首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
带悬挂系统的拖拉机在工作时,要充分考虑拖拉机牵引力能否满足液压悬挂加载装置、牵引装置等作用下产生的耕作阻力要求.本文建立了驱动牵引力数学模型,参考耕作阻力模型,主要考察了驱动轮滑转率、耕作速度、耕作深度等主要因素的影响,利用约束优化问题粒子群优化算法,得出了满足特定使用条件的驱动牵引力,同时确定了耕深、速度、滑转率等参数的对应值,为带悬挂系统拖拉机的动力匹配提供了重要的方法依据.  相似文献   

2.
论述了国内外耕作机械的技术发展趋势,提出了主要耕作机具对拖拉机的一些共同性要求,诸如对牵引力、功率、轮距、工作速度、离地间隙、提升力、动力输出、液压输出,悬挂机构控制方式、轮胎宽度和配重等的要求。  相似文献   

3.
针对传统拖拉机动力系统采用燃油作为主要的能量供应且动力不足的问题,基于动力锂电池对拖拉机的动力系统进行了设计和优化。动力系统以锂电池作为驱动,主要包括电池管理系统、控制器及变速系统等。通过对拖拉机动力系统的内部锂电池进行建模和分析,并计算锂电池的荷电状态,以预测拖拉机的动力特性。对拖拉机的动力系统进行试验,结果表明:该动力系统可以满足拖拉机的使用要求。  相似文献   

4.
液压提升系统和悬挂杆件的使用东方红-MG系列轮式拖拉机液压提升系统分为基本型和选装提升器两种类型.1.基本型液压提升装置和悬挂杆件的使用与调整(1)液压系统工作原理如图1所示,该液压系统为分置式.液压悬挂系统是以液压作动力升降悬挂机具.具有高度控制和浮动控制的功能,能控制农具的耕作深度,利用液压强制农具人土以及保持农具与拖拉机固定在某一相对位置上,并且有液压输出功能.  相似文献   

5.
在拖拉机上,用液压提升并操纵农具的整套装置叫做拖拉机液压悬挂系统,主要有操纵农机具的升降、控制农机具的耕作深度、控制农机具的下降或入土速度、液压输出等功用。拖拉机的使用过程中,必须重视液压系统的正确使用,避免错误操作引起拖拉机液压系统及其零部件的损坏,以充分发挥拖拉机的效能,更好地为农业生产服务。  相似文献   

6.
基于SimulationX的拖拉机滑转率控制研究   总被引:1,自引:0,他引:1  
介绍了国内外拖拉机电控液压悬挂系统的发展现状和农具耕深控制方法,提出了基于拖拉机悬挂位置控制的滑转率系统,并阐述了拖拉机液压悬挂系统结构与该控制系统的工作原理。在SimulationX软件中建立悬挂机构的物理模型和液压系统模型,基于该物理模型对农具耕深值和悬挂外提升臂转角关系进行分析,以便通过控制悬挂外提升臂转角控制农具耕深,并采用PID控制策略对所建立的液压悬挂系统进行控制仿真。结果表明:该控制系统具有可行性,并且在保持农具耕作深度的基础上兼顾了拖拉机的滑转率,有利于提高拖拉机液压悬挂的控制水平和改善拖拉机的耕作效率。  相似文献   

7.
针对分布式驱动电动拖拉机(Distributed drive electric tractor,DDET)牵引效率低、系统能量损耗大的问题,提出了一种基于多岛遗传算法(Multi-island genetic algorithm,MIGA)的分布式驱动系统参数优化设计与验证方法。根据犁耕作业工况,建立了拖拉机分布式驱动系统7自由度耦合动力学模型以及轮胎-土壤交互模型,完成了驱动系统关键部件参数设计和匹配选型。提出基于MIGA的前后轮边传动比参数优化策略,将轮边传动比作为决策变量,驱动系统能量损失最小为优化目标,驱动电机功率和转速为约束条件。搭建Matlab/Simulink-NI PXI联合仿真平台验证了参数优化策略的正确性和实时可执行性。结果表明,基于MIGA参数优化后的分布式驱动系统各方面性能得到了有效提升。犁耕循环工况下,拖拉机平均牵引力为10.610N,最大牵引功率为31.25kW;平均效率提升了0.38%,驱动电机能耗降低了7.53%。本研究可为分布式驱动电动拖拉机优化设计和系统控制提供理论基础和验证方法。  相似文献   

8.
针对保护性少耕作业中集深松、整地、施肥、播种一体化的农艺技术要求,课题组以牵引装置——轮式拖拉机为研究对象,通过对拖拉机牵引附着性能的分析,获得最佳工作参数,明确了影响拖拉机牵引附着性能与牵引效率的主要因素并验证了整机动力学分析的合理性和可靠性,测试并计算出了配套耕整播一体机下拖拉机的挂钩牵引力、传动系统的传动效率等技术参量。结果表明,拖拉机挂钩牵引力随着耕作速度的加快呈现逐渐减小的趋势,当实际耕作速度在2.64 km/h~8.80 km/h(分别为2.64 km/h、3.52 km/h、4.40 km/h、5.28 km/h、6.16 km/h、7.04 km/h、7.92 km/h、8.80 km/h)范围内变化时,拖拉机挂钩牵引力降幅分别为25%、20%、16.67%、14.28%、12.5%、11.11%、10%,拖拉机耕作速度介于2.64 km/h~4.40 km/h之间,可以发挥较大的挂钩牵引力。拖拉机传动系统效率随着耕作速度的加快呈现逐渐增大的趋势,当实际耕作速度在2.64 km/h~8.80 km/h范围内变化时,沼泥地、已耕地、沙壤土条件下拖拉机传动系统效率平均增幅分...  相似文献   

9.
1. 结构型式的发展(1)前轮小、后轮大、前轮转向轮式拖拉机这种标准型轮式拖拉机在欧美获得最广泛使用。在美国主要采用后轮驱动,大型拖拉机采用双排驱动轮胎,但四轮驱动也逐渐增多,主要带后悬挂机具作业。多数四轮驱动机型上可选装前悬挂装置和前动力输出轴,可以前后都悬挂机  相似文献   

10.
拖拉机田间作业工况参数实时、同步、适宜频率的采集对于可靠性分析与优化具有重要意义。本文设计了基于NI-C DAQ控制器的拖拉机作业工况参数检测系统,对所需传感器进行了选型、设计及安装,并结合LabVIEW平台开发了检测软件和远程监控平台。该系统由传感器、数据采集控制器和数据采集监测平台组成,可实现对发动机、车轮/桥、悬挂系统和机具等多种机构的参数测取。此外,该系统可通过便携式触摸屏远程控制和实时监测。为了验证检测系统的准确性和稳定性,开展了信号误差测试和典型参数田间试验。信号误差测试结果表明,各类信号的采集误差、丢包率以及初始误差均能满足参数检测系统的要求。在田间测试中,拖拉机车轮速度和实际速度测量值的最大相对误差为3.1%;悬挂系统水平牵引力的计算值与测量值的最大相对误差为4.5%;根据测取的车轮加速度,辨识田间作业地面类型的准确率为96%;根据悬挂位置拟合耕作深度的决定系数R2为0.99156。最后,开展了检测系统田间作业24h连续运行试验,该系统能始终保持运行稳定与数据准确。开发的拖拉机作业工况信息检测系统相比于同类系统,采集的参数更多,操作更为方便,可为可靠性分析与优化提供有效的数据测取依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号