首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic base for soybean cultivars is narrow compared to most other crop species. Twenty-seven wild perennial Glycine species comprise the tertiary gene pool to soybean that may contain many genes of economic importance for soybean improvement. We evaluated 16 accessions of G. argyrea, G. clandestina, G. dolichocarpa, and G. tomentella for resistance to Heterodera glycines (HG), also known as the soybean cyst nematode, and to multiple isolates of Phakopsora pachyrhizi, the causal fungus of soybean rust. All 16 accessions were classified as resistant to H. glycines HG Type 2.5.7, based on number of cysts per root mass with plant introductions (PIs) 483227, 509501, 563892, and 573064 (all G. tomentella) void of any cysts indicating no reproduction by this pest. All 16 accessions had an immune reaction to one isolate of P. pachyrhizi. Regardless of isolate, no sporulating uredinia were observed on G. argyrea (PI 505151) and G. tomentella (PIs 483227, 509501, and 573064). These results demonstrate that some accessions within the perennial Glycine species harbour resistance to both H. glycines and P. pachyrhizi and would be good candidates for wide hybridization programs seeking to transfer potentially unique multiple resistance genes into soybean.  相似文献   

2.
Genetic analysis of resistance to soybean cyst nematode in PI 438489B   总被引:2,自引:0,他引:2  
Soybean (Glycine max L. Merr.) plant introduction PI 438489B is a unique source that has resistance to all known populations of soybean cyst nematode (Heterodera glycines Ichinohe, SCN). This PI line also has many desirable agronomic characteristics, which makes it an attractive source of SCN resistance for use in a soybean breeding program. However, characterization of SCN resistance genes in this PI line have not been fully researched. In this study, we investigated the inheritance of resistance to populations of SCN races 1, 2, 3, 5, and 14 in PI 438489B. PI 438489B was crossed to the susceptible cultivar ‘Hamilton’ to generate F1 hybrids. The random F2 plants and F3 lines were evaluated in the greenhouse for reaction to these five populations of SCN races. Resistance to SCN races 1, 3, and 5 were mostly conditioned by three genes (Rhg Rhg rhg). Resistance to race 2 was controlled by four genes (Rhg rhg rgh rgh). Three recessive genes were most likely involved in giving resistance to race 14. We further concluded that resistance to different populations of SCN races may share some common genes or pleiotropic effects may be involved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhg rhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.  相似文献   

4.
Worldwide, cyst nematode (SCN) Heterodera glycines is the most destructive pathogen on cultivated soybean (Glycine max (L.) Merr.). In the USA yield losses in 2001 were estimated to be nearly 60 million dollars. Crop losses are primarily reduced by the use of resistant cultivars. Nematode populations are variable and have adapted to reproduce on resistant cultivars overtime because resistance primarily traces to two soybean accessions. Recently cv. Hartwig was released which has comprehensive resistance to most SCN populations. A virulent nematode population LY1 was recently selected for its reproduction on Hartwig. LY1 population originated from a mass mating of Race 2 (HG Type 1.2.5-) females with Race 5 (HG Type 1.2-) males. LY1 nematode population infects currently known sources of resistance except PI 567516C. The female indices obtained on PI 567516C and Hartwig were 7% (resistant) and 155% (susceptible), respectively. However, the genetic basis of LY1 resistance in soybean PI 567516C is not known. Resistant PI line 567516C was crossed to susceptible cultivar Hartwig to generate 105 F2:5 families. These families together with parents, seven indicator lines and a susceptible control cv. Lee-74 were evaluated for response to LY1 nematode population in the greenhouse. Chi-square analysis showed resistance in PI567516C to LY1 was conditioned by one dominant and two recessive genes (Rhg, rhg, rhg). Chi-square value was 0.15 and P = 0.70. This information will be useful to soybean researchers for developing resistant cultivars to nematode population that infects Hartwig.  相似文献   

5.
Summary Cultivar Peking has been extensively used as a source of resistance to Race 3 and Race 5 of soybean cyst nematode, Heterodera glycines I., and Peking genes for resistance are present in a wide range of resistant soybean cultivars. Peking is also used as a host differential in the soybean cyst nematode race classification system. Thirteen Peking lines maintained in the USDA Soybean Germplasm Collection and in several breeding programs were surveyed using RFLP and RAPD markers for genetic characterization. Based on the molecular diversity combined with reaction to soybean cyst nematode, Peking genotypes from a common original source were identified. Peking lines PI 297543 (introduction from Hungary), and PI 438496A, PI 438496B and PI 438496C (introductions from Russia) represented unrelated germplasms. Identified molecular polymorphism can be used to validate the genetic purity of Peking lines used as host differentials for soybean cyst nematode classification system as well as utilization of an individual germplasm line in genetic-breeding programs.  相似文献   

6.
Summary A wide range of cultivated brassica accessions including broccoli, Brussels sprouts, Chinese cabbage, cauliflower, collard, kale and swede material was tested against the cabbage aphid, Brevicoryne brassicae, at HRI, Wellesbourne in the field and laboratory in both 1992 and 1993. In the field, B. brassicae attack was assessed as the proportion of infested plants and the numbers of aphid colonies present. In the laboratory, aphid performance was measured in terms of the pre-reproductive and reproductive period, population increase, and insect mortality. Interpretation of the data was facilitated by plotting sorted accession means against normal order statistics. This statistical approach indicated the spread of variation amongst the accessions and permitted identification of extremes. Partial levels of antixenosis resistance were discovered in red brassicas. Glossy accessions of cabbage and cauliflower possessed antixenosis and antibiosis resistance that lasted throughout the season of crop growth in the field. Other accessions were shown to withstand aphid attack and therefore possessed tolerance. The laboratory studies provided information on mechanisms of antibiosis resistance. The potential value of the different sources of resistance is discussed.  相似文献   

7.
The greenbug, Schizaphis graminum(Rondani), the Russian wheat aphid, Diuraphis noxia (Mordvilko), and the bird cherry oat aphid, Rhopalosiphum padi(L.), annually cause several million dollars worth of wheat production losses in Europe and the United States. In this study, Triticum and Aegilops accessions from the Czech Research Institute of Crop Production and the Kansas State University Wheat Genetic Resources Center were evaluated for resistance to these aphids. Accessions with aphid cross-resistance were examined for expression of the antibiosis, antixenosis, and tolerance categories of resistance. Aegilops neglecta accession 8052 exhibited antibiotic effects toward all three aphids in the form of reduced intrinsic rate of increase (rm). The rm of greenbug (biotype I) on Ae. neglecta 8052 was significantly lower than that of greenbugs on plants of the susceptible U. S. variety Thunder bird. The rm of Russian wheat aphids was significantly lower on foliage of both Ae. neglecta 8052 and T. araraticum accession 168 compared to Thunderbird. The rm values of bird cherry oat aphids fed both Ae. neglecta 8052 and T. araraticum 168 were also significantly lower than those fed the susceptible accession T. dicoccoides 62. Neither Ae. neglecta 8052 or T. araraticum 168 exhibited tolerance to either greenbug biotype I or Russian wheat aphid. Preliminary data suggest that T. araraticum 168 may also possess tolerance to bird cherry oat aphid. New genes from Ae. neglecta 8052 and T. araraticum 168 expressing aphid antibiosis can be used to develop multiple aphid resistant wheat in the U. S. and Central Europe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Four newly detected accessions of wild barley (Hordeum vulgare ssp. spontaneum) resistant to powdery mildew caused by Blumeria graminis f. sp. hordei were studied with the aim of finding the number of genes/loci conferring the resistance of individual accessions, the type of inheritance of the genes and their relationships to the Mla locus. F2 populations after crosses between the winter variety ‘Tiffany’ and four wild barley accessions and use of microsatellite DNA markers were focused on the identification of individual resistance genes/loci by means of their chromosomal locations. In PI466495, one locus conferring powdery mildew resistance was identified in highly significant linkage with the marker Bmac0213. This location is consistent with the known locus Mla on chromosome 1HS. In the other three accessions the resistance was determined by two independent loci. In PI466197, PI466297 and PI466461, one locus was identified on chromosome 1HS and three new loci were revealed on chromosomes 2HS (highly significant linkage with Bmac0134), 7HS (highly significant linkage with Bmag0021) and 7HL (significant linkage with EBmac0755). Our prospective aim is identification of further linked DNA markers and the exact location of the resistance genes on the barley chromosomes.  相似文献   

9.
Soybean aphid (Aphis glycines Matsumura) has become one of the major pests of soybean [Glycine max (L.) Merr.] in North America since 2000. At least four biotypes of soybean aphid have been confirmed in the United States. Genetic characterization of new sources of soybean aphid resistance will facilitate the expansion of soybean gene pool for soybean aphid resistance and thus will help to develop soybean aphid resistant cultivars. To characterize the genetic basis of soybean aphid resistance in PI 603712, a newly identified resistant germplasm line, 142 F2 plants derived from the cross ‘Roberts’ × PI 603712 and their parents were evaluated for soybean aphid resistance in the greenhouse, and were genotyped with BARCSoySNP6K Illumina Infinium II BeadChip. A genome-wide molecular linkage map was constructed with 1495 polymorphic SNP markers. QTL analysis revealed that PI 603712 possessed two major loci associated with soybean aphid resistance, located on chromosome 7 and 16, respectively. The locus on chromosome 7 was dominantly expressed and positioned about one Mega-base-pair distant from the previously identified resistance locus Rag1. The locus on chromosome 16 was positioned near the previously identified resistance locus Rag3 and expressed partially dominance or additive effect. Interestingly, two minor loci were also detected on chromosomes 13 and 17 but the alleles from PI 603712 decreased the resistance. In developing soybean aphid resistant cultivars through marker-assisted selection, an appropriate combination of resistance loci should be selected when PI 603712 is used as a donor parent of resistance.  相似文献   

10.
Four hundred and eighty one accessions of species and subspecies of genera Triticum and Aegilops were evaluated for resistance to speckled snow mold caused by Typhula ishikariensis and for freezing tolerance. All Triticum and seven of Aegilops species were severely affected by snow mold. Among surviving Aegilops spp., only the Ae. cylindrica accessions exhibited resistance similar to that of the most resistant winter wheat cultivar, PI 173438. After repeated screening of accessions of Ae. cylindrica, 12 accessions were identified as having resistance similar to that of PI 173438; eleven of those were considered more freezing tolerant than PI 173438, but less than wheat cv. Valjevskaya, the freezing tolerant check. Accessions of Ae. cylindrica with snow mold resistance exceeding that of PI 173438, and with freezing tolerance, are currently being screened. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Aphis glycines Matsumura, the soybean aphid, first arrived in North America in 2000 and has since become the most important insect pest of domestic soybean, causing significant yield loss and increasing production costs annually in many parts of the USA soybean belt. Research to identify sources of resistance to the pest began shortly after it was found and several sources were quickly identified in the USDA soybean germplasm collection. Characterization of resistance expression and mapping of resistance genes in resistant germplasm accessions resulted in the identification of six named soybean aphid resistance genes: Rag1, rag1c, Rag2, Rag3, rag4, and Rag5 (proposed). Simple sequence repeat markers flanking the resistance genes were identified, facilitating efforts to use marker-assisted selection to develop resistant commercial cultivars. Saturation or fine-mapping with single nucleotide polymorphism markers narrowed the genomic regions containing Rag1 and Rag2 genes. Two potential NBS-LRR candidate genes for Rag1 and one NBS-LRR gene for Rag2 were found within the regions. Years before the release of the first resistant soybean cultivar with Rag1 in 2009, a soybean aphid biotype, named biotype 2, was found that could overcome the resistance gene. Later in 2010, biotype 3 was characterized for its ability to colonize plants with Rag2 and other resistance genes. At present, three biotypes have been reported that can be distinguished by their virulence on Rag1 and Rag2 resistance genes. Frequency and geographic distribution of soybean aphid biotypes are unknown. Research is in progress to determine the inheritance of virulence and develop DNA markers tagging virulence genes to facilitate monitoring of biotypes. With these research findings and the availability of host lines with different resistance genes and biotypes, the soybean aphid-soybean pest-host system has become an important model system for advanced research into the interaction of an aphid with its plant host, and also the tritrophic interaction that includes aphid endosymbionts.  相似文献   

13.
Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions   总被引:1,自引:0,他引:1  
L. S. Hesler  C. I. Tharp 《Euphytica》2005,143(1-2):153-160
Tests for antibiosis and antixenosis resistance to Rhopalosiphum padi L., the bird cherry-oat aphid, were conducted among four wheat (Triticum aestivum L.) and eight triticale (XTriticosecale Wittmack) accessions. Tests for antibiosis included measuring R. padi-population growth over 13 days, number of days to reproduction of individual R. padi, and number of aphid progeny produced in the first 7 days of adulthood. Antixenosis was measured in no-choice nymphiposition tests and in choice tests of host selection by winged R. padi. Three of seven triticale accessions limited R. padi populations relative to control accessions. Lower R. padi-population growth on N1185 and Okto Derzhavina could be explained partially by increased developmental times. Lower R. padi-population growth on triticale accessions N1185, N1186 and Okto Derzhavina could be explained at least partially by fewer aphid progeny on these accessions. Developmental time of R. padi on N1185 and Okto Derzhavina was greater than that on Stniism 3 triticale, identified previously as resistant to R. padi. There were less R. padi progeny on N1185 than on Stniism 3, and comparable numbers of R. padi progeny among N1186, Okto Derzhavina, and Stniism 3. None of the accessions limited nymphiposition by R. padi. Choice tests revealed heterogeneity in host selection by R. padi but an overall trend that triticale accessions Okto Derzhavina, N1185, N1186 and Stniism 3 were less preferred hosts than Arapahoe wheat. Relatively strong resistance in these triticale accessions warrant consideration of their future use in breeding programs for cereal-aphid resistance.  相似文献   

14.
Between 580 and 700 accessions of related cultivated and wild species of the genus Beta were assessed for resistance to four soil-borne diseases of sugar beet: two seedling damping-off diseases caused by the fungi Aphanomyces cochlioides and Pythium ultimum and two diseases of more mature plants, Rhizoctonia root and crown rot, caused by the fungus R. solani, and Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), a furovirus transmitted by the plasmodiophorid Polymyxa betae. Analysis of resistance data (assessed on an international standardised 1–9 scale of Resistance Scores) indicated that the highest levels of resistance ({RS} 2) to A. cochlioides and P. ultimum were to be found amongst accessions of the more distantly related sections Corollinae (93% of accessions tested) and Procumbentes (10%), respectively; although useful levels could also be found in the more closely related, and sexually compatible, section Beta (1–6%). Resistance to Rhizoctonia was also found in section Beta (5–7%), depending on whether field or glasshouse tests were used, but there was little evidence of generally high levels of resistance to Rhizomania among accessions of this section. None of the accessions of sections Corollinae and Procumbentes exhibited any notable resistance to Rhizoctonia. However, all sections Procumbentes and some sections Corollinae (4%) accessions were highly resistant to Rhizomania. Individuals with high levels of resistance to Rhizomania were identified from within some section Beta and Corollinae accessions, in which there was evidence of segregation.  相似文献   

15.
Summary Allelic frequencies at 10 loci common throughout the genus Glycine subgenus Soja were determined for 27 geographical area-species samples. The samples included 366 accessions of Glycine soja, the wild soybean, and 193 accessions of G. max, the domesticated soybean, from the USDA Soybean Germplasm Collection. The data indicate that the alleles for grey pubescence (t 1), low seed coat peroxidase level (ep), and blunt pubescence tip (pb) probably arose as mutations during the domestication of G. max. The remaining seven loci studied(Fr, Pa 1, Pa 2, Fg 1, Fg 2, Fg 3and Fg 4)are polymorphic throughout the subgenus Soja; differences among collections of G. max and G. soja seem to be the result of differing selection pressures. A cluster analysis of allelic frequencies reveals two distinct groups within the subgenus corresponding to G. soja and G. max, Semi-wild accessions of G. max, while morphologically more similar to cultivated plants, clustered with samples of G. soja. The semi-wild accessions examined are thought to have arisen via hybridization between G. soja and G. max.Joint contribution: North Central Region, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, and Journal Paper No. J-9868 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011; Project 2107.  相似文献   

16.
Approximately 7,000 accessions of Korean soybean (Glycine max (L.) Merrill) landraces, largely composed of three collections, the Korea Atomic Energy Research Institute’s soybean (KAS), the Korean Crop Experiment Station’s soybean (KLS) and the Korean Agricultural Development and Technology Center’s soybean (KADTC) collections, have been conserved at the Rural Development Administration (RDA) genebank in Korea. The accessions within collections were classified based on their traditional uses such as sauce soybean (SA), sprouted soybean (SP), soybean for cooking with rice (SCR), and OTHERS. A total of 2,758 accessions of Korean soybean landraces were used to profile and to evaluate genetic structure using six SSR loci. A total of 110 alleles were revealed by at the six SSR loci. The number of alleles per SSR locus ranged from 9 to 39 in Satt187 and Satt_074, respectively. The number of alleles ranged from 87 in the KADTC collection to 96 in the KLS collection, and from 63 in the SCR group to 95 in the SP group. Nei’s average genetic diversity ranged from 0.68 to 0.70 across three collections, and 0.64 to 0.69 across the usage groups. The average between-group differentiation (G st) was 0.9 among collections, and 4.1 among the usage groups. The similar average diversity among three collections implies that the genetic background of the three collections was quite similar or that there were a large number of duplicate accessions in three collections. The selection from the four groups classified based upon usage may be a useful way to select accessions for developing a Korean soybean landrace core collection at the RDA genebank. DNA profile information of accessions will provide indications of redundancies or omissions and aid in managing the soybean collection held at the RDA genebank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding programs and could be used to develop a core collection.  相似文献   

17.
Summary Soybean germplasm was screened for resistance to bacterial pustule disease. The etiological agent, Xanthomonas campestris pv. glycines, was isolated from the leaves of field grown soybean in Maharashtra, India. The screening of soybean stocks was carried out by excised leaf inoculation method. A differential susceptibility to the pathogen was observed in the tested stocks. Two stocks P-4-2 and P-169-3 were found to be completely resistant to the pathogen and displayed an incompatible reaction. Four cultivars, EC-34160, Bragg, Kalitur and PK-472 displayed moderate resistance and the remaining stocks were susceptible to the attack of the pathogen. The stocks P-4-2 and P-169-3 remained resistant even to a high concentration of 109 colony forming units (cfu)/ml of the pathogen.  相似文献   

18.
Wheat/Hordeum chilense disomic addition lines have been used to locate genes influencing resistance against greenbug (Schizaphis graminum Rond.) in specific chromosomes of H. chilense. H. chilense is a source of antixenosis, antibiosis and host tolerance to the greenbug, being resistant also to the Russian wheat aphid, the two key pests in wheat. For measuring antixenosis, the numbers of aphids per plant were recorded in a host free choice test; antibiotic resistance was determined by measuring the developmental time, the fecundity and the intrinsic rate of population increase of aphids reared on the different hosts, and host tolerance to aphids was evaluated by the leaf damage and the number of expanded leaves on the hosts after 3 weeks of infestation. The greenbugs belonged to a clone of biotype C. Plant genes with positive effects for antixenosis were located on chromosome 1Hch. Genes with positive effects for antibiosis were located on three different chromosomes and those that prolonged aphid developmental time were located on chromosomes 5Hch and 7Hch while those that reduced the total fecundity were on 4Hch. Chromosome 7Hch accounted for host tolerance to greenbug.  相似文献   

19.
Summary Sorghum shoot fly, Atherigona soccata (Rondani) is an important pest of sorghum in Asia, Africa, and Mediterranean Europe, and host plant resistance is an important component for the management of this pest. The levels of resistance in the cultivated germplasm are low to moderate, and therefore, it is important to identify genotypes with different mechanisms of resistance to pyramid the resistance genes. We studied the antixenosis for oviposition, antibiosis, and tolerance components of resistance in a diverse array of shoot fly-resistant and -susceptible genotypes. The main plants and tillers of SFCR 151, ICSV 705, SFCR 125, and, IS 18551 experienced lower shoot fly deadhearts at 28 days after seedling emergence, produced more number of productive tillers. The insects fed on these genotypes also exhibited longer larval period (10.1–11.0 days compared to 9.3 days on Swarna), lower larval survival and adult emergence (54.7–67.8 and 46.7–52.2% compared to 73.3 and 60.6% on Swarna, respectively), and lower growth and adult emergence indices as compared to the susceptible check, Swarna. Physico-chemical traits such as leaf glossiness, trichome density, and plumule and leaf sheath pigmentation were found to be associated with resistance, and chlorophyll content, leaf surface wetness, seedling vigor, and waxy bloom with susceptibility to shoot fly and explained 88.5% of the total variation in deadhearts. Step-wise regression indicated that 90.4% of the total variation in deadhearts was due to leaf glossiness and trichome density. The direct and indirect effects, correlation coefficients, multiple and step-wise regression analysis suggested that deadhearts, plants with eggs, leaf glossiness, trichomes on the abaxial surface of the leaf, and leaf sheath pigmentation can be used as marker traits to select for resistance to shoot fly, A. soccata in sorghum.  相似文献   

20.
Summary A total of 125 novel accessions of Capsicum annuum L. and Capsicum baccatum L. were screened for sources of resistance to Verticillium wilt (Verticillium dahliae Kleb). A soil infestation method with 2000 microsclerotia of V. dahliae per gram of planting medium, and a soil temperature of 25±3°C, identified 27 Capsicum accessions with resistance to Verticillium wilt. P.I. 215699 (a mixture of Capsicum baccatum var. microcarpum and Capsicum annuum), P.I. 535616 (Capsicum annuum), and P.I. 555614 (Capsicum annuum), had the lowest disease severity and the highest percentage of resistant plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号