首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
风筛式清选装置离心风机气流场仿真分析   总被引:1,自引:0,他引:1  
利用Gambit软件建立了四种风机模型。四叶片有倾角模型、四叶片无倾角模型、六叶片有倾角模型和六叶片无倾角模型,并通过FLUENT软件对四种模型风机内部气流场进行了数值模拟。模拟过程中滑移网格采用了非定常计算,通过改变风机叶片数和叶片倾角,讨论了风机叶片数和倾角对风机特性的影响。比较了四种模型下出风口中层沿风机轴方向的风速值,得出风机叶片数为六片且无倾角时,风速的变异性系数最小,即该层上横向气流分布相对比较均匀。  相似文献   

2.
锥形风场式防飘移装置雾滴沉积特性研究   总被引:2,自引:0,他引:2  
胡军  刘昶希  初鑫  李宇飞  孙舒仪  张伟 《农业机械学报》2020,51(12):142-149;174
喷雾机械在进行植保作业时雾滴飘移和沉降是影响作业效果的重要因素。为减少雾滴飘移和非靶标区域内的无效沉降,设计了一种锥形风场式防飘移装置,以锥风风速、侧风风速、喷雾压力为因素,通过三因素三水平室内雾滴飘移沉积试验,明晰锥形风场对雾滴沉积效果的影响规律。结果表明:3种因素对雾滴的沉积特性都有较为显著的影响,其影响由大到小依次为:锥风风速、侧风风速、喷雾压力。当侧风风速为2m/s时,有锥风作用的雾滴体积中径较无锥风平均降低了11.7%,雾滴覆盖率、沉积密度、沉积量分别提高了21.9%、26.7%、22.6%。响应曲面模型优化结果显示,当侧风风速2m/s、喷雾压力为0.34MPa、锥风风速为16.53m/s时,雾滴沉积量最优值为3.14μL/cm2。当侧风风速大于2m/s时,应该降低喷雾压力、增大锥风风速,从而保证较优的雾滴沉积量。试验验证结果与模型预测基本吻合。  相似文献   

3.
为了研究谷物在风力作用下的分选效果,利用DEM-FLUENT耦合技术对农业颗粒分离过程进行模拟研究,在本文的虚拟风选机的结构尺寸下,探讨不同风速及落料速度下谷粒与短茎秆的分离情况,采用体积分数和损失率来量化分选效果。结果表明:在其他条件相同、风速为25m/s时,分选效果较好;落料速度对分选效果的影响较小,落料速度为0.5m/s时,分选效果较好。研究表明:带有倾角的送料滑道对颗粒料层具有分散作用,可减小阻风效应。以上所做工作对研制高效的风选设备提供了理论帮助,也为处理多颗粒风力分选的理论研究提供了一种有效的计算方法。  相似文献   

4.
有风时的喷洒水滴运动规律及风对喷头射程的影响   总被引:1,自引:0,他引:1  
本文从有风时水滴运动受力分析入手,运用牛顿第二定理,导出了有风时的水滴运动方程并研究了其解法。通过同实测结果比较,证明计算模型具有一定精度。本文还分析了风对喷头射程的影响,结果表明:有风时喷头射程的相对变化率与风速呈直线相关,相关直线的斜率为风向及工作压力的函数。  相似文献   

5.
不同侧风和风幕风速对风幕式喷杆喷雾飘移的影响   总被引:1,自引:0,他引:1  
侧风是喷杆式喷雾机雾滴飘移的主要因素之一。为了分析不同侧风和风幕风速对风幕式喷杆喷雾飘移的影响规律,设计了风幕式喷杆喷雾性能测试系统,通过防飘对比试验,确定最佳风幕气流作用方式,然后进行雾滴飘移试验,得到雾滴飘移率和飘移质量中心距。结果表明:风幕气流最佳作用方式为喷杆正上方;无风幕作用时,雾滴的飘移质量中心距随侧风风速的增加线性上升;同一侧风风速下,雾滴飘移率随风幕风速的增大呈先快速再平稳减小后略有回升的趋势,风幕风速最佳的防飘区间为5~20m/s,最佳防飘风幕风速为20m/s;在同一侧风风速下,雾滴的飘移质量中心距与风幕风速呈负相关关系,风幕辅助气流有效减小飘移率的同时,对雾滴在喷头下方的分布具有显著影响。该研究可为风幕式喷杆喷雾机作业参数优化和防飘移研究提供参考。  相似文献   

6.
利用Aspen Plus软件建立了加压串行流化床生物质气化过程的模型,并将模拟数值与试验结果相比较,验证了模拟研究的可行性.分别研究了气化温度Tg、气化压力pg以及水蒸气与生物质的质量比(S/B)对生物质合成气的成分、氢碳比、气化份额、生物质合成气产率和生物质碳转化率等的影响.结果表明气化温度、气化压力和S/B对生物质气化过程有很重要的影响,适当地提高气化温度和气化压力对制取生物质合成气有利(Tg在800 ℃左右,pg在0.4 MPa左右),合适的S/B在0.4左右.  相似文献   

7.
现实生活中对喷雾喷洒的应用较多,在喷头喷射过程中常有纵向风的作用,现阶段对对纵向风影响喷射的研究较少。本文在充分考虑湍流模型组分模型与离散相模型的情况下,利用FLUENT软件,对不同纵向风速下雾化效果进行数值模拟与分析。  相似文献   

8.
生物质固体成型燃料层燃燃烧模型研究现状   总被引:1,自引:0,他引:1  
介绍了生物质固体成型燃料层燃燃烧的数学模型,从挥发分析和燃烧模型、焦炭燃烧模型、辐射换热模型以及离散相模型几个方面阐述了国内外对生物质燃烧模型的研究。同时,分析了国内外生物质固体成型燃料燃烧数学模型研究存在的问题,并根据我国生物质固体成型燃料的特点,提出了我国固体生物质成型燃料燃烧模型今后的研究方向。  相似文献   

9.
众所周知,采用喷灌装置灌溉时雨滴分布的均匀性在很大程度上取决于风速。例如,当风速在3~8米/秒时,远射程喷灌装置的灌溉面积范围将减小30~60%。在苏联南部地区大风和恒风期约占作物生长期的50~60%,研制一种抗风的喷射装置显然是十分必要的。全苏农业机械制造科学研究所进行的研究表明,喷咀对地平面的倾角随着风力的增加将较原来最适宜的倾角有所减小,并与风向无关[参考文献  相似文献   

10.
基于弹道理论有风条件下折射式喷头喷灌均匀度研究   总被引:3,自引:0,他引:3  
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

11.
生物质浆体是指有机质经过初步加工并加入少量的水配置成的浆体。通过管道运输对生物质浆体进行回收并进行集中处理是一种高效、节能且环保的运输方式,拥有广阔的应用空间和发展前景。浆体在管道内流动,浆体的性质和内部结构、浆体内部质点之间相对运动状态及外部与管道内壁的摩擦都会产生压力的损失,导致输送能量的减少。生物质浆体分污泥、禽畜粪便和废弃物浆体、生物质复合材料浆体和餐厨垃圾浆体4类。对生物质浆体的流变学属性、流变特性的研究方法、流变特性的影响因素和流变机理等方面进行概述,重点分析生物质浆体流变学特性的影响因素及流变学模型等方面的研究成果和现状,并归纳总结现有生物质浆体研究存在的问题,探讨性地提出今后的研究方向。   相似文献   

12.
螺旋伞齿轮摆动辗压试验   总被引:4,自引:0,他引:4  
根据汽车后桥从动螺旋伞齿轮的锻件图设计并制造了预制坯和辗压试验模具;铅试件辗压试验结果证明辗压成形工艺和模具设计的可行性;成形试验和网格试验分别显示了齿形的充填过程和内部金属网格的变化趋势,揭示出从动螺旋伞齿轮辗压成形金属流动规律和应变分布状态;测试了螺旋伞齿轮辗压力-压下量曲线,提出了消除齿端充填不足的主要措施.  相似文献   

13.
垂直轴风力机流场属典型的非定常大分离流动,因其气动性能复杂,采用工程气动模型会有较大误差.为了研究垂直轴风力机动态失速与翼型附着涡的形成与发展,针对4种不同厚度的NACA对称翼型系列,基于Fluent软件的滑移网格技术,并选用S-A湍流模型和基于压力的Simple算法对H型垂直轴风轮流场进行瞬态CFD计算,得到了风轮旋转中动态失速相位角范围,较好地解释了小叶尖速比下翼型多处于动态失速区的流动机理.同时,提出了升阻系数计算方法,计算得到了该4种翼型系列的叶片扭转力矩、风力机功率和风能利用系数随叶尖速比变化规律.研究结果表明,风力机运行中翼型的动态与静态特性存在较大差别,翼型厚度对风力机扭转力矩、功率和风能利用率具有较大影响.故在进行垂直轴风力机设计时应综合考虑垂直轴风力机的翼型厚度等几何参数与旋转等动态参数对其气动特性的影响.  相似文献   

14.
将滚筒式气体射流冲击干燥机应用于稻谷干燥,主要研究风温、风速及滚筒转速对稻谷干燥速率、发芽率和爆腰率的影响。结果表明:稻谷的滚筒式气体射流冲击干燥属于降速干燥,且风温对干燥速率、发芽率和爆腰率的影响显著,风速对发芽率影响明显,滚筒转速对干燥速率和干燥后稻谷的品质影响不显著。研究给出了合理的干燥工艺参数:稻谷的滚筒式气体射流冲击干燥较为合理的风温为60℃,风速为23m/s,滚筒转速为3. 5r/min。本研究为稻谷快速、优质干燥提供了一种新型的技术与装置支持。  相似文献   

15.
采用CFD数值计算方法对同心圆柱环隙内的波动涡流进行了数值模拟,根据PIV试验结果验证了数值计算方法的可靠性.重点研究了光壁模型和沟槽数量为9的2个模型环隙内的流场分布以及波动涡流的波动特性,对比分析了2种模型周向的流场分布,计算了泰勒涡的轴向尺寸及其轴向振幅,通过对比2种模型在R-Z平面上的径向速度分布,讨论了沟槽对环隙内流体的外射流作用的影响,分析了沟槽区域的流动特征以及出现的二次流现象.研究结果表明:沟槽的存在显著改变了环隙内的流场分布以及波动涡流的波动特性,沟槽区域形成的旋涡流动促进了沟槽内流体与环隙内流体的相互作用,加剧了环隙内的流动不稳定性.  相似文献   

16.
生物质资源高压连续输送的研究   总被引:1,自引:0,他引:1  
建立了近中试规模的生物质资源高压连续输送装置,通过将生物质资源与水混成浆料的方法实现了生物质资源的高压连续输送、浆料的固含量可达10%(wt)以上,压力可达40MPa,最大浆料供应量为2.4L/h。  相似文献   

17.
为了准确地研究低风速下H型垂直轴风力机的特性,以自主研发的H型垂直轴风力机为研究对象,采用数值模拟方法,分析了低风速下H型垂直轴风力机的气动性能和三维效应特征.分析结果表明:低风速区域,保持叶尖速比不变,改变风轮转速或来流风速,对H型垂直轴风力机的功率系数影响较大,且风速对叶尖速比的影响比转速的影响更敏感;在低风速区域,即使转速较大,风力机实际仍工作在低叶尖速比区域;在数值模拟中,设定合理的风速和转速的匹配有利于提高模拟结果的可靠性;在不考虑风剪切的情况下,三维效应受叶尖涡影响,且叶尖涡在0°方位角的位置时影响较大,同时还受风轮内流场的作用,且这种作用随着转速的增加而增强.计算结果为进一步研究H型垂直轴风力机提供了参考.  相似文献   

18.
传统小麦播种机存在作业效率较低、生产成本高、各行排量一致性差等问题,设计了一种适用于气力输送式小麦播种机的垂直型分配器。分配器采用垂直分配的种子分配方式,能使种子运动轨迹平滑,运动方向变化小,实现种子均匀分配。通过研究种子在分配器内部的受力情况,确定了风速、圆锥角度等对排种性能影响较大的关键参数;采用Flow Simulation对分配器进行了内部流场仿真,得出了气流场在不同圆锥角度及风速作用下的状态;通过对种子的运动仿真,得出了种子在分配器内运动状态,验证了垂直分配式分配器的分配效果。搭建了气力输送式小麦排种试验台,以排种器转速、圆锥角度和风速为试验因素,以小麦排种系统各行排量一致性变异系数为试验指标进行正交试验,确定较优参数组合为风速15m/s,排种器转速40r/min,圆锥角度90°。在该条件下,测试结果各行排量一致性变异系数2.78%,远远满足小麦播种各行排量一致性变异系数低于3.9%的要求。  相似文献   

19.
采用标准k-ε湍流模型对180 mm管内径的3种绕转结构(传统回转、半回转、大回转)内部流动进行了数值模拟,对比和分析了水力损失和出口流态,其中出口流态参数包括平均湍动能、速度分布曲线和迪恩涡.结果表明:随着弯管曲率R/d的增大,3种形式的水炮主体的水力损失均减小,相同的R/d=1.4情况下传统回转结构具有最小的水力损失,半回转结构水力损失最大;绕转结构的出口速度分布曲线显示,管轴线附近速度低而速度峰值出现在靠近管壁附近,表明出口处流体带有旋转的特点;在R/d=1.4情况下,大回转结构形式的出口具有最小的平均湍动能值,出口流线具有一个顺时针方向的基本涡,与传统回转结构出口涡形态一致,涡量积分后得到的旋涡强度小于传统回转结构.大回转的绕转结构形式有利于后续水炮炮管和喷嘴内部流动.  相似文献   

20.
分流对冲式集沙仪设计与性能试验   总被引:1,自引:0,他引:1  
集沙仪是观测风沙流结构和研究风沙移动规律的必备仪器。针对强风环境下集沙仪内部风沙的有效分离问题,提出了分流气体对冲法,设计了分流对冲式集沙仪,阐述了分流气体对冲法的设计原理和分流对冲式集沙仪的参数分析理论,并在利用Fluent软件对其风沙分离器进行数值模拟的基础上进行了风洞试验验证和性能分析。结果表明,采用该方法的分流对冲式集沙仪具备了较高的降速性能和抗强风性能,排气口风速降幅达88.44%,排沙口风速降幅达90%,保证了集沙仪内部风沙的有效分离,平均集沙效率达90.15%,等动力性达93.27%,符合集沙仪设计的基本原则,制作成本低,能较好地满足风洞试验和风蚀观测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号