首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nutrient losses into the water from rainbow trout (Oncorhynchus mykiss) cage culture using locally caught low-fat Baltic herring, herring-based moist diets and fishmeal-based dry diets were estimated. Feeding with herring led to nitrogen and phosphorus losses into the water twice as high as those feeding with dry pellets (78–162 versus 37–39 g N and 15–39 versus 7–18 g P per kg growth). This was supported by direct measurements of ammonia and phosphate excretion. Increasing feeding frequencies resulted in increased nutrient losses irrespective of diet. Increasing dietary lipid level had a more pronounced effect in reducing the expected nutrient losses in dry pellets than herring. The reduction within the herring was approximately 18% on average for nitrogen and 25% for phosphorus losses. Dietary water content did not affect the nutrient losses. © Rapid Science Ltd. 1998  相似文献   

2.
ABSTRACT:   Two experiments were conducted to evaluate feed quality and body phosphorus (P) and nitrogen (N) retention by rainbow trout fed test diets with low amounts of fish meal content and alternative low-P protein sources. A fish meal (FM) diet was used as control. Fish weighing 2.0 g and 134.7 g on average were reared with the experimental diets for 30 weeks and 15 weeks, respectively. The experimental diets had a good growth rate and feed utilization. In the first experiment the P retention was higher in the group of fish fed test diets (56 and 69%) compared to the FM-based diet (36%); N retention rates were similar for all groups. In the second experiment, fish were fed the test diet that had the best P retention in the earlier experiment. The P retention was lower than the values obtained in the first experiment (smaller fish), but still higher in the group of fish fed the low FM diet in comparison with the control group (36.0% and 22.2%, respectively). This represents a P loading into the water of 5.9 kg/t and 12.8 kg/t production for the test and the control diet, respectively. Therefore, low-P-loading diets for rainbow trout can be developed through the appropriate combination of alternative protein sources.  相似文献   

3.
Abstract.— The objective of this study was to evaluate growth of juvenile rainbow trout Oncorhynchus mykiss (81.4 mm initial length and 6.4 g initial weight) fed a diet containing 47.5% herring meal (FM diet) and a test diet containing 34.5% herring meal and 8.75% spray-dried animal blood cells (SBC diet). Both diets were formulated to be isonitrogenous (48.5 and 48.0% protein) and isocaloric (3,977 and 3,927 kcal DElkg). At the end of the 12-wk feeding trial, differences in growth rate and feed conversion ratios were not statistically significant between the two dietary treatments. Apparent crude protein digestibility was 89.7% for the SBC diet and 88.1% for the FM diet. Apparent net protein utilization and iron retention values were not different, but phosphorus retention was higher for fish fed the SBC diet. Whole body iron content of the fish decreased in both groups from 23.3 mg/ kg in an initial sample to 16.5 mg/kg in fish fed the FM diet and 18.4 mg/kg in fish fed the SBC diet at the end of 12 wk. The diet containing 8.75% SBC replaced 27.4% of the crude protein supplied by herring meal, and it had 22.7% less total phosphorus (P) than the fishmeal diet. The cost of gain for the FM diet was $0.508/kg gain compared to $0.512/kg gain for the SBC diet.  相似文献   

4.
This study evaluated the potential of using poultry by‐product meal (PBM) to replace fish meal in diets for Japanese sea bass, Lateolabrax japonicus. Fish (initial body weight 8.5 g fish?1) were fed six isoproteic and isoenergetic diets in which fish meal level was reduced from 400 g kg?1 (diet C) to 320 (diet PM1), 240 (diet PM2), 160 (diet PM3), 80 (diet PM4) or 0 g kg?1 (diet PM5), using PBM as the fish meal substitute. The weight gain (WG), specific growth rate, nitrogen retention efficiency, energy retention efficiency and retention efficiency of indispensable amino acids were higher in fish fed PM1, PM2, PM3 and PM4 diets than in fish fed diets C or PM5. The phosphorus retention efficiency was lower in fish fed PM3, PM4 and PM5 diets than in fish fed C, PM1 or PM2 diets. Fish fed diet PM5 had the highest feed conversion ratio, total nitrogen waste output (TNW) and total phosphorus waste output (TPW) among the treatments. No significant differences were found in the hepatosomatic index or body contents of moisture, lipid and ash among the treatments. Fish fed diet C had lower condition factor and viscerosomatic index than those of fish fed PM1, PM3, PM4 and PM5 diets. The results of this study indicate that using fish meal and PBM in combination as the dietary protein source produced more benefits in the growth and feed utilization of Japanese sea bass than did using fish meal or PBM alone as the dietary protein source. The dietary fish meal level for Japanese sea bass can be reduced to 80 g kg?1 if PBM is used as a fish meal substitute.  相似文献   

5.
A growth trial was conducted to estimate the phosphorus requirement of European sea bass juveniles. Six experimental isonitrogenous and isoenergetic semi‐purified diets (casein based) were formulated to contain 0.48%, 0.65%, 0.77%, 0.86%, 1.05% and 1.25% phosphorus (diets D1, D2, D3, D4, D5 and D6 respectively). Dicalcium phosphate was used as dietary phosphorus source. Twelve groups of 25 fish of 10 g initial body weight were allocated to 55‐L tanks in a thermoregulated water recirculating system. Each experimental diet was assigned to duplicate groups of these fish. The trial lasted for 10 weeks and fish were fed two times a day, 6 days a week, to apparent visual satiation. At the end of the trial, final weight of fish fed diet D1 was significantly lower than that of the other groups, except of fish fed diet D4. Mortality of fish fed diet D1 was significantly higher than that of fish fed the other diets, except for diet D6. Feed efficiency and protein efficiency ratios were significantly lower with diet D1 than with the other diets. Nitrogen retention (% nitrogen intake) of fish fed diet D1 was significantly lower than in the other groups, except that of fish fed diet D4. Energy retention (% energy intake) was not significantly different among groups. At the end of the trial there were no differences in whole body composition among groups. Whole body phosphorus content averaged 0.72% (on a fresh weight basis) and was not significantly affected by dietary phosphorus content. Phosphorus retention averaged 6.1 g kg?1 weight gain and was not significantly different among groups. Phosphorus retention (% phosphorus intake) was significantly higher in fish fed diets D2 and D3 than in fish fed higher dietary phosphorus levels. Expressed per unit body weight per day, phosphorus retention was not significantly different among groups fed diets D2 to D6, while phosphorus losses linearly increased with dietary phosphorus intake. Results of this trial indicate that the phosphorus requirement of sea bass juveniles was satisfied with a diet containing 0.65% of phosphorus.  相似文献   

6.
《水生生物资源》1998,11(4):239-246
High energy extruded diets were formulated to contain the same level of protein supplied either by soy protein concentrate (SPC) or fish meal. Three experiments were performed in order to measure voluntary feed intake and feed waste, faecal losses and soluble losses of nitrogen and phosphorus in rainbow trout (average body weight: 100 g). Voluntary feed intake and growth performance of fish fed with demand feeders were not different when diets contained 0, 50 or 75 % SPC instead of fish meal. Total replacement of fish meal by SPC led to a significant decrease in feed intake and resulted in poor growth. This was partly due to methionine deficiency in the SPC based diet. With the addition of crystalline DL-methionine in the diets, an improvement of feed intake and growth performance was apparent. Protein digestibility was high, regardless of the protein source. Excretion of ammonia and urea increased with the level of SPC in the diet. Nitrogen losses decreased when methionine was added to the diet containing only SPC as a protein source. Availability of phosphorus increased with the level of SPC in the diets. Daily soluble losses were not affected by the dietary treatments but the pattern of phosphorus excretion after feed intake was modified. The rise in soluble phosphorus in water occurred later when fish were fed diets with soy protein whatever the dietary level of soy protein concentrate.  相似文献   

7.
Two extruded diets designed to have fat levels of 220 g kg−1 (F22) and 300 g kg−1 (F30) were fed to Atlantic salmon Salmo salar L. in two different experiments during the sea rearing period (from 0.2–0.3 kg to 3–4 kg). Each diet was fed restricted and isoenergetically at two feeding rates to fish in triplicate groups. In one of the experiments, a supplementary group of fish was fed to satiation with the F30 diet. All fish were slaughtered and evaluated for quality according to a commercial standard.
No difference in growth was observed between fish fed the two diets at similar feeding rates and the growth was proportional to the amount of dietary energy offered. Feed conversion ratios decreased according to higher energy content in the F30 diet, and the nitrogen and phosphorus retention increased significantly. Fish fed the F30 diet revealed a higher incidence of sexual maturity. Fat content in cutlets and dressed carcasses were significantly affected by feeding rate but not by dietary fat level. Fish fed the F30 diet had more visceral fat and, consequently, lower dress-out percentage. Mortality, liver size and liver colour were not significantly affected by dietary fat level.
These experiments showed that even large differences in dietary fat level employed for the entire sea rearing period of Atlantic salmon, did not, or only marginally affected the cutlet and dressed carcass fat content. The high fat diet improved the feed utilization, thus decreasing the discharge to the environments. Furthermore, it resulted in greater growth at ad libitum feeding.  相似文献   

8.
The effects of feed intake level on energy and nitrogen partitioning were studied in juvenile Atlantic cod (250 g) fed two fish meal based diets differing in protein and lipid content (54:31 and 65:16) at 10 °C. Replicate groups of cod were feed deprived for 32 days or fed one of the two diets at 25, 50, 75 or 100% of group satiation for 60 days. Feed intake and oxygen consumption were measured daily and weights and chemical composition of carcass, liver, viscera and whole body were measured at start and end. Diet digestibilities were assessed in a separate experiment.

The whole body and carcass growth rates at a given feed intake did not differ between dietary groups, but the liver grew faster in the fish fed the low protein diet, resulting in higher hepatosomatic indices at the end of the experiment in the groups fed this diet.

The efficiency of utilisation of digestible nitrogen for growth (kDNg) was higher for the low protein diet (0.73 ± 0.02) than for the high protein diet (0.53 ± 0.05), resulting in higher nitrogen retention at a given nitrogen intake. No difference in percentage nitrogen retention was seen in full-fed fish however (31.2 ± 2.5 and 28.4 ± 1.6% for the low protein and high protein diets, respectively). This can be explained by higher nitrogen intake in the fish fed the high protein diet, resulting in a smaller proportion of the intake being used for maintenance.

There was no difference in energy utilisation between dietary groups. The digestible energy requirement for maintenance (DEmaint) was 53.8 ± 0.9 kJ kg− 1 d− 1 (42.3 ± 0.7 kJ kg− 0.8 d− 1) and the utilisation efficiency for growth (kDEg) was 0.80 ± 0.02. The energy retention in full-fed fish was 31.3 ± 3.5 and 31.7 ± 1.0% for the low protein and high protein diets, respectively. The deposited energy was distributed in approximately equal proportions in the liver and carcass, whereas viscera accounted for a minor proportion. At a given energy intake, the fish fed the high protein diet deposited more energy in the carcass and less in the liver than did those fed the low protein diet.  相似文献   


9.
A 60 days feeding experiment was carried out with Black Sea turbot Psetta maeotica to determine the amount of poultry by‐product meal (PBM) that could replace fish meal (FM) in formulated diets without reducing growth performance. Juvenile Black Sea turbot (initial average weight, 30 g) were fed five isoenergetic (gross energy, 20.5 ± 0.21 kJ g?1 diet) and isonitrogenous diets (protein content, 550 ± 0.35 g kg?1). The control diet used white FM as the sole protein source, the other four diets were prepared to replace FM protein at levels of 25%, 50%, 75% and 100% with PBM. The fish readily accepted all experimental diets and no mortality were recorded during the trial. There were no significant differences in growth performance of turbot (P < 0.05) fed the diets with 25% and 50% replacement levels compared with fish offered the control diet (100% FM), however, final body weight and specific growth rate values in the 50% replacement diet were about 8% lower than those of the control. Total nitrogen excretion in fish fed 50% replacement diet were about 10% higher than the control group, even though these parameters were not found to be statistically different. At the levels of 750 and 1000 g kg?1 of the protein, PBM inclusion caused a severe decrease in growth performance, feed utilization, protein efficiency ratio and per cent nitrogen retention. The results in the present study indicate that up to 25% of FM protein can be replaced by PBM protein without causing reduction in growth performance, nutrient utilization and nitrogen retention.  相似文献   

10.
A feeding‐and‐digestibility trials were carried out to evaluate the efficacy of replacing fishmeal with brewers yeast Saccharomyces cerevisiae in diets of pacu, Piaractus mesopotamicus, juveniles. The feeding trial was conducted during 54 days with 450 fish (26.6 ± 1.7 g) testing six isonitrogenous (270 g kg?1 crude protein) and isoenergetic (19 MJ kg?1 crude energy) diets, with increasing yeast level to replace 0 (control), 30, 35, 50, 70 or 100% of dietary fishmeal. Growth performance and feed utilization increased with increasing dietary yeast level until 50% fishmeal replacement. Protein retention efficiency was higher in fish fed 35 and 50%. Protein digestibility and the fillet hue (the red/green chromaticity) were not significantly different among all treatments. Nitrogen gains were significantly improved in fish fed 35% replacement diet compared to fish fed the control diet. The retentions of indispensable amino acids tended to increase with increasing dietary yeast levels, with maximum retention at 35–50%. On the basis of our results, replacing 50% fishmeal by yeast in pacu diets successfully improved feed efficiency and growth performance, and reduced nitrogen losses, thereby reducing the nitrogen outputs from fish farms.  相似文献   

11.
Abstract.— Taurine has been demonstrated to be conditionally indispensable for several carnivorous fish species. Current trends in trout production include decreasing levels of fish-meal content in feeds, along with faster growing strains of fish. Taurine may be a limiting nutrient in support of elevated planes of growth for rainbow trout. A 9-wk feeding trial was conducted using a factorial treatment design with protein source (fish meal or plant) and taurine supplementation (four levels) as the main effects. The fish-meal diet series included 23% herring meal and contained 1.76% total sulfur amino acids (TSAA). The plant diet series did not contain any animal proteins and substituted protein from soy protein concentrate in place of the herring-meal protein and contained 1.5% TSAA. Taurine was supplemented at 0, 5, 10, and 15 g/kg dry diet to each of the diets in the plant series and the fish-meal series of diets. All diets were formulated to contain 43.8% crude protein and 20% lipid with an estimated physiological fuel value of 4.2 kcal/g. Fifteen fish were stocked in each of 24 tanks with a mean initial weight of approximately 26.8 g per fish. The unsupplemented fish-meal diet contained 2 g/kg taurine, and the unsupplemented plant diet had taurine levels below the detection limit of 0.1 g/kg diet. Taurine supplementation improved growth, feed conversion ratios, protein retention efficiencies, and energy retention efficiencies of fish fed the plant protein diets. No effects of taurine supplementation were observed for these response factors in fish fed the fish-meal series diets. This study demonstrates that taurine supplementation may be necessary for rainbow trout fed plant-protein-based feeds.  相似文献   

12.
The utilization of dietary protein in rainbow trout was investigated by determining the nitrogen balance. The fish were fed on three experimental diets containing different ratios of protein and carbohydrate (74% protein/9% carbohydrate; 58%/26%; 32%/53%). Nitrogen retention was determined by measuring the nitrogen intake and nitrogen losses of the fish. In this paper we report upon nitrogen excretion, nitrogen retention, gross protein efficiency and also feed conversion. Nitrogen excretion increased with increasing protein and decreasing carbohydrate content in the diet. Similarly, nitrogen retention increased when the fish were fed a diet richer in protein. Gross protein efficiency was highest (and nearly the same) with the two diets containing higher levels of protein, while the diet low in protein but rich in carbohydrate tended to cause poorer protein efficiency. Feed conversion was also highest with the two diets with higher protein levels but lower with the diet poorest in protein. The results obtained from the study of different fish groups each fed one diet were nearly identical to results of one fish group fed different diets.  相似文献   

13.
The aim of this trial was to compare the performance of rainbow trout fed diets including local or imported fish meal as the main protein sources, and to test the effect of reducing the fish meal content or including a fish protein hydrolysate in the diets. Two experimental diets were formulated to include 35% (diet 2) or 20% (diet 3) of a local processed whole fish meal; two other diets were formulated similar to diets 2 and 3 but with 5% fish protein hydrolysate replacing the same amount of fish meal (diets 4 and 5 respectively); a diet similar to diet 2, but including Norwegian fish meal, was used as a control (diet 1). The growth trial lasted 14 weeks and was carried out in floating net cages (325‐L capacity), with duplicate groups of 20 rainbow trout of an initial average weight of 58 g. The apparent digestibility coefficients (ADC) of the diets were evaluated in a separate laboratory trial. At the end of the growth trial, there were no significant differences in growth rate and protein efficiency ratio among groups. Feed conversion ratios were significantly better in groups fed diets 3, 4 and 5 than in the other groups. Nitrogen retention (% of N intake) was significantly higher in fish fed diets 4 and 5 than in those fed diet 2. There were no significant differences in energy retention (% of energy intake) among groups. At the end of the trial, there were no significant differences among groups in proximate composition of whole fish. The ADC of protein, energy and phosphorus of diets 1 and 2 were significantly lower than those of diets 3 and 5. It was concluded that, under the experimental conditions tested, performance of rainbow trout fed practical diets including good quality local processed fish meal is similar to that of fish fed diets including Norwegian fish meal. A reduction in the fish meal from 35% to 20% of the diet or the inclusion of a fish protein hydrolysate had no negative effects on growth performance and improved feed utilization.  相似文献   

14.
The potential of using rendered animal protein ingredients, poultry by‐products meal (PBM), meat and bone meal (MBM), and feather meal (FM), to replace fish meal in diets for malabar grouper, Epinephelus malabaricus, was evaluated in a 10‐week net pen experiment. Triplicate groups of fish (initial body weight 50.2 g) were fed eight isonitrogenous and isocaloric diets formulated to contain 52% crude protein and 9% crude lipid. The control diet contained 50% herring meal, whereas in the remaining seven diets, PBM was incorporated at 11.9 (PM1), 23.8 (PM2), and 35.7% (PM3) to replace 25, 50, and 75% of the fish meal; MBM was incorporated at 14.5 (MM1) and 29.0% (MM2) to replace 25 and 50% of the fish meal; and FM was incorporated at 9.4 (FM1) and 18.8% (FM2) to replace 25 and 50% of the fish meal. A raw fish (RF) diet was used as comparison to assess growth performance of fish fed the formulated diets. Feed intake was lower in fish fed the diets PM3 and FM2 than fish fed the control diet. There were no significant differences in weight gain (WG), final body weight (FBW), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), and total nitrogen waste output (TNW) between fish fed the control diet and the diets PM1, PM2, PM3, MM1, MM2, and FM1. Fish fed the diet FM2 had lower WG, FBW, NRE, and ERE but higher TNW than that of fish fed the control diet. Feed conversion ratio (FCR) was higher in fish fed the diets MM2, FM1, and FM2 than fish fed the control diet. At the end of the experiment, there were no significant differences in whole‐body content of moisture, crude protein, and crude lipid among fish fed the formulated diets. WG, FBW, and TNW of fish fed the diet RF were higher, while FCR and NRE were lower than that of fish fed the control diet. No significant differences were found in feed intake, ERE, and whole‐body composition between fish fed the diet RF and the control diet. Results of the present study suggest that dietary fish meal level for malabar grouper can be lowered from 50 to 38% by incorporating PBM, MBM, or FM.  相似文献   

15.
Triplicate groups of rainbow trout with initial weight 361 g were fed either a fish meal based control diet or diets containing 9, 18 or 27% bacterial protein meal (BPM) or 9% of an autolysate (AU) of the BPM. No significant treatment effects were found on specific growth rates (SGR), feed intake, feed efficiency ratio (FER), or retention of nitrogen, amino acids or energy. The apparent digestibility coefficients (ADC) of nitrogen, energy and most indispensable amino acids decreased when BPM was included in the diet. The ADC of lipid, sum of amino acids, arginine, lysine, threonine and most of the dispensable amino acids were reduced at 27% BPM inclusion compared to the control, 9% and 18% BPM diets. None of the ADC estimated was different in the 9% AU diet compared to the 9% BPM diet. The loss of nitrogen and energy in faeces per kg gain increased as the dietary BPM or AU levels increased, and the energy used for activity and maintenance was higher in fish fed the 27% BPM diet than in fish fed the other diets (P < 0.05). There were no significant differences in the urea concentrations in plasma, liver and muscle, whereas the uric acid level in plasma was elevated in trout fed the 27% BPM diet. Histological evaluation of tissue from the stomach, pyloric caeca, mid-intestine and distal intestine did not reveal any diet-related morphological changes.In conclusion, no significant differences in growth and feed efficiency were found in the rainbow trout fed diets containing up to 27% BPM, and the AU did not increase fish performance compared to the BPM. Based on the data from this study, at levels up to 27% dietary inclusion, BPM is a good replacement for fish meal in diets for rainbow trout.  相似文献   

16.
Rainbow trout (Salmo gairdneri) with an initial average weight of 1.8 g were fed eight experimental diets with 26 and 35% protein and varying amounts of lipid for 112 days. All experimental diets contained 10% fish meal (the only source of animal protein), as compared to a control diet with 35% fish meal. The energy content of the diet was the most important factor in determining growth rate. The percentage of dietary lipid was the dominant factor in determining the body composition of rainbow trout. Increased amounts of dietary lipid resulted in fish with increased amounts of whole-body fat and reduced amounts of whole-body protein and moisture. Body composition was more closely a function of nutritional history than of fish size. Protein retention and energy retention were negatively associated with the percentage of digestible protein in the diet. Mortality rates did not differ significantly among the groups tested; the general health of all fish examined was good.  相似文献   

17.
Five practical diets in which the supply of protein from fish meal was decreased gradually from 100% to about 2% and replaced by plant protein sources were formulated. European seabass weighing about 190 g were fed these diets for 12 weeks at a water temperature of 22 °C. Feed was dispensed using automatic self-feeders and voluntary feed intake (VFI) was closely monitored. We did not find any significant difference among diets in the apparent digestibility coefficients (ADC) of dry matter (80–82%), protein (94–96%), energy (88–92%) or phosphorus (49–58%). Replacement of fish meal by plant protein ingredients did not influence VFI. All groups had very good growth rates (DGI above 1.3%/day) and there were no significant differences in growth rate, feed efficiency or in daily nitrogen gains among groups. There was, however, a slight increase in fat deposition in fish fed diets with plant protein sources. Ammonia nitrogen and soluble phosphorus excretion rates were measured. Nitrogen and phosphorus balance studies indicated that fish meal replacement by plant ingredients led to a slight increase in nitrogen losses (from 83 to 103 g N/kg weight gain) but led to a significant reduction in total phosphorus losses (from 13 to 5 g P/kg weight gain). These results combined with the remarkable acceptability of diets containing high levels of plant protein ingredients with identical growth performances of European seabass show clearly that dietary fish meal levels can be considerably reduced without any adverse consequence in terms of somatic growth or nitrogen utilisation.  相似文献   

18.
Aquaculture is one of the most thriving animal production sectors, and Nile tilapia (Oreochromis niloticus) farming represents 8% of total finfish culture. However, the industry sustainability depends on the development of cost‐effective and environmental friendly feeds. This study aimed to reduce dietary protein levels in diets for juvenile tilapia and to minimize diet environmental impact while maximizing biological efficiency. A growth trial was performed using five isoenergetic plant protein‐based diets with decreasing levels of crude protein: 360, 340, 320, 300 and 280 g/kg diet (D360, D340, D320, D300 and D280, respectively). Dietary protein utilization was assessed by metabolic trials using a radiolabelled amino acid mixture. Tilapia in all treatments showed similar growth performance and feed intake. Feed conversion ratio was significantly higher in fish fed the D280 than the D360 diet, while no differences were found for other treatments. Protein retention was significantly higher in tilapia fed the D300 than the D360 diet. Amino acid catabolism increased in fish fed the D360 diet, though without significant differences in muscle amino acid retention. This study demonstrates that dietary protein levels can be reduced to 300 g/kg diet without hindering tilapia growth and feed conversion ratio, while reducing environmental nitrogen losses.  相似文献   

19.
A 11‐week growth trial was conducted in a flow‐through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg?1) and isoenergetic (gross energy: 18 kJ g?1) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg?1 and the available P was 5.0–6.6 g kg?1. The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.  相似文献   

20.
Potential of using rendered animal ingredients, poultry by‐product meal (PM), meat and bone meal (MBM), feather meal (FM) and blood meal (BM) to replace fishmeal in practical diets for cuneate drum Nibea miichthioides (Chu, Lo et Wu) was examined in a net pen experiment. A total of 10 dietary treatments were compared. Nine diets were formulated to contain 363 g kg−1 digestible protein and 14.8 MJ kg−1 digestible energy, and a dietary treatment consisting of raw fish (RF) served as reference. In the formulated diets, the control diet contained 350 g kg−1 herring meal, whereas in the other eight diets, the fishmeal were replaced by MBM (30% fishmeal replacement), PM (50% fishmeal replacement), a blend of PM, MBM, FM and BM (30%, 50% and 80% fishmeal replacement), or a blend of PM, MBM and BM (30%, 50% and 80% fishmeal replacement), respectively. Cuneate drum fingerling (initial body weight 28 g) were fed the test diets for 8 weeks. Specific growth rate (SGR), final body weight (FBW), nitrogen retention efficiency (NRE), condition factor and contents of moisture, crude protein and crude lipid in carcass were not significantly different between fish fed the formulated diets. Fish fed the formulated control diet exhibited lower SGR and FBW, but higher FCR, NRE, hepatosomatic index and crude lipid content in carcass and liver than those of the fish fed the RF. Results of the present study indicate that combination of rendered animal protein ingredients can replace most of the fishmeal in practical diets for cuneate drum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号