首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海岛棉主要性状遗传相关分析   总被引:1,自引:0,他引:1  
采用加性-显性及其与环境互作的遗传模型,对10个海岛棉亲本的F1的24个组合的株型性状及产量进行了遗传方差分量的分解和成对性状间遗传效应的相关分析.结果表明:株高、茎粗、果枝数、节数显性相关为0,主要受加性相关的影响.生育期性状主要存在显性相关,产量性状的加性相关和显性相关均较小,其余相关都达到极显著水平.大部分性状的广义遗传率和狭义遗传率达到极显著水平.  相似文献   

2.
采用MINQUE(1)统计方法,采用加-显性(AD)遗传模型,对陆地棉中熟×早熟的8个亲本及其16个F1组合的4个产量性状和5个形态性状的遗传和成对性状间的相关进行了分析.结果表明,各性状遗传组分方差相差很大,单株皮棉产量、单株铃数、顶部茎粗的加性方差明显大于显性方差且达到了极显著水平,铃重、衣分、株高的显性方差达到极显著水平且较大;单株皮棉产量、单株铃数、铃重、衣分、株高、主茎节数、果枝数、子叶节茎粗、顶部茎粗的表现型方差均达极显著水平.说明陆地棉中熟与早熟陆地棉品种杂交的F1产量性状主要以显性效应为主.相关分析表明,各性状间存在着不同程度的相关,单株铃数、铃重、衣分分别与单株皮棉产量间存在正向极显著的显性相关,说明单株皮棉产量表现有优势的组合,单株铃数、铃重、衣分可能表现杂种优势.单株皮棉产量、单株铃数、铃重、衣分分别与株高、子叶节茎粗、顶部茎粗间正向或负向的加性相关均达到极显著水平,说明对杂种后代株高、子叶节茎粗、顶部茎粗的选择,可提高单株皮棉产量,单株铃数、铃重、衣分也相应较高.  相似文献   

3.
采用MINQUE(1)统计方法。采用加-显性(AD)遗传模型,对陆地棉中熟×早熟的8个亲本及其16个F,组合的4个产量性状和5个形态性状的遗传和成对性状间的相关进行了分析。结果表明,各性状遗传组分方差相差很大,单株皮棉产量、单株铃数、顶部茎粗的加性方差明显大于显性方差且达到了极显著水平,铃重、衣分、株高的显性方差达到极显著水平且较大;单株皮棉产量、单株铃数、铃重、衣分、株高、主茎节数、果枝数、子叶节茎粗、顶部茎粗的表现型方差均达极显著水平。说明陆地棉中熟与早熟陆地棉品种杂交的F1产量性状主要以显性效应为主。相关分析表明,各性状间存在着不同程度的相关,单株铃数、铃重、衣分分别与单株皮棉产量间存在正向极显著的显性相关,说明单株皮棉产量表现有优势的组合,单株铃数、铃重、衣分可能表现杂种优势。单株皮棉产量、单株铃数、铃重、衣分分别与株高、子叶节茎粗、顶部茎粗间正向或负向的加性相关均达到极显著水平,说明对杂种后代株高、子叶节茎粗、顶部茎粗的选择,可提高单株皮棉产量,单株铃数、铃重、衣分也相应较高。  相似文献   

4.
棉花株型性状的遗传分析   总被引:5,自引:0,他引:5  
探讨棉花株型性状的遗传规律,为通过株型育种提高棉花产量提供理论依据,该研究应用主基因+多基因混合遗传模型和分析方法,对以短季棉品种百棉2号和中晚熟材料TM-1形成的P1、P2、F1、B1、B2、F2 6个群体,进行了棉花株型性状的遗传研究.结果显示:总果枝数、株高/果枝长度和主茎节间长度受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制(E-0);有效果枝数受2对加性-显性-上位性主基因控制(B-1);株高受1对加性-显性主基因+加性-显性-上位性多基因控制(D-0);果枝长度受1对加性主基因+加性-显性多基因控制(D-2);果枝节间长度受加性-显性-上位性多基因控制(C-0);总果节数受2对加性主基因+加性-显性多基因控制(E-3);果枝夹角受1对完全显性主基因+加性-显性多基因控制(D-3).总果枝数、株高、主茎节间长度和总果节数以主基因遗传为主;果枝夹角以多基因遗传为主;有效果枝数属于典型的主基因遗传;果枝节间长度属于典型的多基因遗传;果枝长度、株高/果枝长度以主基因和多基因遗传并重.表明:对以主基因遗传或以主基因遗传为主的性状可采用单交重组或简单回交转育的方法;对以多基因遗传或以多基因遗传为主的性状可采用聚合回交或轮回选择累积增效基因的方法;对以主基因和多基因遗传并重的性状要根据其主基因和多基因的相对效应大小分别考虑,最终达到主基因、多基因同时得到改良的育种效果.  相似文献   

5.
棉花形态性状对于棉株营养生长至关重要,同时,对其生殖生长也有着关键影响。该研究对来源于3个不同种植环境下的39个陆地棉品种材料及其178个F1组合的株高、茎秆粗、第一果节数和果枝数的遗传结构进行了剖析。关联分析采用基于混合线性模型的统计方法,剖析的遗传效应包括加性效应、显性效应、上位性效应及其与环境的互作效应。结果共检测到25个数量性状SSR(simple sequence repeat,简单重复序列)位点与这4个形态学性状显著相关,总遗传率达到63.08%~78.28%;加性、显性及其与环境的互作效应是棉花形态性状遗传的重要遗传资源,直接选择显著的SSR位点可优化棉株的形态性状。  相似文献   

6.
采用MINQUE[1]统计方法,利用AD模型对9个海岛棉品种(系)及其20个F1组合2个熟期性状的两年资料进行遗传和杂种优势分析.结果表明海岛棉零式果枝与长果枝品种杂交F1的2个熟期性状均存在极显著的加性效应,花期的狭义遗传率比较高.花期的显性效应为极显著,铃期的显性效应和加性效应同等重要.花期的加性×环境互作效应和显性×环境的互作均存在.海岛棉零式果枝品种比长果枝品种熟期性状的加性效应都小.用AD模型对F1 和F2熟期性状的杂种优势分析表明,海岛棉零式果枝与长果枝品种(系)间杂交,基因型与环境的互作均存在;F1和F2群体平均优势一般表现为花期提前,铃期推迟,但也存在着F1和F2熟期性状均具有较强负向优势的组合.  相似文献   

7.
将甘蓝型油菜化学诱导型杂交种的29个性状指标按农艺、产量、品质3种类型进行划分,采用MINQUE统计方法及加-显模型(AD)对连续2a的大田试验数据进行遗传效应分析。结果表明:(1)29个性状的加性、显性、环境方差及方差总量均呈0.01或0.05显著水平,均表现为农艺性状产量性状品质性状。(2)化学诱导型杂交种F1、F2代具有显著的群体平均优势、群体超亲优势,且在F1、F2代群体平均优势、群体超亲优势均表现为农艺性状产量性状品质性状;与F1代比较,农艺性状在F2代的群体平均优势和群体超亲优势分别降低43.52%和60.80%,产量性状分别降低49.84%和67.35%,品质性状分别降低53.19%和40.78%。(3)3类性状的遗传方差比率均大于95%,农艺和产量性状的显性方差比率分别为83.01%和70.03%,而品质性状的加性方差比率则为81.21%。(4)29个性状的广义遗传率平均值为0.95,狭义遗传率表现为品质性状(平均值为0.76)产量性状(平均值为0.19)农艺性状(平均值为0.16)。(5)杂交种性状与亲本性状的相关性大小为杂种优势高亲超亲优势母本双亲均值父本低亲双亲差值。  相似文献   

8.
粳稻穗部性状的遗传效应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用数量性状加性-显性遗传模型(AD),对粳稻12个杂交亲本和36个F1代组合穗部的穗长、穗总粒数、穗实粒数、一次枝梗数及二次枝梗数等性状进行遗传分析。结果表明,5个性状的加性及显性效应都达极显著水平,加性遗传方差分量比率较显性大,其遗传以加性效应为主,受加性及显性基因共同控制;各性状F1代显性效应预测值显性,各性状在不同组合间的表现是不一致的,穗总粒数与穗实粒数性状在各组合间的显性效应基本一致,一次枝梗数和二次枝梗数性状在组合间有较大的差异。  相似文献   

9.
采用NCII设计,以5个不同类型的棕色棉品种(系)为母本,3个棕色棉品种(系)为父本配制15个杂交组合,分析了棕色棉品种(系)杂交组合产量性状的配合力和杂种优势表现.结果表明,产量性状受加性和显性效应共同控制,籽棉产量、铃重和籽指的一般配合力(加性)和特殊配合力方差均极显著,皮棉具极显著的特殊配合力(显性)方差,衣分和单株铃数的一般配合力(加性)方差均达极显著.杂种优势分析表明,各产量性状(除籽指外)均具有显著的正向中亲优势;产量构成因素的优势为单株铃数>铃重>衣分.利用不同类型棕色棉品种(系)配制的杂交组合,F1代皮棉产量增产显著达22;以上,且色泽遗传较稳定.  相似文献   

10.
【目的】探索番茄萼片形态性状的遗传规律,为番茄新品种选育过程中萼片形态性状选择提供依据。【方法】以萼片包被(TI1101-1,P_1)和萼片上卷番茄(J53,P_2)材料为亲本,构建4个世代P_1、P_2、F_1和F_2遗传群体,用游标卡尺对4个世代番茄萼片形态及其形态性状(萼片长度、宽度、厚度、面积、上翘度、卷曲度)进行测量和统计,从而对番茄萼片形态性状的遗传规律、中亲优势、遗传模型进行分析。【结果】番茄F_1代正反交萼片形态一致,均为基平,说明萼片形态的遗传属于细胞核遗传。在F_2代分离群体中,萼片形态包被、基平、上翘、上卷的分离比为1∶34.4∶9∶1.6,即不符合孟德尔遗传规律,属于数量性状。萼片长度、宽度、厚度、面积、上翘度、卷曲度的中亲优势率分别为3.55%,-6.77%,-9.90%,0.51%,-32.42%,-62.02%。同时,运用植物数量性状主基因+多基因遗传分析法对6个萼片形态性状测量值的分析得出:萼片长符合2对等加性主基因+加性-显性多基因遗传模型(MX2-EAED-AD),萼片厚度、面积、卷曲度符合2对加性-主基因+加性-显性多基因遗传模型(MX2-ADI-AD),萼片宽度、上翘度符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型(MX2-ADI-ADI)。萼片长度、宽度、厚度、面积、上翘度、卷曲度的主基因遗传率为42.59%~77.15%,多基因遗传率为0%~39.89%。【结论】该组合6个番茄萼片形态性状均受2对主基因控制,且主基因遗传率大于多基因遗传率,以主基因遗传为主。  相似文献   

11.
为探讨黄瓜瓜长的遗传机制,以2个性状稳定的华北型黄瓜自交系(Ma1×Mj-5)为亲本,构建6个世代(P1、P2、F1、B1、B2、F2)联合群体材料,采用植物数量性状主基因+多基因混合遗传模型对群体的瓜条长度进行多世代联合分析。结果表明,黄瓜瓜条长度遗传受1对加性-显性主基因+加性-显性-上位性多基因控制,在B1、B2和F2群体中主基因遗传率分别为52.28%、18.04%、67.20%,多基因遗传率分别为9.90%、35.93%和0;环境方差占表型方差的比例分别为37.82%、46.03%、32.80%。环境因素对黄瓜瓜条长度的影响较大,该性状适宜高代选择。  相似文献   

12.
优质蛋白玉米主要农艺性状的遗传效应分析   总被引:5,自引:1,他引:5  
运用加性—显性及环境互作的遗传模型对8个优质蛋白玉米(QPM)自交系及其56个F1组合的9个性状进行分析,对各性状的遗传方差分量、遗传力、杂种F1代的基因型和杂种优势进行研究。结果表明,农艺性状主要以显性效应为主,其次是显性与环境互作效应,采用多环境改良潜力较大;具有较大正向加性效应预测值的自交系一般配合力(GCA)普遍较高,自交系的加性效应预测值与GCA效应值趋势基本一致;具有较大正向显性效应预测值的组合产量一般较高,组合的显性效应预测值与产量趋势基本一致。  相似文献   

13.
 采用MINQUE(1)统计方法、加性-显性(AD)及其与环境互作的遗传模型对9个海岛棉亲本及其20个F1组合(5×4)2个皮棉产量性状和5个纤维品质性状的3年资料进行了分析。结果表明,零式果枝与长果枝品种间杂交的F1和F2代5个纤维性状和霜前皮棉产量均具有负向群体超高亲优势。F1和F2纤维强度具有正向群体平均优势,细度具有负向群体平均优势,但优势都较低;皮棉总产量的群体平均优势F1达到42.1%,F2达21.0%。一般来说,F1和F2代纤维品质性状的优势较弱,但存在着F1品质性状具有优势,F2优势衰退很慢的组合;F1和F2均存在着霜前皮棉产量和皮棉总产量具有超高亲优势的组合。对海岛棉霜前皮棉产量与纤维长度及与纤维细度的遗传改良可以同步进行;而对海岛棉霜前皮棉产量与纤维强度的同步改良及对皮棉总产量与纤维长度、纤维强度和麦克隆值的同步改良很困难。表型相关分析表明,海岛棉霜前皮棉产量与纤维长度、纤维强度及与纤维细度可以同时利用杂种优势,同时利用海岛棉的皮棉总产与纤维长度及纤维细度的杂种优势较困难。  相似文献   

14.
普通丝瓜果实性状的遗传分析   总被引:8,自引:1,他引:7  
应用植物数量性状主基因+多基因混合遗传模型对普通丝瓜品种50-5(黑籽短圆筒)×20-4(桂林水瓜)杂交组合6个世代群体的5个果实性状(果柄长、果长、果径、果形指数和单果质量)进行了联合分析,结果表明:50-5 ×20-4组合果柄长的遗传符合2对加性-显性-上位性主基因+加性-显性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.49%、70.53%和82.07%,环境方差占总表型方差的比例分别是31.50%、29.47%和17.92%;果长遗传符合2对加性+显性+上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.85%、84.55%和81.68%,环境方差占总表型方差的比例分别是31.15%、15.44%和18.32%;果径遗传符合2对加性-显性-上位陛主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,73.06%和73.82%.环境方差占总表型方差的比例分别是34.62%、26.94%和26.13%;果形指数遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,62.80%和78.89%,环境方差占总表型方筹的比例分别足34.76%,37.19%和21.11%;单果质量遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基凶遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为70.71%、85.35%和89.64%,环境方差占与总表型方差的比例分别是29.29%、14.64%和10.36%.果柄长性状的主基因遗传率较小,宜采用个体选择法(基因型选择法),宜在分离晚世代进行选择;果长、果径、果形指数和单果质量性状的主基因遗传率较大,宜采取混合选择法(表型选择法),可在分离早世代进行选择;且宜对5个果实性状进行综合选择.5个果实性状的环境方差占总表型方差的比例均较高,故在育种过程中要尽量采取措施以减少环境影响.  相似文献   

15.
采用单粒测定法,以9个玉米自交系及其40个正反交杂交组合为材料,研究粒质量、胚质量、胚乳质量的杂种优势、亲子相关和遗传控制。结果表明,(1)3个性状的平均中亲、超低亲、超高亲优势均为正值,但有部分组合的超高亲优势为负值;(2)3个性状与中亲值间均有最大程度的相关;(3)各性状在F2籽粒间有极显著的分离,故其主要受F2种子基因型的遗传控制。遗传变异均以加性效应为主,显性效应为次。在总遗传方差中,加性方差占37.26%(胚乳质量)~46.01%(粒质量)。各性状均存在显著的细胞质效应,但其作用相对较小;(4)粒质量、胚质量、胚乳质量的狭义遗传力分别为52.65%、54.13%、44.62%。  相似文献   

16.
以489A等6个不育系和94FR 30等6个恢复系配制不完全双列杂交组合,采用数量性状加性-显性遗传模型(AD),对粳稻谷粒性状进行了遗传分析。结果表明,粳稻谷粒的粒长、粒宽、粒厚、长宽比、长厚比等性状主要受基因的显性效应控制;显性方差比率(VD/Vp)约为加性方差比率(VA/Vp)的2倍,宽厚比和千粒重主要受基因的加性效应控制;在谷粒性状F1代的超亲优势(Hpb)预测中,各性状都有正向超亲优势的群体出现。  相似文献   

17.
选用6个适应于山西晋南地区的小麦品种,采用Griffing方法4,配置1 5个完全双列杂交组合,对冬小麦的主要产量性状的配合力、遗传力和显性度进行了分析,以期对小麦杂种优势利用研究的亲本选配和性状分析作出指导。结果表明:单株产量和单株穗数为显性遗传,千粒重和穗粒数为加-显性遗传,但两者总遗传方差中加性方差和显性方差的比例又不相同,千粒重以加性方差为主,显性方差较小,穗粒数则为超显性遗传。  相似文献   

18.
陆地棉产量性状的双列分析   总被引:2,自引:0,他引:2  
以陆地棉(Gossypium hirsutum L.)6个品种进行完全双列杂交,分析了产量性状的杂种优势及其遗传效应,F1单株皮棉产量的杂种优势最强,平均为33.13%;单株结铃数、单铃重、衣分和纤维长度的平均杂种优势分别为17`38%、10.60%、2.90%和6.50%;单株果节数的平均杂种优势为0.96%。所有6个性状的一般配合力和特殊配合力都极显著;杂交组合的正反交差异均不显著。亲本品种的产量性状表现与其一般配合力的表现呈正相关,亲本一般配合力与杂交组合的表现也存在一致的趋势。因此,可根据亲本的表现型预测其一般配合力表现和F1的表现。 除了单铃重外,所有往状的加性遗传方差都大于显性方差。单株皮棉产量的狭义遗传力为28.24%;除单铃重外,其它产量性状的狭义遗传力都高于皮棉产量的狭义遗传力。在6个品种中,单株皮棉产量和衣分的显性基因作用方向比较复杂,其它性状的显性基因作用方向一致。单株果节数的显性基因起减少果节数的作用,单株结铃数、单铃重和纤维长度的显性基因起增值作用。  相似文献   

19.
玉米产量相关性状的遗传分析与育种应用   总被引:1,自引:0,他引:1  
利用自主育成的3个玉米自交系S1、S3和S7组配的2个组合(S1×S3和S3×S7)的P1、P2、F1、B1、B2、F2等6个世代,运用六世代主基因+多基因模型联合分析方法,进行穗总重、穗长、穗粗、轴粗性状的遗传分析。结果表明,玉米穗总重性状在2个组合中均表现为以主基因遗传为主,2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传。穗长性状组合S1×S3表现为加性-显性-上位性多基因遗传;S3×S7组合表现为1对加性-显性主基因+加性-显性-上位性多基因混合遗传。穗粗性状组合S1×S3表现为1对加性-显性主基因+加性-显性-上位性多基因遗传;S3×S7组合表现为1对完全显性主基因+加性-显性多基因混合遗传。穗长、穗粗性状均表现为多基因遗传为主。轴粗性状组合S1×S3表现为2对加性-显性-上位性主基因+加性-显性多基因混合遗传,主基因遗传为主;S3×S7组合表现为2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传,多基因遗传为主。研究结果显示轴粗、穗总重、穗粗多以加性遗传为主,有利等位基因聚合育种及早代选择较有效。而要选获非加性遗传为主控制的穗长性状的高表型个体,晚代选择才有效,且2性状的F1代由于超显性作用可出现高表型组合。  相似文献   

20.
对7个置换系和渐渗系与陆地棉遗传标准系TM 1的重要农艺性状进行了系统遗传分析。利用加性显性加性×加性上位性及其与环境互作模型(ADAA),分析了8个杂交亲本和28个F1主要农艺性状的2年资料,估算了各项遗传方差分量。结果表明,产量性状主要受加性效应和显性效应共同控制,其中衣分和衣指加性方差的比率较高,分别为33.0%和42.2%,单株铃数以显性效应为主。纤维长度和麦克隆值存在显著的加性×加性上位性效应,比强度由加性和显性效应共同控制。主要产量和品质性状的狭义和广义遗传率均达到极显著水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号