首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   

2.
Interspecific hybrids were produced from reciprocal crosses between Brassica napus (2n = 38, AACC) and B. oleracea var. alboglabra (2n = 18, CC) to introgress the zero-erucic acid alleles from B. napus into B. oleracea. The ovule culture embryo rescue technique was applied for production of F1 plants. The effects of silique age, as measured by days after pollination (DAP), and growth condition (temperature) on the efficiency of this technique was investigated. The greatest numbers of hybrids per pollination were produced under 20°/15°C (day/night) at 16 DAP for B. oleracea (♀) × B. napus crosses, while under 15°/10°C at 14 DAP for B. napus (♀) × B. oleracea crosses. Application of the ovule culture technique also increased the efficiency of BC1 (F1 × B. oleracea) hybrid production by 10-fold over in vivo seed set. The segregation of erucic acid alleles in the self-pollinated backcross generation, i.e. in BC1S1 seeds, revealed that the gametes of the F1 and BC1 plants carrying a greater number of A-genome chromosomes were more viable. This resulted in a significantly greater number of intermediate and a smaller number of high-erucic acid BC1S1 seeds.  相似文献   

3.
Factorial pot experiments were conducted to compare the responses of GA‐sensitive and GA‐insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near‐isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40 °C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+eb(tm)) described declining grain set with increasing t, and t5 was that fitted to give a 5 % reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7 ± 0.47 °C (S.E.M., 26 d.f.). Drought at anthesis reduced t5 by <2 °C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5 = 33.9 °C) but booting was particularly heat susceptible without water (t5 = 26.5 °C). In one background (cv. Mercia), for NILs varying at the Rht‐D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht‐D1a, tall, 32.7 ± 0.72; Rht‐D1b, semi‐dwarf, 29.5 ± 0.85; Rht‐D1c, severe dwarf, 24.2 ± 0.72). This trend was not evident for the Rht‐B1 locus or for Rht‐D1b in an alternative background (Maris Widgeon). The GA‐sensitive severe dwarf Rht12 was more heat tolerant (t5 = 29.4 ± 0.72) than the similarly statured GA‐insensitive Rht‐D1c. The GA‐sensitive, semidwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht‐D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semidwarfing with GA‐insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison with effects of semidwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.  相似文献   

4.
To select superior seed parents for vegetable hybrid seed production, we conducted interspecific crosses between male sterile Brassica juncea (2n = 36, AABB) and eight inbred lines of Brassica rapa (2n = 20, AA). Alloplasmic lines of B. rapa with the cytoplasm of B. juncea were developed from B. juncea × B. rapa hybrids by repeated backcrossing using B. rapa as the recurrent male parent until the BC3 generation. Seed fertility, male sterility and chlorophyll content were investigated in these plants cultivated under four different temperature conditions (5, 10, 12 and 20°C). At 10°C, the alloplasmic lines of B. rapa with the cytoplasm of B. juncea were male sterile with partly chlorotic leaves. The alloplasmic B. rapa had lower chlorophyll a, chlorophyll b and carotenoid contents than those of the original B. rapa. The leaves recovered from chlorosis when the plants were cultivated at 20°C. An alloplasmic line of B. rapa (A6) is available as a seed parent for vegetable hybrid seed production and contributes seed fertility, slight chlorosis and stable male sterility.  相似文献   

5.
Quinoa (Chenopodium quinoa Willd.), traditionally called the mother of grains, has the potential to grow under high temperatures and drought, tolerating levels regarded as stresses in other crop species. A pot experiment was conducted in a climate chamber to investigate the potential of quinoa tolerance to increasing drought and temperature. Quinoa plants were subjected to three irrigation and two temperature regimes. At low temperature, the day/night climate chamber temperature was maintained at 18/8 °C and 25/20 °C for high temperature throughout the treatment period. The irrigation treatments were full irrigation (FI), deficit irrigation (DI) and alternate root‐zone drying (ARD). FI plants were irrigated daily to the level of the pot's water‐holding capacity. In DI and ARD, 70 % water of FI was applied either to the whole pot or to one side of the pot alternating, respectively. The results indicated that plant height and shoot dry weight significantly decreased by ARD and DI compared to FI treatment both at low and at high temperatures. However, plants in ARD treatment showed significantly higher plant height and shoot dry weight compared to DI especially at higher temperature, which is linked to increased xylem ion content. Higher quinoa plant growth in ARD was associated with increase in water‐use efficiency (WUEi) due to higher abscisic acid concentration and higher nutrient contents compared to DI. From results, it can be concluded that quinoa plant growth is favoured by high temperature (25/20 °C) and ARD is an effective irrigation strategy to increase WUE in drought prone areas.  相似文献   

6.
Cañahua (Chenopodium pallidicaule) is grown in the Altiplano of Bolivia and Peru, between 3810 and 4200 m a.s.l. Rural indigenous households have cultivated the cañahua as a subsistence crop for millennia. The seeds have a high content and quality of protein. We studied the relation between the following: (i) temperature and seed germination and (ii) the effect of temperature and sowing depth on seedling emergence of five cultivars and one landrace. Three experiments were conducted as follows: (i) seeds of a cultivar were germinated in Petri dishes at six temperatures (3, 5, 10, 14, 20 and 24 °C), (ii) sown at five depths (0, 5, 10, 25 and 50 mm) in a mixed peat soil substrate at three temperatures and (iii) one landrace (Lasta) and 5 cultivars (Lasta and Saihua growth habit) were sown in 6 depth (0, 5, 10, 25, 35 and 50 mm) in a sandy loam at two temperatures (5 and 15 °C). Temperature had significantly effect on the germination percentages of the plants (P < 0.001). Seeds germinated at the lowest temperature (3 °C). The estimated base temperature was close to 0 °C. A polynomial function described well the relation between time to 50% germination (t50) and temperature in the interval from 3 to 24 °C resulting in a linear relationship between germination rate and temperature. Shallow sowing depth (5–25 mm) resulted in 80% germination at 15 °C. There were significant differences of emergence in relationship to burial depth (P < 0.001). Only few seedlings emerged when seeds were sown at 50 mm depth. We did not find significant differences in emergence of seedlings between Lasta and Saihua at 15 °C. Nevertheless, at 5 °C, seedlings of cañahua belonging to the Lasta growth habit form did have higher germination rate as were shown for the Kullaca cultivar and the Umacutama landrace. This may be attributed to larger seed size of these cultivars.  相似文献   

7.
In Brassica oleracea, production of F1 hybrid seeds mainly makes use of the improved Ogura cytoplasmic male sterile (CMS) line. However, reliance on one particular line is a risk, and it would be advantageous to develop other CMS lines. In this study, we transferred Diplotaxis erucoides cytoplasm to B. oleracea cultivars using an alloplasmic B. rapaCMS line as a bridge plant to avoid incompatibility between donor and recipient plants. The new B. oleraceaCMS lines, which were derived by four generations of backcrossing, had small rudimentary anthers with no pollen grain and showed complete male sterility. There was no functional defect in other floral organs, and the ability to receive normal pollen did not appear to be impaired. Moreover, the B. oleraceaCMS lines carrying D. erucoides cytoplasm had larger leaf areas and a normal plastochron. As a consequence, the B. oleraceaCMS lines carrying D. erucoides cytoplasm have the potential to be valuable alternatives for use in commercial B. oleracea hybrid seed production.  相似文献   

8.
Antifreeze proteins (AFPs) are proteins that inhibit ice nucleation by non‐colligative combined with ice, to inhibit its growth and to modify ice crystal morphology. In this study, 'Longyou 6' (Brassica rapa) with the cold resistance was used as a model. A 38 kDa band of protein extracted from leaves of plants exposed to low temperature was enhanced on the electropherogram. The 38 kDa protein can significantly inhibit growth of ice crystals and modify its morphology, thus suggesting this protein has an AFP in winter turnip rape. The protein was identified as beta‐1,3‐glucanase by mass spectrometry, named BrAFP1. Its corresponding gene contains 1,032 bp bases, coding 343 amino acids with a molecular weight of 38,102 kDa. The BrAFP1 is a predicted hydrophobic protein with a signal peptide. Under cold stress, the plants showed morphological characteristics of cold resistance, and BrAFP expression was significantly up‐regulated at ?4°C from 0.5 to 4 days compared with the control (at room temperature), suggesting that the BrAFP gene played an important role in cold acclimation in B. rapa.  相似文献   

9.
Increasing temperatures are adversely affecting various food crops, including legumes, and this issue requires attention. The growth of two cool-season food legumes, chickpea and lentil, is inhibited by high temperatures but their relative sensitivity to heat stress and the underlying reasons have not been investigated. Moreover, the high-temperature thresholds for these two legumes have not been well-characterised. In the present study, three chickpea (ICCVO7110, ICC5912 and ICCV92944) and two lentil (LL699 and LL931) genotypes, having nearly similar phenology with respect to flowering, were grown at 30/20°C (day/night; control) until the onset of flowering and subsequently exposed to varying high temperatures (35/25, 38/28, 40/30 and 42/32°C; day/night) in a controlled environment (growth chamber; 12 hr/12 hr; light intensity 750 µmol m−2 s−1; RH-70%) at 108 days after sowing for both the species. Phenology (podding, maturity) was accelerated in both the species; the days to podding declined more in lentil at 35/25 (2.8 days) and 38/28°C (11.3 days) than in chickpea (1.7 and 7.1 days, respectively). Heat stress decreased flowering–podding and podding–maturity intervals considerably in both the species. At higher temperatures, no podding was observed in lentil, while chickpea showed reduction of 14.9 and 16.1 days at 40/30 and 42/32°C, respectively. Maturity was accelerated on 15.3 and 12.5 days at 38/28°C, 33.6 and 34 days at 40/30°C and 45.6 and 47 days at 42/32°C, in chickpea and lentil, respectively. Consequently, biomass decreased considerably at 38/28°C in both the species to limit the yield-related traits. Lentil was significantly more sensitive to heat stress, with the damage—assessed as reduction in biomass, reproductive function-related traits (pollen viability, germination, pollen tube growth and stigma receptivity), leaf traits such as membrane injury, leaf water status, photochemical efficiency, chlorophyll concentration, carbon fixation and assimilation, and oxidative stress, appearing even at 35/25°C, compared with 38/28°C, in chickpea. The expression of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and non-enzymatic antioxidants declined remarkably with heat stress, more so in lentil than in chickpea. Carbon fixation (assessed as Rubisco activity) and assimilation (assessed as sucrose concentration, sucrose synthase activity) were also reduced more in lentil than in chickpea, at all the stressful temperatures, resulting in more inhibition of plant biomass (shoot + roots), damage to reproductive function and severe reduction in pods and seeds. At 38/28°C, lentil showed 43% reduction in biomass, while it declined by 17.2% in chickpea at the same time, over the control temperature (30/20°C). At this temperature, lentil showed 53% and 46% reduction in pods and seed yield, compared to 13.4% and 22% decrease in chickpea at the same temperature. At 40/30°C, lentil did not produce any pods, while chickpea was able to produce few pods at this temperature. This study identified that lentil is considerably more sensitive to heat stress than chickpea, as a result of more damage to leaves (photosynthetic ability; oxidative injury) and reproductive components (pollen function, etc.) at 35/25°C and above, at controlled conditions.  相似文献   

10.
Combined effects of temperature and light quality on plants have received little attention. We investigated the single and interactive effects of temperature and light quality on growth and physiological characteristics of four canola (Brassica napus) cultivars – Clearfield 46A76 (cv1), Clearfield 45H72 (cv2), Roundup Ready 45H24 (cv3) and Roundup Ready 45H21 (cv4). Plants were grown under lower (24°/20 °C) and higher (30°/26 °C) temperature regimes at low red/far‐red (R/FR), normal R/FR and high R/FR light ratios in environment‐controlled growth chambers (16 h light/8 h dark). Higher temperature reduced stem height and diameter; leaf number and area; dry matter of all plant parts; and specific leaf weight, but increased leaf area ratio; and chlorophyll (Chl) fluorescence (Y). Low R/FR increased stem height; Y; and ethylene, but decreased stem diameter; Fv/Fm; Chl a; Chl b; and carotenoids. Among cultivars, plants from cv4 were tallest with thickest stems and greatest dry matter. None of the main factors affected gas exchange. Higher temperature at high R/FR caused cv3 to be shortest, whereas lower temperature at low R/FR caused cv4 to be tallest. We conclude that heat and other stress factors will adversely affect sensitive crops, but tolerant genotypes should perform well under future climate.  相似文献   

11.
Cultivation of the same varieties of mungbean and blackgram across different seasons and locations is constrained by their photo‐ and thermo‐sensitive behaviour. Developing insensitive genotypes, which can fit well across all seasons, requires robust donors which would provide genes imparting this trait. This study was undertaken to identify such donors in the Vigna species. Forty‐eight accessions belonging to 13 Vigna species and eight released cultivars were evaluated under natural field conditions. Among these, two accessions, viz. V. umbellata (IC251442) and V. glabrescens (IC251372) were found photo‐ and thermo‐insensitive as these were able to flower and set pods at temperatures as high as 43.9°C and as low as 2.7°C. Pollen viability studies indicated viable pollen (>75% at 2.7°C and >85% at 41.9°C) and normal pollen tube growth at both the extremes of temperature. The identified V. glabrescens accession has long, constricted pods and dark green, mottled seeds while V. umbellata has smooth, curved pods and shining, oval, large seeds. Both these accessions can be utilized in developing photo–thermo insensitive genotypes in cultivated Vigna species.  相似文献   

12.
A rapid warming of 2.8–5.3 °C by the end of this century is expected in South Korea. Considering the current temperature during the spring potato growing season (emergence to harvest; ca. 18 °C), which is near the upper limit of the optimum temperature for potato yield, the anticipated warming will adversely affect potato production in South Korea. The present study assessed the impact of high temperature on the marketable tuber yield and related traits of cv. Superior (which makes up 71% of the annual potato production in South Korea) in four temperature-controlled plastic houses and an outdoor field (37.27°N, 126.99°E) during 2015–2016. The target temperatures of the four plastic houses were set to ambient (AT), AT+1.5 °C, AT+3.0 °C, and AT+5.0 °C. The marketable tuber yield was significantly reduced by 11% per 1 °C increase over a temperature range of 19.1–27.7 °C. The negative impact of high temperature was associated not only with the yield loss of total tubers, which was mostly explained by the slower tuber bulking rate, but also the reduced marketable tuber ratio under temperatures above 23 °C, which was mainly attributed to the reduced number of marketable tubers (r = 0.79***). Under moderate temperatures below 23 °C, the source limited the number of marketable tubers without reducing the marketable tuber ratio. In contrast, the number of marketable tubers was limited by the marketable tuber set at the early growth stage rather than the source under the higher temperatures, which resulted in the reduction in the marketable tuber ratio below 56%. These results suggest that the objectives of breeding and agronomic management for adapting to the rapid warming in South Korea should include maintaining the ability to form tubers at the early growth stage under high temperatures, as well as the photosynthetic capacity and sink strength of the tubers.  相似文献   

13.
Thermotolerance acclimation of photosystem II to heat and drought is well documented, but studies demonstrating developmental impacts on heat tolerance in field‐grown plants are limited. Consequently, climatic variables, estimated canopy temperature, predawn leaf water potential (ΨPD), and the temperature responses of maximum quantum yield of photosystem II (Fv/Fm), variable fluorescence (Fv/F0), quantum yield of electron transport (φEο) and efficiency of PSI electron acceptor reduction (REο/ABS) were characterized for Gossypium hirsutum at three sample times during the growing season (21 June, 2 July and 18 July 2013) under well‐watered conditions. The temperature decreasing a given photosynthetic parameter 15% from the optimum is referred to as T15 and served as a standardized measure of heat tolerance. Ambient and estimated canopy temperatures were well within the optimal range for cotton throughout the sample period, and leaves were verified well watered using ΨPD measurements. However, T15 varied with sample date (highest on July 2 for all parameters), being 2 °C (Fv/F0) to 5.5 °C (φEο) higher on July 2 relative to June 21, despite optimal temperature conditions and predawn leaf water potential on all sample dates. These findings suggest that even under optimum temperature conditions and water availability, heat tolerance could be influenced by plant developmental stage.  相似文献   

14.
15.
Brassica napus is an important oil species with short history and narrow genetic background. Interspecific hybrids from crosses between B. oleracea and different B. rapa were obtained. We found the hybrids with white petal resembling B. oleracea, the flavonoid and phenolic content decreased in hybrids, agreeing with the expressional changes of flavonoid biosynthesis genes. Seed coat of hybrids resembled diploid parents, or partly resembled to each parent with a clear outline. The palisade layer in hybrids was thicker than parents, with similar pigment accumulation as B. oleracea but more than B. rapa. Differentially sized protein bodies (PBs) were found in hybrids. The radical and inner cotyledon of all hybrids were identified with larger but less PBs than parents. The average size of PBs in outer cotyledon of resynthesized B. napus was also larger than parents, but the number of PBs was not significantly reduced. The phenotypic and seed structural variations after polyploidization of B. napus would be interesting for genetic broadening and breeding of rapeseed.  相似文献   

16.
Brassica napus is a most important oilseed grown worldwide with a limited genetic background, due to the short history of speciation, domestication and cultivation. To create novel germplasm for rapeseed breeding, we made interspecific crosses followed with chromosome doubling between B. rapa and B. oleracea to generate novel B. napus with favourable agronomic traits. The resynthesized (S0) hybrids were confirmed by SSR and cytogenetic analysis, and the fertility was increased from 32.7% in S0 generation to ~97.31% in S1 generation. The plant shapes of the progeny were dramatically improved compared to the diploid parents and B. napus cv. ‘Yangyou 6’, especially for the branch initiation height, branch number and pod number. The single‐plant yield was significantly improved in S1 progeny for the variations in branching sites and number. Significant improvement in plant shape and yield was observed on S2 generation compared to the local elite commercial open‐pollinated cultivar, which would be further fixed by intensive selection and pyramiding breeding. Such variation is of great value for breeding rapeseed with improved plant architecture and harvest index.  相似文献   

17.
Experiments were conducted over 2 years to quantify the response of faba bean (Vicia faba L.) to heat stress. Potted winter faba bean plants (cv. Wizard) were exposed to temperature treatments (18/10; 22/14; 26/18; 30/22; 34/26 °C day/night) for 5 days during floral development and anthesis. Developmental stages of all flowers were scored prior to stress, plants were grown in exclusion from insect pollinators to prevent pollen movement between flowers, and yield was harvested at an individual pod scale, enabling effects of heat stress to be investigated at a high resolution. Susceptibility to stress differed between floral stages; flowers were most affected during initial green‐bud stages. Yield and pollen germination of flowers present before stress showed threshold relationships to stress, with lethal temperatures (t50) ?28 °C and ~32 °C, while whole plant yield showed a linear negative relationship to stress with high plasticity in yield allocation, such that yield lost at lower nodes was partially compensated at higher nodal positions. Faba bean has many beneficial attributes for sustainable modern cropping systems but these results suggest that yield will be limited by projected climate change, necessitating the development of heat tolerant cultivars, or improved resilience by other mechanisms such as earlier flowering times.  相似文献   

18.
Heat stress is one of the major limitations to crop productivity worldwide. Global warming effects are expected to increase the number of hot days and increase the probability and intensity of heat stress events. Short periods (3–5 days) of heat stress with maximum temperatures exceeding 35°C often occur during late spring and early summer in some pyrethrum growing regions of Australia. These heat stress events usually coincide with pyrethrum flowering period. Pyrethrum is a perennial herbaceous plant which is commercially grown for extraction of pyrethrins which accumulate in the achenes of the flowers and are used as a natural insecticide. This experiment was conducted to understand the effects of timing of short periods of heat stress on flower development and pyrethrum yield. Plants were subjected to short periods of high temperature treatments (12 hr at 35–40°C) for three consecutive days at three flower maturity stages (early, mid, late). Control plants were grown at ambient temperature (10–25°C) throughout the flowering period. Exposure of pyrethrum plants to short periods of high temperature during the flowering period caused a significant reduction in the flower and pyrethrin yield. This was associated with the reduction in flower size and accelerated flower senescence. Exposure of pyrethrum plants to heat stress significantly increased the rate of flower development resulting in a shorter flowering period. Overall, plants grown under control treatment showed slower rate of flower development and longer duration flowering period. This resulted in longer duration of pyrethrin accumulation and higher yield of pyrethrins per flower. Timing and duration of heat stress significantly influenced pyrethrin yield per flower. Heat stress caused more severe yield reductions at early flowering than later in the flowering period. Research focusing on agronomic strategies, phenology and breeding for tolerance to heat stress is therefore important to cope with future climate changes and to obtain maximum pyrethrin yield.  相似文献   

19.
Natural alloplasmic cytoplasmic male sterile (CMS) clones of industrial chicory were obtained after crossing wild chicory with selected breeding lines. We investigated the CMS stability of 10 clones in various environmental growing conditions. CMS was stable under cool growing conditions in most of them. Fertility restoration, based on pollen production scores, was observed in all clones after a period of hot temperatures. The early flower bud stage was sensitive, resulting in fertile flowers 12–17 days after exposure to high temperatures. Experiments under controlled growing conditions at 15°C demonstrated that a heat shock of 2 days at 25 or 30°C was sufficient to restore fertility. Sterile flowers were formed when plants were again grown at lower temperatures. Significant differences between individual clones were observed, indicating the potential of genetic selection to obtain stable CMS parent lines.  相似文献   

20.
Gametophytic selection has potential to increase the efficiency of breeding for temperature tolerance. Here, we describe orchid seedlings after application of low and high temperatures during gametophytic development. In addition to phenotypic traits, amplified fragment length polymorphism (AFLP) markers were used to determine the genetic variability in seedlings. Two hybrid Phalaenopsis were cross-pollinated and exposed to 30°C day/25°C night for 3 days for a warm pollination or 15°C day/10°C night for 7 days as a cold pollination treatment. The plants were returned to the greenhouse after pollination and green capsules were collected after 150 days. Protocorms obtained from these treatments were evaluated 72 days after initial plating for germination and size on a thermogradient table ranging from 10 to 30°C. Seedlings were then evaluated 1 year after initial plating. The mean number of roots per seedling (4.2) was greater for plantlets that derived from the cold pollination treatment compared to those from warm pollination (3.6). Weight of the seedlings, number of roots and the average root length were significantly affected by the interaction between pollination treatment and germination temperature. The weight, number of leaves, and average root length were significantly affected by the interaction between pollination treatment and incubator/growth chamber. The results indicated that seedlings derived from warm pollination were more vigorous under warm growing conditions and those derived from cold pollination were more vigorous under cold growing conditions. Genetic variation among 16 F1 seedlings randomly selected from various temperature treatments was analyzed. A dendrogram based on 651 loci resulted in three major groups and one subgroup. The groups and subgroup revealed common selection pressure during the gametophytic stage. The AFLP data support genetic differentiation of Phalaenopsis hybrids pollinated under different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号