祥  卓宇 《安徽农业科学》2012,(18):9728-9730,9861
[目的]对南亚热带低山区柳杉人工林碳汇进行研究。[方法]研究广西国营六万林场低山区的31年生柳杉人工林生态系统碳素含量、碳储量及其空间分配特征。[结果](1)柳杉人工林不同器官平均碳素含量变化在498.5~530.3 g/kg,其含量排列为:叶子枯枝树干根蔸枝条细根干皮中根粗根;碳素含量随土壤深度的增加而逐渐减少。(2)低山区柳杉人工林的生态系统碳储量为393.651 t/hm2,其中植被层碳储量占生态系统碳储量的29.22%,而0~100 cm土壤层占70.78%。31年生柳杉人工林年净固碳量估算为3.709 t/(hm2.a),其中乔木层的年净固碳量为3.537 t/(hm2.a)。(3)0~20 cm土壤表层碳储量为132.418 t/hm2,比植被层的碳储量还高。[结论]加强低山区的植被保护,减少表层土壤的水土流失,可有效保持南亚热带低山区土壤对碳的长期吸存和维持。  相似文献   

2.
[目的]分析短轮伐经营对桉树人工林生态系统碳、氮积蓄产生的潜在影响。[方法]以广西七坡林场短轮伐期的桉树人工林为研究对象,分析3年、5年生桉树人工林生态系统碳氮储量及其碳氮分配格局,探讨砍伐和炼山等短轮伐经营对桉树人工林生态系统碳氮损失的潜在影响。[结果]3年、5年生桉树人工林生态系统碳储量分别为128.02、155.90 t/hm2,氮储量分别为9 673.24、8 798.33kg/hm2。②3年、5年生桉树人工林土壤层碳储量分别是植被层碳储量的2.86、2.66倍,氮储量分别是植被层氮储量的31.17、41.59倍,表明短轮伐期桉树人工林生态系统的碳氮库仍主要集中在土壤层。③3年、5年生桉树干材获取对短轮伐期桉树人工林生态系统造成的碳(氮)损失比例分别为17.11%(0.83%)、19.05(0.92%)。[结论]桉树干材获取等桉树短轮伐经营行为可能使其生态系统碳损失较大,氮损失较小。  相似文献   

3.
【目的】探明坡位对不同林分密度长白落叶松人工林生态系统碳储量及其分配特征的影响,为制定长白落叶松人工林增汇经营技术提供科学依据。【方法】以长白落叶松人工林为研究对象,利用生物量与含碳率估算植被层碳储量,土壤剖面法估算土壤层碳储量,并分析不同坡位、不同林分密度长白落叶松人工林生态系统的碳储量及其分配特征。【结果】上坡位和中坡位低密度长白落叶松人工林生态系统碳储量分别为236.69 t/hm2和235.66 t/hm2,二者差异不显著;上坡位和中坡位高密度长白落叶松人工林生态系统碳储量分别为272.26 t/hm2和330.72 t/hm2,中坡位生态系统碳储量显著高于上坡位。长白落叶松人工林生态系统碳储量依次为土壤层>植被层>凋落物层;高密度林分中坡位土壤有机碳储量占比显著低于高坡位,而植被层有机碳储量占比中坡位显著高于高坡位。【结论】立地条件对低密度林分的碳储量影响较小;对于高密度林分,立地条件好有利于提高植被层碳储量,中坡位择伐强度可以适当加大,但不能超过上坡位的2倍。  相似文献   

4.
[目的]评价桂西南尾巨桉人工林生态系统固碳能力和生态效益。[方法]采用标准样地法对广西宁明县4年生尾巨桉人工林的碳含量、碳储量及其空间分布格局进行研究。[结果]尾巨桉不同器官碳含量范围为454.80~478.50 g/kg,各器官碳含量从大到小依次为干材、树叶、干皮、树枝、树根。灌木层、草本层和凋落物层碳含量分别为463.50、442.70和453.40 g/kg。0~80 cm厚土层碳含量为8.89 g/kg,其中表土层(0~20 cm厚)的碳含量明显高于其他土层。尾巨桉中龄林生态系统碳储量为156.27 t/hm2,其中乔木层为46.02t/hm2,占29.44%;灌木层为0.86 t/hm2,占0.55%;草本层为0.74 t/hm2,占0.47%;凋落物层为3.30 t/hm2,占2.11%;土壤层为105.35t/hm2,占67.42%。尾巨桉人工乔木层林年净生产力为24.30 t/(hm2·a),年净固碳量为11.50 t/(hm2·a),折合CO2量为42.17t/(hm2·a)。[结论]桂西南尾巨桉人工林具有较强的碳吸存能力。  相似文献   

5.
擎天树人工林生态系统碳贮量及分布格局   总被引:1,自引:1,他引:0  
对32年生擎天树人工林生态系统的碳素含量、碳贮量及其空间分配特征进行了研究。结果表明,擎天树不同器官碳素平均含量的变化范围为465.1~493.5 g/kg,各器官碳素含量依次为:细根〉树干〉树叶〉根兜〉中根〉粗根〉树枝〉干皮;32年生擎天树人工林生态系统的碳贮量为300.70 t/hm2,其中植被层碳储量为169.71 t/hm2,乔木层地上部分碳储量占整个植被层的84.22%。经估算,擎天树人工林乔木层净固碳量和碳素净积累量分别为11.30和5.20 t/(hm2.a)。  相似文献   

6.
对广西南宁良风江27年生青钩栲人工林生态系统的生物量尧碳密度尧碳储量及其空间分配特征进行了研究遥结果表明院青钩栲人工林不同器官的平均碳素密度为459.6~491.9 g/kg袁其含量由高到低依次为院枯枝>干>根兜>中根>粗根>大枝>细枝>细 根>叶袁青钩栲各器官的碳素密度存在显著差异曰青钩栲人工林生态系统中的碳储量表现为院土壤层>乔木层>灌木层>凋落物层>草本层曰土壤碳素密度随着深度的增加逐渐降低袁碳素含量主要集中在0~40 cm的土层曰青钩栲人工林生态系统的碳储量为206.96t/hm2袁其中乔木层占39.61%袁灌木层占2.53%袁草本层占0.14%袁凋落物层占0.54%袁土壤层占57.18%曰乔木层中树干的碳储量最高袁为43.24 t/hm2袁占总碳储量的20.89%曰青钩栲人工林每年的净生产力为21.51 t/hm2袁净固碳量为8.80 t/hm2袁净碳素积累量为3.05 t/hm2袁有较好的碳汇潜力遥  相似文献   

7.
利用设置在松嫩平原典型地区的6块杨树人工林样地和36株人工杨树解析木数据,建立了人工杨树相容性生物量方程,实测并分析了杨树人工林各个组成部分含碳率,估算并分析了人工杨树各个器官含碳量和杨树人工林生态系统碳储量密度特征。结果表明:胸径和年龄是影响人工杨树各个器官含碳率的主要因素,本研究中人工杨树各器官含碳率介于0.4427~0.4848之间。林下各层含碳率差异显著,枯枝层介于0.4568~0.4711之间,枯叶层介于0.3683~0.4454之间,半分解层介于0.4184~0.4600之间,草本层介于0.3506~0.3729之间。14~28年生人工杨树生物量和碳储量都随着林龄增长,树干生物量和碳储量所占整体比例稳定在0.60,树冠生物量和碳储量保持在0.17。14、21和28年生杨树人工林生态系统碳储量分别为230.6449、280.9064、和356.4973t/hm2,各部分碳储量大小排序为土壤层>植被层>凋落物层,该地区林下植被主要以草本为主,乔木层碳储量占植被层碳储量的比例超过了99%。由于该地区土壤层深厚,生态系统碳储量主要以土壤层为主,并且随着林龄增大而增加,14、21和28年生杨树人工林生态系统土壤层碳储量分别为216.5626、262.3598和335.3581t/hm2,所占生态系统比重都超过了93%。   相似文献   

8.
采用标准样地法对广西南丹县20年生秃杉人工林碳储量及其空间分布格局进行研究。结果表明,秃杉各器官碳含量为436.4~501.2 g/kg,其由大到小依次为干皮、树枝、树根、干材、树叶。灌木层、草本层和凋落物层碳含量分别为449.8、392.5和424.7 g/kg。土壤(0~80 cm)平均碳含量为19.0 g/kg,各土层碳含量随土层深度增加而减少。20年生秃杉人工林生态系统碳储量为255.81 t/hm2,其中乔木层为99.43 t/hm2,占整个生态系统碳储量的38.87%;灌草层为2.14 t/hm2,占0.84%;凋落物层为2.52 t/hm2,占0.98%;林地土壤(0~80 cm)为151.72 t/hm2,占59.31%。秃杉人工林各器官碳储量与其生物量成正比关系,干材的生物量最大,其碳储量也最高,占植被层碳储量的59.48%,树枝、树叶、干皮和树根的碳储量共占36.05%。20年生秃杉人工林乔木层年净生产力为12.52 t/(hm2·a)...  相似文献   

9.
基于相容性生物量模型的樟子松林碳密度与碳储量研究   总被引:6,自引:3,他引:3  
基于不同林龄樟子松人工林生物量调查数据,建立了樟子松林生物量相容性模型,探讨了不同林龄樟子松人工林中乔木层、林下植被层、死地被物层碳密度和碳储量的变化规律。结果表明:樟子松人工林各器官碳密度值的排序为:树叶树枝树干树根;各器官碳密度均随着林龄的增大而增加,27、30、32、36、40和44年生樟子松各器官的平均碳密度分别为449.5、460.2、470.8、485.1、489.2和513.6 g/kg,林下植被与死地被物的碳密度随林龄的变化规律不明显。27~44年期间樟子松人工林群落碳储量都随林龄的增大而增加,从27年生的37.14 t/hm2增加到44年生的168.46 t/hm2,其顺序为:乔木层死地被物层林下植被层,分别占群落总碳储量的90.97%、1.13%和7.90%,乔木层碳储量占主导地位。不同林龄樟子松乔木层、林下植被层和死地被物层年固碳量分别为2.043、0.025 和0.182 t/hm2。研究认为,樟子松人工林群落碳密度及碳储量随林龄的增加变化显著,碳汇作用明显。   相似文献   

10.
[目的]为探明群落演替过程中碳贮量分布格局。[方法]对苏北低山丘陵区典型群落进行样地调查,并对其生态系统碳贮量进行研究。[结果]土壤碳贮量随群落演替进程逐渐提高,乔木阶段(58.61 t/hm2)灌丛阶段(44.58 t/hm2)草本阶段(20.37 t/hm2);不同森林植被类型碳贮量的差别较大,其中凋落物和植被碳贮量的差异并不大,碳贮量差异较大的原因在于土壤碳贮量差异较大;碳贮量随群落演替进程逐渐增加,栓皮栎群落碳贮量(40.53 t/hm2)最高,白草群落碳贮量(1.24 t/hm2)最低;生态系统碳贮量随演替进程而增加,草本阶段(20.13t/hm2)灌木阶段(52.34 t/hm2)乔木阶段(92.98 t/hm2)。[结论]该研究可为苏北地区植被建设提供理论指导。  相似文献   

11.
[目的]探索密度调控对红松人工林碳汇能力的影响。[方法]对辽宁省草河口地区不同间伐强度红松人工林的碳贮量及其空间分布格局进行了对比研究。[结果]在各间伐强度红松人工林内红松各营养器官生物量和碳贮量从大到小依次为为干、根、枝、叶,不同间伐强度红松人工林乔木层、草本层、凋落物层及土壤层碳贮量均存在差异,乔木层碳贮量从大到小依次为弱度间伐区(197.52 t/hm~2)、中度间伐区(197.10 t/hm~2)、对照区(184.75 t/hm~2)、强度间伐区(163.61 t/hm~2)、极强度间伐区(142.30 t/hm~2),土壤碳贮量从大到小依次为中度间伐区(151.93 t/hm~2)、对照区(147.18 t/hm~2)、极强间伐区(111.89 t/hm~2)、强度间伐区(91.18 t/hm~2)、弱度间伐区(79.54 t/hm~2),总碳贮量从大到小依次中度间伐区(351.42 t/hm~2)、对照区(333.63 t/hm~2)、弱度间伐区(279.11 t/hm~2)、强度间伐区(257.22 t/hm~2)、极强间伐区(257.16 t/hm~2);红松人工林内碳贮量从大到小依次为乔木层、土壤层、凋落物层、草本层。[结论]该研究可为科学进行红松林碳汇核算提供科学依据。  相似文献   

12.
厚荚相思人工幼林生态系统碳贮量及其分布研究   总被引:2,自引:0,他引:2  
对1.5、2.5和3.5年生的厚荚相思人工林生态系统的碳素含量、贮量及其空间分布特征进行了研究。结果表明:厚荚相思不同器官碳素含量的变化范围为457.6~525.1 g/kg,厚荚相思各器官碳素含量高低排列次序基本一致,表现为树叶>树枝>树干>树根>树皮;土壤碳素含量随土层深度增加而减少。3个林龄厚荚相思人工林生态系统碳素贮存量分别为73.04、86.14和96.34 t/hm2,其分布序列为土壤(0~60 cm)>植被层>凋落物层。碳贮量在林木不同器官中的分配基本上与各器官生物量成正比,3个林龄厚荚相思人工林年净固碳量分别为3.89、8.26和9.23 t/(hm2.a)。  相似文献   

13.
广西沙塘林场马尾松和杉木人工林的碳储量研究   总被引:1,自引:0,他引:1  
【目的】量化广西沙塘林场马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)人工林碳储量,为评价其碳汇功能和可持续经营提供依据。【方法】 在广西沙塘林场选择处于中龄和成熟期的马尾松和杉木人工林,设置样地测算乔木、林下植被和枯落物的生物量,按20 cm分层挖取样地0~60 cm土层土样,最后依据有关方程,计算马尾松和杉木中龄和成熟人工林生态系统的含碳率和碳储量。【结果】 马尾松、杉木人工林林下植被含碳率变化于40.06%~45.23%, 枯落物含碳率为40.79%~46.06%,0~60 cm土层含碳率变化于0.34%~1.26%。马尾松和杉木人工林生态系统平均碳储量分别为168.36和128.08 t/hm2,其乔木层的平均碳储量分别为106.33和54.8 t/hm2,分别占总碳储量的63.15%和42.79%;土壤平均碳储量分别为54.96和67.33 t/hm2,其分别占总碳储量的32.64%和52.57%;其林下植被和枯落物平均碳储量分别占总碳储量的1.28%,1.02%和2.93%,3.63%。【结论】 马尾松人工林总碳储量以成熟林显著高于中龄林,杉木则以中龄林略高于成熟林;土壤和乔木层碳储量是马尾松和杉木人工林生态系统碳储量的主体部分,而林下植被和枯落物对碳储量的贡献较小。  相似文献   

14.
赵牧秋  史云峰 《安徽农业科学》2014,(4):1088-1090,1100
[目的]研究三韭地区芒果园生态系统各组分的生物量、碳含量、碳储量及其分布特征。[方法]分别应用平均木法、样方收获法和分层取样法采样,并测定芒果园生态系统乔木层、草本及凋落物层和土壤层生物量及碳含量,计算其碳储量。[结果]三亚地区芒果园生态系统总碳储量为91.72t/hm2,其中乔木层、草本及凋落物层和土壤层碳储量分别为16.17、0.95和74.60t/hm2,分别占总碳储量的17.63%、1.04%和81.33%;乔木层各器官碳储量大小为树叶〉树枝〉树根〉树干〉果实;随土壤层深度的增加,碳储量逐渐降低。[结论]三亚地区芒果园生态系统固碳潜力较大;系统碳储量主要位于土壤层,乔木层碳储量以树叶和树枝较多,草本及凋落物层碳储量较低。  相似文献   

15.
杨树人工林生长过程中碳储量动态   总被引:3,自引:0,他引:3  
为研究不同林龄杨树(populus)人工林林木和土壤碳储量变化规律,了解杨树人工林碳汇能力,对江汉平原4、6和8年生杨树人工林的林木生物量和碳储量、土壤碳质量分数和碳储量进行了测定,结果表明:杨树人工林总碳储量随着林龄的增加而增加,从4年生到8年生杨树人工林总有机碳储量变化范围在41.30~117.08 t/hm2,其中,林木碳储量为13.52~55.67 t/hm2,0~20 cm土层土壤碳储量为27.78~61.41 t/hm2。土壤有机碳储量与大于2 mm的团聚体质量分数及土壤养分中的速效N质量分数呈极显著正相关;与全N和C/N质量分数呈显著正相关;与小于0.25 mm的团聚体质量分数呈显著负相关。  相似文献   

16.
黑木相思人工林生态系统生物量、碳贮量及其分配特征   总被引:2,自引:0,他引:2  
研究了广西壮族自治区南宁市8年生黑木相思(Acacia melanoxylon)人工林生态系统的生物量、碳贮量及其分布特征。结果表明:黑木相思人工林生物量为108.47 t.hm-2,其中乔木层占总生物量的85.85%、灌木层占7.26%、枯枝落叶层占4.47%、草本层占2.42%。黑木相思人工林生态系统总碳贮量为143.06 t.hm-2,其中乔木层为46.33 t.hm-2,占整个生态系统碳贮量的32.39%;灌草层为4.78 t.hm-2,占3.34%;凋落物层为2.26 t.hm-2,占1.58%;林地土壤(0~60 cm)为89.69 t.hm-2,占62.24%。黑木相思人工林乔木层年净生物量增长量为17.02 t.hm-2.a-1,年净固碳量为8.45 t.hm-2.a-1,折合成CO2为30.98 t.hm-2.a-1。  相似文献   

17.
以1987年"5.6"森林大火过火区6种不同森林生态系统类型为研究对象,采用标准木法和收获法,分析不同生态系统在火干扰27 a后的植被碳储量。结果表明:不同森林生态系统类型的植被碳储量存在差异,相同森林群落类型中不同组分的植被碳储量差异也较大,其中乔木层和凋落物层是森林植被碳储量的主要贡献者;6种不同森林生态系统在火烧干扰27 a后的植被碳储量为23.17~54.06 t/hm^2,碳储量由大到小的顺序为兴安落叶松人工林、樟子松次生林、兴安落叶松次生林、樟子松人工林、白桦次生林(沟谷)、白桦次生林(坡中);植被碳储量恢复度从大到小的依次为兴安落叶松人工林、白桦次生林(沟谷)、白桦次生林(坡中)、兴安落叶松次生林、樟子松次生林、樟子松人工林,分别恢复到同林型成熟林分的49%、43%、36%、35%、33%和25%;兴安落叶松人工林碳储量最高,恢复效果最好。不同森林生态系统类型碳储量与其对应的成熟林碳储量的巨大差异,说明随着森林生态系统的恢复将继续积累大量生物量碳,具有潜在碳汇效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号