首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinoa is gaining importance on global scale due to its excellent nutritious profile and environmental stress‐enduring potential. Its production decreases under high salt stress but can be improved with paclobutrazol application. This study showed involvement of some potential protective mechanisms in root and leaf tissues of quinoa plants treated with paclobutrazol (PBZ) against high salinity. The treatment levels were based on preliminary experiments, and it was found that salt stress (400 mm NaCl) markedly reduced growth and photosynthetic pigments while PBZ (20 mg/L) application significantly improved these attributes. Stomata density and aperture declined on adaxial and abaxial surfaces of leaves due to salinity. Paclobutrazol application significantly improved the stomatal density on both surfaces of leaves. Concentration of proline and soluble sugars increased in root and leaf tissues under salinity, which was more obvious in PBZ‐treated plants. Salinity stress induced the oxidative damage by increasing lipid peroxidation (MDA) level in roots and more specifically in leaf tissues. However, PBZ treatments ameliorated the drastic effects of salinity and markedly reduced oxidative damage in salt‐stressed quinoa plants. Enhanced activity of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was triggered by PBZ application, more pronounced in leaf than root tissues. Based on these findings, we conclude that PBZ application improves the salt tolerance in quinoa by activation of the above‐mentioned physiological and biochemical mechanisms specifically in leaves.  相似文献   

2.
Antioxidants play an important role in adapting plants to abiotic stress by detoxifying reactive oxygen species (ROS). Involvement of antioxidant enzymes in abiotic stress tolerance of highly stress‐tolerant quinoa was studied in a climatic chamber at 6 mOsm (milliosmolar) ionic (300 mm NaCl) and non‐ionic (600 mm mannitol) salts combined with increasing levels of potassium K1 and K2 (6, 12 mm ), respectively. Fifteen days of salt treatment (both ionic and non‐ionic) decreased plant growth (shoot and root fresh weight), stomatal conductance and chlorophyll content index. Furthermore, both forms of salt stress increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase up to 2.33‐, 3.98‐, 4.78‐ and 5.55‐folds, respectively, compared to no salt treatment, whereas membrane stability index decreased corresponding to increase in lipid peroxidation (malondialdehyde), with salt treatments compared to non‐stressed plants. However, no significant effect of potassium and salt treatments has been noticed on the maximal photochemical efficiency of PSII. The results suggested that enhanced antioxidant enzymes activity under salt stress could be one of the factors responsible for abiotic stress tolerance in quinoa.  相似文献   

3.
研究了外源一氧化氮(NO)供体SNP对150 mmol/L NaCl胁迫下小麦幼苗叶片谷胱甘肽抗氧化酶系统的影响。结果表明,与单独盐胁迫相比,0.1 mmol/L的SNP处理明显提高了小麦幼苗叶片还原型谷胱甘肽(GSH)的含量,略微降低了氧化型谷胱甘肽(GSSG)的含量,明显提高了GSH/GSSG,这可能与其诱导谷胱甘肽还原酶(GR)的活性有部分关  相似文献   

4.
Talinum paniculatum is an important leafy vegetable and medicinal plant, used in many parts of South America, Africa and Asia. Its adaptation to abiotic stress has received little attention and therefore worthy of interest, especially as environmental conditions are rendering arable lands increasingly unfavourable for agriculture. Therefore, this study was undertaken to examine the influence of salt stress on the vegetative growth of the plant by subjecting seedlings to 0, 25, 50, 100, 200 and 300 mm NaCl stress for 10 days. The dry weight, ion concentrations, relative water content, oxidative damage, proline, osmotic potential and some antioxidants were determined. The plants were found to retain Na+ mainly in the root, with less affected leaf K+ concentration, and consequently very low shoot Na+/K+ ratios (<0.2) under all the stress treatments. The proline content significantly increased under the 100–300 mm treatments (18‐ to 244‐fold), with a corresponding significant reduction in osmotic potential and hence high osmotic adjustment. The antioxidant enzyme activities and non‐enzyme antioxidants showed significant increase only under the highest salinity. Taken together, these results suggest that shoot Na+ exclusion is characteristic of this plant and is mainly responsible for its adaptation to low salinity.  相似文献   

5.
The effects of salt stress on protein (PROT) content, lipid peroxidation, proline accumulation, chlorophyll (Chl) content, and superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) activity were studied in the leaves and roots of canola (Brassica napus L. cv. Okapi). Four weeks after sowing (at the V4 stage), plants were exposed to salt stress by the application of NaCl solution (200 mm ) for 6 days daily, After 6 days followed by foliar application of ascorbic acid (AsA) solution (25 mm ). The activity of all the antioxidant enzymes assayed (except SOD in the roots) was increased significantly in the plants under conditions of salt stress. The application of AsA decreased enzyme activity in the leaves, but it had no effect on enzyme activity in the roots. The total PROT content of the leaves and roots decreased under the conditions of high salinity. AsA treatment of plants under salt stress increased the total PROT content significantly in both leaves and roots. Measurement of the malondialdehyde content of leaves and roots showed that lipid peroxidation was increased by interaction with damaging reactive oxygen species during salt stress, and that application of AsA reduced lipid peroxidation only in the leaves. The Chl content was also affected by salt stress. There was significant difference between the controls and salt‐stress treatments in Chl content. The results of the present study indicate that usage of AsA reduces the harmful effects of salinity and increases resistance to salinity in canola plant.  相似文献   

6.
Salinity tolerance of 47 wild barley genotypes and six barley cultivars was evaluated under control and salinity stress (300 mM NaCl) conditions. Shoot and root dry weight (DW), plant height, membrane stability index (MSI), relative water content, survival rate, leaf malondialdehyde (MDA) and proline contents, root and leaf Na, K, Ca and K/Na ratio, and chlorophyll a fluorescence were measured. Salinity stress caused significant increase in the MDA, proline content, Na and Ca concentrations of the roots and leaves, but resulted in a decrease in the other traits. H. spontaneum genotypes were considerably less affected by the salinity than the genotypes of H. vulgare. Plant survivability was negatively correlated with the Na concentration (r =−.66) but positively correlated with the leaf K/Na ratio (r = .67) and MSI (r = .68). Tolerance mechanisms such as ion exclusion (Na) were likely to be present in the wild barley causing K/Na homeostasis as well as the much lower root and shoot Na, resulting in the higher survival rate.  相似文献   

7.
Salinity stress causes ion toxicity and osmotic imbalances, leading to oxidative stress in plants. Arbuscular mycorrhizae (AM) are considered bio‐ameliorators of saline soils and could develop salinity tolerance in crop plants. Pigeonpea exhibits strong mycorrhizal development and has a high mycorrhizal dependency. The role of AM in enhancing salt tolerance of pigeonpea in terms of shoot and root dry weights, phosphorus and nitrogen contents, K+ : Na+, Ca2+ : Na+ ratios, lipid peroxidation, compatible solutes (proline and glycine betaine) and antioxidant enzyme activities was examined. Plants were grown and maintained at three levels of salt (4, 6 and 8 dSm?1). Stress impeded the growth of plants, led to weight gain reductions in shoots as well as roots and hindered phosphorus and nitrogen uptake. However, salt‐stressed mycorrhizal plants produced greater root and shoot biomass, had higher phosphorus and nitrogen content than the corresponding uninoculated stressed plants. Salt stress resulted in higher lipid peroxidation and membrane stability was reduced in non‐AM plants. The presence of fungal endophyte significantly reduced lipid peroxidation and membrane damage caused by salt stress. AM plants maintained higher K+ : Na+ and Ca2+ : Na+ ratios than non‐AM plants under stressed and unstressed conditions. Salinity induced the accumulation of both proline and glycine betaine in AM and non‐AM plants. The quantum of increase in synthesis and accumulation of osmolytes was higher in mycorrhizal plants. Antioxidant enzyme activities increased significantly with salinity in both mycorrhizal and non‐mycorrhizal plants. In conclusion, pigeonpea plants responded to an increased ion influx in their cells by increasing the osmolyte synthesis and accumulation under salt stress, which further increased with AM inoculation and helped in maintaining the osmotic balance. Increase in the antioxidant enzyme activities in AM plants under salt stress could be involved in the beneficial effects of mycorrhizal colonization.  相似文献   

8.
The effects of salt stress (100 mm NaCl for 6 days) on growing tissues (shoot apex, growing leaf segments, root tips) of young maize plants (Zea mays L. cv. Pioneer 3906) were investigated in comparison to an unsalinized control, focusing on assimilate supply from source leaves and the activity of sucrolytic enzymes in the sink tissues. The objectives were to test whether (i) phloem unloading in growing tissues is mainly symplastic, (ii) salinity reduces sink activity, determined either as sucrose synthase activity (indicator for the symplastic pathway) or as acid invertase activity (indicator for the apoplastic pathway), and (iii) PEP‐carboxylase activity is increased under salinity to compensate for reduced sink activity. For growing tissues of young maize shoots, it can be assumed that phloem transport of sucrose is mainly driven by symplastic unloading into the sink cells. In maize root tips, both, apoplastic and symplastic pathways, contributed to carbohydrate supply to the sink cells. The activity of acid invertase in growing shoot tissues was very low, and the alkaline invertase contributed less than 10 % to the cytoplasmic sucrolytic activity. Salt stress of the first phase (mainly osmotic stress) caused a significant inhibition of acid invertase activity in the growing leaf segments and in the root tips, which was also true for alkaline invertase activity in the root tips as well as for sucrose synthase activity in root tips and shoot apex. The decrease of sucrose synthase activity in shoot apex might be particularly detrimental for the plant growth, as this tissue with a high cell division rate relied entirely on cytoplasmic enzyme activities. Under salt stress, PEP carboxylase activity was significantly increased in growing leaves and the shoot apex of maize, whereas no significant effect was observed in the root apex. In conclusion, PEP carboxylase can have an anaplerotic function supporting the demand for metabolites in growing shoot tissues of young maize plants under salt stress. In root tips, an additional supply of organic acids to the tricarboxylic acid cycle is probably not needed, as sucrolytic sink activity, which was high even under saline conditions, can meet the demand of the sink cells.  相似文献   

9.
高盐是限制作物生长发育和产量最严重的非生物胁迫之一,提高作物的耐盐性已成为一个日益紧迫的研究课题。将含有AtNHX1基因的表达载体pFYC-AtNHX1和含有bar基因的质粒pCAMBIA3300等量混合,采用花粉管通道法共转化番茄。经PPT抗性筛选后,PCR扩增获得12株导入了AtNHX1基因的番茄植株,Southern杂交分析表明该基因已经整合到番茄基因组中,通过RT-PCR检测到了AtNHX1基因的表达。在150 mmol/L NaCl处理下,转基因植株T1代对NaCl耐性显著增强。对转AtNHX1基因番茄T2代进行80 mmol/L碱性盐NaHCO(3pH 8.25)胁迫,以此评价转AtNHX1基因番茄对碳酸盐的耐受性。叶片相对电导率检测结果表明,AtNHX1基因的导入确实提高了番茄对碱性盐NaHCO3的耐受性。培育并栽种转AtNHX1基因的耐盐碱番茄将会降低盐渍化环境对番茄生长发育的影响。  相似文献   

10.
空间诱变大麦的耐盐性筛选及大田鉴定   总被引:3,自引:0,他引:3  
何婷 《中国农学通报》2009,25(23):105-107
随着我国盐碱化现象的日趋严重,如何提高植物的抗盐性,培育抗盐耐盐新品种,增加在盐胁迫下农作物的产量一直是人们关注的课题。本文通过选取大麦品种花30中优良的突变单株,进行种子发芽期耐盐性筛选,再将其播种进行田间农艺性状鉴定实验。结果表明,4个供试材料的耐盐性均较好,4个供试材料的发芽率、胚芽鞘长度、主根长度尽管受到显著的抑制,但抑制程度均明显小于花30。在4个供试材料中Ha08-11成穗率高,属相好,应用前景十分看好,可以成为比较适合上海地区发展的大麦新株系。  相似文献   

11.
Inter‐accession variation for salt tolerance of Panicum miliaceum (proso millet) was appraised using leaf proline content and activities of antioxidant enzymes as selection criteria. Eighteen accessions of proso millet were grown under control conditions and after 14 days subjected to saline (120 mm NaCl) stress for 4 weeks. Salt stress substantially decreased relative water content (RWC), while increased leaf free proline and malondialdehyde (MDA) and activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of all accessions of proso millet. The difference among the accessions of P. miliaceum was significant in yield as well as in the activities of antioxidant enzymes analyses. On the basis of seed yield (expressed as per cent of control), of 18 accessions, three were categorised as salt‐tolerant (008211, 008214 and 008226), seven as moderately tolerant (008210, 008213, 008216, 008220, 008222, 008223 and 008242) and eight as salt‐sensitive (008208, 008215, 008217, 008218, 008221, 008225, 008230 and 008236). Of all P. miliaceum accessions, 008211, 008226, 008215 and 008218 were relatively higher in proline, 008214 and 008221 in MDA contents, 00812, 008225, 008236, 008222 and 008242 in SOD activity and 008218, 008220, 008211 and 008226 in POD and CAT enzyme activities. Thus, because of differential response of high or low seed yielded accessions in accumulation of proline and antioxidant enzyme activities, these variables were not found effective criteria for discriminating the P. miliaceum accessions for salt tolerance.  相似文献   

12.
Wild barley (Hordeum brevisubulatum) is a grass that inhabits alkalized meadows in northern China. An asexual Epichloë bromicola endophyte was detected in seeds and leaf sheaths in all wild barley samples from Gansu Province, China. In this research, we determined the effects of the E. bromicola endophyte on growth, physiological properties and seed germination of wild barley under salt stress through a set of experiments. Our results demonstrate that endophyte-infected (E+) plants produced more tillers, higher biomass and yield, higher chlorophyll content and superoxide dismutase activity than endophyte-free (E−) plants under high salt stress. Seed germination parameters of E+ biotype were significantly higher than those of E− plants when NaCl concentration reached 200 and 300 mM. Our results demonstrate that E. bromicola endophytes increased tolerance to salt stress in wild barley by increasing seed germination and growth, and altering plant physiology.  相似文献   

13.
We previously reported an alfalfa half‐sib family, HS‐B, with improved salt tolerance, compared to parental plants, P‐B. In this study, we conducted additional experiments to address potential physiological mechanisms that may contribute to salt tolerance in HS‐B. Vegetatively propagated HS‐B and P‐B plants were treated with a nutrient solution (control) or a nutrient solution containing NaCl (EC = 12 dS/m). Shoots and roots were harvested at various time points after treatment for quantification of proline, soluble sugar, and H2O2 using spectrophotometers. Subcellular localization and quantification of Na in roots were conducted using a Na+‐specific dye under a confocal microscope. HS‐B produced 86 and 89% greater shoot and root dry biomass, respectively, compared to parental plants, P‐B, under salinity in the greenhouse. Under saline conditions the HS‐B shoots accumulated 115% and roots 55% more soluble sugars than P‐B counterparts. The non‐saline HS‐B shoots, however, showed 72% less soluble sugars than the non‐saline P‐B plants. Under saline conditions HS‐B accumulated 39% less proline in shoots, while roots accumulated 56% more proline, compared to their P‐B parents. HS‐B plants also showed a greater reduction of stomatal conductance under mild saline stress. HS‐B shoots and roots contained 3–4 times less reactive oxygen species (H2O2) after salt treatment compared to P‐B plants. Sodium localization and distribution analysis using Na+‐specific dye revealed HS‐B plants accumulated 88% and 48% less Na+ in stele and xylem vessels compared to P‐B. The study provides insights into the potential mechanisms that may contribute to salt tolerance in HS‐B: maintaining RWC by accumulating soluble sugars while reducing transpiration, maintaining healthy status by reducing oxidative stresses, and preventing salt toxicity by reducing accumulation of Na+ inside root cells and xylem.  相似文献   

14.
Soil salinity is a worldwide issue that affects agricultural production. The understanding of mechanisms by which plants tolerate salt stress is crucial for breeding varieties for salt tolerance. In this work, a large number of wheat (Triticum aestivum and Triticum turgidum) cultivars were screened using a broad range of physiological indices. A regression analysis was then used to evaluate the relative contribution of each of these traits towards the overall salinity tolerance. In general, most of the bread wheats showed better Na+ exclusion that was associated with higher relative yield. Leaf K+/Na+ ratio and leaf and xylem K+ contents were the major factors determining salinity stress tolerance in wheat. Other important traits included high xylem K+ content, high stomatal conductance and low osmolality. Bread wheat and durum wheat showed different tolerance mechanisms, with leaf K+/Na+ content in durum wheat making no significant contributions to salt tolerance, while the important traits were leaf and xylem K+ contents. These results indicate that Na+ sequestration ability is much stronger in durum compared with bread wheat, most likely as a compensation for its lesser efficiency to exclude Na+ from transport to the shoot. We also concluded that plant survival scores under high salt stress can be used in bread wheat as a preliminary selection for Na+ exclusion gene(s).  相似文献   

15.
Cowpea is widely cultivated in arid and semi‐arid regions of the world where salinity is a major environmental stress that limits crop productivity. The effects of moderate salinity on growth and photosynthesis were examined during the vegetative phase of two cowpea cultivars previously classified as salt‐tolerant (Pitiúba) and salt‐sensitive (TVu). Two salt treatments (0 and 75 mm NaCl) were applied to 10‐day‐old plants grown in nutrient solution for 24 days. Salt stress caused decreases (59 % in Pitiúba and 72 % in TVu) in biomass accumulation at the end of the experiment. Photosynthetic rates per unit leaf mass, but not per unit leaf area, were remarkably impaired, particularly in TVu. This response was unlikely to have resulted from stomatal or photochemical constraints. Differences in salt tolerance between cultivars were unrelated to (i) variant patterns of Cl? and K+ tissue concentration, (ii) contrasting leaf water relations, or (iii) changes in relative growth rate and net assimilation rate. The relative advantage of Pitiúba over TVu under salt stress was primarily associated with (i) restricted Na+ accumulation in leaves paralleling an absolute increase in Na+ concentration in roots at early stages of salt treatment and (ii) improved leaf area (resulting from a larger leaf area ratio coupled with a larger leaf mass fraction and larger specific leaf area) and photosynthetic rates per unit leaf mass. Overall, these responses would allow greater whole‐plant carbon gain, thus contributing to a better agronomic performance of salt‐tolerant cowpea cultivars in salinity‐prone regions.  相似文献   

16.
肖强  陈娟  吴飞华  郑海雷 《作物学报》2008,34(10):1849-1853
在100 mmol L-1 NaCl胁迫下, 研究了不同浓度一氧化氮供体硝普钠(sodium nitroprusside, SNP)处理对水稻叶片叶绿素、游离脯氨酸含量, 叶片及幼根中愈创木酚过氧化酶(guaiacol peroxidase, GPX)、超氧化物歧化酶(superoxide dis-mutase, SOD)、过氧化氢酶(catalase, CAT)活性以及超氧阴离子产生速率等生理指标的影响。结果表明, 适当低浓度SNP处理可以显著提高盐胁迫下水稻叶片中叶绿素和脯氨酸含量, 并明显缓解盐胁迫下叶片和幼根受到的氧化性损伤; 但在水稻幼苗不同器官, SNP调节的主要靶酶有所不同, 在叶片中促进SOD和CAT活性, 而在幼根中除SOD和CAT活性外, 还提高GPX活性。  相似文献   

17.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

18.
Developing more stress‐tolerant crops will require greater knowledge of the physiological basis of stress tolerance. Here, we explore how biomass declines in response to salinity relate to leaf traits across 20 genotypes of cultivated sunflower (Helianthus annuus). Plant growth, leaf physiological traits and leaf elemental composition were assessed after 21 days of salinity treatments (0, 50, 100, 150 or 200 mM NaCl) in a greenhouse study. There was a trade‐off in performance such that vigorous genotypes, those with higher biomass at 0 mM NaCl, had both a larger absolute decrease and proportional decrease in biomass due to increased salinity. More vigorous genotypes at control were less tolerant to salinity. Contrary to expectation, genotypes with a low increase in leaf Na and decrease in K:Na were not better at maintaining biomass with increasing salinity. Rather, genotypes with a greater reduction in leaf S and K content were better at maintaining biomass at increased salinity. While we found an overall trade‐off between sunflower vigour and salt tolerance, some genotypes were more tolerant than expected. Further analysis of the traits and mechanisms underlying this trade‐off may allow us to breed these into high‐vigour genotypes in order to increase their salt tolerance.  相似文献   

19.
为了筛选出适合盐碱地种植的马铃薯耐盐品种(系),本试验以来自不同地区的6 个马铃薯品种(系)为材料,在植物组织培养条件下,用不同浓度的NaCl模拟盐胁迫环境,通过比较盐胁迫对植株外观性状和生理特性的影响,对耐盐品(系)进行初步鉴定与筛选。结果表明:‘东农09-33069’在成活率、生根率、生根数、根长、叶片数、株高、茎粗等形态指标和叶绿素相对含量、根系活力、脯氨酸含量等生理指标上均表现优于其他5个参试品种(系),且其他5个品种(系)均在部分指标上表现出对盐胁迫的耐受性较差。因此,在6 个参试品种(系)中‘东农09-33069’的盐胁迫耐受性强、稳定性高,可初步鉴定为耐盐品种(系)。  相似文献   

20.
棉花耐盐机理与盐害控制研究进展   总被引:18,自引:10,他引:18  
综述了棉花耐盐机理、耐盐性鉴定方法和盐害控制技术的研究进展。棉花耐盐机理与一般植物存在着较大的差异,对盐分胁迫下的植株体内离子分布、细胞膜结构和稳定性以及渗透压调节作用等方面进行了探讨,总结了运用传统育种和现代生物技术改良和提高棉花耐盐性方面取得的进展。此外,提出了从棉花品种、栽培技术、种子引发技术和土壤改良等方面盐碱地植棉的综合技术体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号