首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic parameters and genetic trends for birth weight (BW), weaning weight (WW), 6-month weight (6MW), and yearling weight (YW) traits were estimated by using records of 5,634 Makooei lambs, descendants of 289 sires and 1,726 dams, born between 1996 and 2009 at the Makooei sheep breeding station, West Azerbaijan, Iran. The (co)variance components were estimated with different animal models using a restricted maximum likelihood procedure and the most appropriate model for each trait was determined by Akaike’s Information Criterion. Breeding values of animals were predicted with best linear unbiased prediction methodology under multi-trait animal models and genetic trends were estimated by regression mean breeding values on birth year. The most appropriate model for BW was a model including direct and maternal genetic effects, regardless of their covariance. The model for WW and 6MW included direct additive genetic effects. The model for YW included direct genetic effects only. Direct heritabilities based on the best model were estimated 0.15?±?0.04, 0.16?±?0.03, 0.21?±?0.04, and 0.22?±?0.06 for BW, WW, 6MW, and YW, respectively, and maternal heritability obtained 0.08?±?0.02 for BW. Genetic correlations among the traits were positive and varied from 0.28 for BW–YW to 0.66 for BW–WW and phenotypic correlations were generally lower than the genetic correlations. Genetic trends were 8.1?±?2, 67.4?±?5, 38.7?±?4, and 47.6?±?6 g per year for BW, WW, 6MW, and YW, respectively.  相似文献   

2.
The genetic parameters for Brahman cattle under the tropical conditions of Mexico are scarce. Therefore, heritabilities, additive direct and maternal correlations, and genetic correlations for birth weight (BW) and 205 days adjusted weaning weight (WW205) were estimated in four Brahman cattle herds in Yucatan, Mexico. Parameters were estimated fitting a bivariate animal model, with 4,531 animals in the relationship matrix, of which 2,905 had BW and 2,264 had WW205. The number of sires and dams identified for both traits were 122 and 962, respectively. Direct heritability estimates for BW and WW205 were 0.41?±?0.09 and 0.43?±?0.09, and maternal heritabilities were 0.15?±?0.07 and 0.38?±?0.08, respectively. Genetic correlations between direct additive and maternal genetic effects for BW and WW205 were ?0.41?±?0.22 and ?0.50?±?0.15, respectively. The direct genetic, maternal, and phenotypic correlations between BW and WW205 were 0.77?±?0.09, 0.61?±?0.18, and 0.35, respectively. The moderate to high genetic parameter estimates suggest that genetic improvement by selection is possible for those traits. The maternal effects and their correlation with direct effects should be taken into account to reduce bias in genetic evaluations.  相似文献   

3.
The aim of this study was to estimate genetic parameters for growth traits in Mexican Nellore cattle. A univariate animal model was used to estimate (co)variance components and genetic parameters. The traits evaluated were birth weight (BW), weaning weight (WW), and yearling weight (YW). Models used included the fixed effects of contemporary groups (herd, sex, year, and season of birth) and age of dam (linear and quadratic) as a covariate. They also included the animal, dam, and residual as random effects. Phenotypic means (SD) for BW, WW, and YW were 31.4 (1.6), 175 (32), and 333 (70) kg, respectively. Direct heritability, maternal heritability, and the genetic correlation between additive direct and maternal effects were 0.59, 0.17, and −0.90 for BW; 0.29, 0.17, and −0.90 for WW; and 0.24, 0.15, and −0.86 for YW, respectively. The results showed moderate direct and maternal heritabilities for the studied traits. The genetic correlations between direct and maternal effects were negative and high for all the traits indicating important tradeoffs between direct and maternal effects. There are significant possibilities for genetic progress for the growth traits studied if they are included in a breeding program considering these associations.  相似文献   

4.
Genetic parameters for birth weight (BW), weaning weight (WW) and pre-weaning daily gain (PWDG) in Iranian Mehraban sheep were estimated using restricted maximum likelihood (REML) procedure. Six different animal models were fitted, differentiated by including or excluding maternal effects, with and without covariance between maternal and direct genetic effects. The estimates for direct heritability ranged from 0.26 to 0.53, 0.18 to 0.32 and 0.15 to 0.33 for BW, WW and PWDG respectively. The estimates were substantially higher when maternal effects, either genetic or environmental, were ignored in the model. The results of this study show that full models with maternal genetic and environmental effects gave the most accurate estimates for early growth traits.  相似文献   

5.
The objectives of this study were to determine if sires perform consistently across altitude and to quantify the genetic relationship between growth and survival at differing altitudes. Data from the American Angus Association included weaning weight (WW) adjusted to 205 (n = 77,771) and yearling weight adjusted to 365 (n = 39,450) d of age from 77,771 purebred Angus cattle born in Colorado between 1972 and 2007. Postweaning gain (PWG) was calculated by subtracting adjusted WW from adjusted yearling weight. Altitude was assigned to each record based upon the zip code of each herd in the database. Records for WW and PWG were each split into 2 traits measured at low and high altitude, with the records from medium altitude removed from the data due to inconsistencies between growth performance and apparent culling rate. A binary trait, survival (SV), was defined to account for censored records at yearling for each altitude. It was assumed that, at high altitude, individuals missing a yearling weight either died or required relocation to a lower altitude predominantly due to brisket disease, a condition common at high altitude. Model 1 considered each WW and PWG measured at 2 altitudes as separate traits. Model 2 treated PWG and SV measured as separate traits due to altitude. Models included the effects of weaning contemporary group, age of dam, animal additive genetic effects, and residual. Maternal genetic and maternal permanent environmental effects were included for WW. Heritability estimates for WW in Model 1 were 0.28 and 0.26 and for PWG were 0.26 and 0.19 with greater values in low altitude. Genetic correlations between growth traits measured at different altitude were moderate in magnitude: 0.74 for WW and 0.76 for PWG and indicate possibility of reranking of sires across altitude. Maternal genetic correlation between WW at varying altitude of 0.75 also indicates these may be different traits. In Model 2, heritabilities were 0.14 and 0.27 for PWG and 0.36 and 0.47 for SV. Genetic correlation between PWG measured at low and high altitude was 0.68. Favorable genetic correlations were estimated between SV and PWG within and between altitudes, suggesting that calves with genetics for increased growth from weaning to yearling also have increased genetic potential for SV. Genetic evaluations of PWG in different altitudes should consider preselection of the data, by using a censoring trait, like survivability to yearling.  相似文献   

6.
Data and pedigree information used in the present study were 3,022 records of kids obtained from the breeding station of Raini goat. The studied traits were birth weight (BW), weaning weight (WW), average daily gain from birth to weaning (ADG) and Kleiber ratio at weaning (KR). The model included the fixed effects of sex of kid, type of birth, age of dam, year of birth, month of birth, and age of kid (days) as covariate that had significant effects, and random effects direct additive genetic, maternal additive genetic, maternal permanent environmental effects and residual. (Co) variance components were estimated using univariate and multivariate analysis by WOMBAT software applying four animal models including and ignoring maternal effects. Likelihood ratio test used to determine the most appropriate models. Heritability ( \texth\texta2 ) \left( {{\text{h}}_{\text{a}}^2} \right) estimates for BW, WW, ADG, and KR according to suitable model were 0.12 ± 0.05, 0.08 ± 0.06, 0.10 ± 0.06, and 0.06 ± 0.05, respectively. Estimates of the proportion of maternal permanent environmental effect to phenotypic variance (c 2) were 0.17 ± 0.03, 0.07 ± 0.03, and 0.07 ± 0.03 for BW, WW, and ADG, respectively. Genetic correlations among traits were positive and ranged from 0.53 (BW-ADG) to 1.00 (WW-ADG, WW-KR, and ADG-KR). The maternal permanent environmental correlations between BW-WW, BW-ADG, and WW-ADG were 0.54, 0.48, and 0.99, respectively. Results indicated that maternal effects, especially maternal permanent environmental effects are an important source of variation in pre-weaning growth trait and ignoring those in the model redound incorrect genetic evaluation of kids.  相似文献   

7.
Records of Nellore animals born from 1990 to 2006 were used to estimate genetic correlations of visual scores at yearling (conformation, C; finishing precocity, P; and muscling, M) with primiparous subsequent rebreeding (SR) and days to first calving (DC), because the magnitude of these associations is still unknown. Genetic parameters were estimated by multiple‐traits Bayesian analysis, using a nonlinear (threshold) animal models for visual scores and SR and a linear animal models for weaning weight (WW) and DC. WW was included in the analysis to account for the effects of sequential selection. The posterior means of heritabilities estimated for C, P, M, SR and DC were 0.24 ± 0.01, 0.31 ± 0.01, 0.30 ± 0.01, 0.18 ± 0.02 and 0.06 ± 0.02, respectively. The posterior means of genetic correlations estimated between SR and visual scores were low and positive, with values of 0.09 ± 0.02 (C), 0.19 ± 0.03 (P) and 0.18 ± 0.05 (M). On the other hand, negative genetic correlations were found between DC and C (?0.11 ± 0.09), P (?0.19 ± 0.09) and M (?0.16 ± 0.09). The primiparous rebreeding trait has genetic variability in Nellore cattle. The genetic correlations between visual scores, and SR and DC were low and favourable. The genetic changes in C, P and M were 0.02, 0.03 and 0.03/year, respectively. For SR and DC, genetic trends were 0.01/year and ?0.01 days/year, respectively, indicating that the increase in genetic merit for reproductive traits was small over time. Direct selection for visual scores together with female reproductive traits is recommended to increase the fertility of beef cows.  相似文献   

8.
Genetic correlations between reproduction traits in ewes and carcass and meat quality traits in Merino rams were obtained using restricted maximum likelihood procedures. The carcass data were from 5870 Merino rams slaughtered at approximately 18 months of age that were the progeny of 543 sires from three research resource flocks over 7 years. The carcass traits included ultrasound scan fat and eye muscle depth (EMDUS) measured on live animals, dressing percentage and carcass tissue depth (at the GR site FATGR and C site FATC), eye muscle depth, width and area and the meat quality indicator traits of muscle final pH and colour (L*, a*, b*). The reproduction data consisted of 13 464 ewe joining records for number of lambs born and weaned and 9015 records for LS. The genetic correlations between reproduction and fat measurements were negative (range ?0.06 ± 0.12 to ?0.37 ± 0.12), with smaller correlations for live measurement than carcass traits. There were small favourable genetic correlations between reproduction traits and muscle depth in live rams (EMDUS, 0.10 ± 0.12 to 0.20 ± 0.12), although those with carcass muscle traits were close to zero. The reproduction traits were independent of meat colour L* (relative brightness), but tended to be favourably correlated with meat colour a* (relative redness, 0.12 ± 0.17 to 0.19 ± 0.16). There was a tendency for meat final pH to have small negative favourable genetic correlations with reproduction traits (0.05 ± 0.11 to ?0.17 ± 0.12). This study indicates that there is no antagonism between reproduction traits and carcass and meat quality indicator traits, with scope for joint improvement of reproduction, carcass and meat quality traits in Merino sheep.  相似文献   

9.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines. An Angus line was maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires each year (two sires selected each year and used for 2 yr). Primary traits measured in the lines were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). Averaged over two methods, estimated genetic responses/generation (in standard deviation units) in WWL and YWL were: BW, .29, .26; WDG, .17, .15; WW, .22, .19; WG, .19, .26; WC, .12, .12; YDG, -.02, .04; YW, .08, .14; YG, .19, .16; YC, -.13, -.03. The realized heritability estimates were .23 and .15 for WW and YW, respectively. The realized genetic correlation between WW and YW was .69. Progeny from crosses of selected WWL and YWL sires to Angus cows had similar feedlot and carcass performance. At the end of the study, milk yield and composition were similar for mature cows in WWL and YWL.  相似文献   

10.
This study estimated genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford cattle in Kenya. Traits considered were birth weight (BW, kg), pre-weaning average daily gain (ADG, kg/day) and weaning weight (WW, kg); calving interval (CI, days) and age at first calving (AFC, days). Direct heritability estimates for growth traits were 0.36 and 0.21; 0.25 and 0.10; 0.23 and 0.13 for BW, ADG and WW in Charolais and Hereford, respectively. Maternal heritability estimates were 0.11 and 0.01; 0.18 and 0.00; 0.17 and 0.17 for BW, ADG and WW in Charolais and Hereford, respectively. Direct-maternal genetic correlations ranged between −0.46 and 1.00; −0.51 and −1.00; −0.47 and −0.39 for BW, ADG and WW in Charolais and Hereford, respectively. Genetic correlations ranged from −0.99 to unity and −1.00 to unity for growth and fertility traits respectively. Prospects for improvement of growth and fertility traits exist.  相似文献   

11.
肌糖原含量与猪生产性能、胴体品质及肉质性状间的关系   总被引:1,自引:0,他引:1  
试验比较2个不同基因型猪肌糖原含量、生长性能、胴体品质和肉质的差异,并分析肌糖原含量与生长性能、胴体品质及肉质之间的相关关系。将7头纯种汉普夏阉公猪体重为(19.48±1.1)kg和6头长撒公猪体重为(20.5±1.5)kg在相同条件下进行单圈饲养,到体重达100kg左右时屠宰,并测定肌糖原、胴体品质和肉质。结果表明:汉普夏猪比长撒猪有较高的日增重(P>0.05),较高的肌糖原含量(P<0.05);长撒猪有较高的背膘厚(P<0.01),较低的屠宰率(P<0.05)、眼肌面积和瘦肉率(P<0.01);汉普夏猪有较低的pH2(P<0.05)、剪切力(P<0.05)和b值(P<0.01),但滴水损失和失水率(P<0.05)高于长撒猪。相关分析结果表明:肌糖原含量与眼肌面积和瘦肉率呈正相关,与剪切力、滴水损失、平均日增重、b值、pH1和pH2呈负相关,而与平均日增重、屠宰率和胴体长相关性不大。这表明肌糖原含量是影响猪胴体品质和肉质的一个重要因素。  相似文献   

12.
Data from purebred and crossbred calves, consisting of Afrikaner (AF), Charolais (CH), Simmental (ST) and Hereford and Aberdeen Angus combined (HA), were analyzed to estimate breed additive effects, breed maternal effects, average individual heterosis and average maternal heterosis. The traits studied were birthweight (BW), weaning weight (WW) and preweaning average daily gain (ADG) (kg). A multiple regression procedure was used for the estimation of these genetic effects and for predictions for breed crosses that were not included in the data set. Crosses containing higher proportions of CH or ST were heavier at birth and weaning than the other crosses and purebreds. The direct effects of BW were negative and significant (P < 0.05), except that of the CH, which was the highest. The regression coefficients were ?24.87, ?18.16, ?22.80 and ?27.02 for AF, CH, ST and HA, respectively. The maternal effects were not significant. Both average individual and average maternal heterosis regression coefficients were also not significant for BW. Regression coefficients of both direct and maternal effects for WW were not significant and were characterized by large standard errors. Average individual heterosis and average maternal heterosis regression coefficients were, however, significant (P < 0.01) and the values were 5.34 and 2.19, respectively. A similar pattern was observed for ADG, except for the regression coefficients of the maternal effects, which were significant, with larger estimates for AF and ST reflecting their superior mothering ability. The values were 0.01, 0.13, 0.13, 0.03; ?0.82, ?0.85, ?0.85, ?0.81; 0.03 and 0.01 for direct effects and maternal effects of AF, CH, ST and HA; and average individual heterosis and average maternal heterosis, respectively. Means and standard errors of purebreds and their F1 crosses not included in the dataset were predicted.  相似文献   

13.
Estimates of genetic parameters for growth traits in Kermani sheep   总被引:3,自引:0,他引:3  
Birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9) and yearling weight (YW) of Kermani lambs were used to estimate genetic parameters. The data were collected from Shahrbabak Sheep Breeding Research Station in Iran during the period of 1993-1998. The fixed effects in the model were lambing year, sex, type of birth and age of dam. Number of days between birth date and the date of obtaining measurement of each record was used as a covariate. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct and maternal heritabilities of BW, WW, W6, W9 and YW were estimated to be 0.10 +/- 0.06 and 0.27 +/- 0.04, 0.22 +/- 0.09 and 0.19 +/- 0.05, 0.09 +/- 0.06 and 0.25 +/- 0.04, 0.13 +/- 0.08 and 0.18 +/- 0.05, and 0.14 +/- 0.08 and 0.14 +/- 0.06 respectively. Direct and maternal genetic correlations between the lamb weights varied between 0.66 and 0.99, and 0.11 and 0.99. The results showed that the maternal influence on lamb weights decreased with age at measurement. Ignoring maternal effects in the model caused overestimation of direct heritability. Maternal effects are significant sources of variation for growth traits and ignoring maternal effects in the model would cause inaccurate genetic evaluation of lambs.  相似文献   

14.
For the first time, the current study reports the genetic and phenotypic correlations between growth and reproductive traits in Zandi sheep. The data were comprised of 4,309 records of lamb growth traits from 1,378 dams and 273 sires plus 2,588 records of reproductive traits from 577 ewes. These data were extracted from available performance records at Khojir Breeding Station of Zandi sheep in Tehran, Iran, from 1993 to 2008. Correlations were estimated from two animal models in a bivariate analysis using restricted maximum likelihood procedure between lamb growth traits [birth weight (BW), weaning weight at 3 months of age (WW), as well as six-month weight (6 MW)] and ewe reproductive traits [litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW)]. The genetic correlations between BW and reproductive traits varied from low to high ranges from 0.10 for BW–LSB to 0.86 for BW–TLWB. WW was moderately (0.37) to highly (0.96) correlated with all the reproductive traits. Moreover, the genetic correlations were observed between 6 MW and reproductive traits, varied from 0.19 to 0.95. Relationships between growth and reproductive traits ranged from 0.01 for BW–LSW to 0.28 for BW–TLWB in phenotypic effects. Results indicated that selection to improve WW would have high effect on genetic response in TLWW, and also, these results could be effective for all of the reproductive traits in Zandi sheep.  相似文献   

15.
Genetic parameters for weaning hip height (WHH), weaning weight (WWT), postweaning hip height growth (PHG), and hip height at 18 mo of age (HH18) and their relationships were estimated for Brahman cattle born from 1984 to 1994 at the Subtropical Agricultural Research Station, Brooksville, FL. Records per trait were 889 WHH, 892 WWT, and 684 HH18. (Co)variances were estimated using REML with a derivative-free algorithm and fitting three two-trait animal models (i.e., WHH-WWT, WHH-PHG, and WWT-HH18). Heritability estimates of WHH direct effects were 0.73 and 0.65 for models WHH-WWT and WHH-PHG and were 0.29 and 0.33 for WWT direct for models WHH-WWT and WWT-HH18, respectively. Estimates of heritability for PHG and HH18 direct were 0.13 and 0.87, respectively. Heritability estimates for maternal effects were 0.10 and 0.09 for WHH for models WHH-WWT and WHH-PHG and 0.18 and 0.18 for WWT for models WHH-WWT and WWT-HH18, respectively. Heritability estimates for PHG and HH18 maternal were 0.00 and 0.03. Estimates of the genetic correlation between direct effects for the different traits were moderate and positive; they were also positive between WHH and WWT maternal and WWT and HH18 maternal but negative (-0.19) between WHH and PHG maternal, which may indicate the existence of compensatory growth. Negative genetic correlations existed between direct and maternal effects for WHH, WWT, PHG, and HH18. The correlation between direct and WWT maternal effects was low and negative, moderate and negative between WHH direct and PHG maternal, and high and negative (-0.80) between WWT direct and HH18 maternal. There is a strong genetic relationship between hip height and weight at weaning that also affects hip height at 18 mo of age. Both product-moment and rank correlations between estimated breeding values (EBV) for direct values indicate that almost all of the same animals would be selected for PHG EBV if the selection criterion used was WHH EBV, and that it is possible to accomplish a preliminary selection for HH18 EBV using WHH EBV. Correlations between breeding values for WHH, WWT, and HH18 indicate that it will be possible to identify animals that will reduce, maintain, or increase hip height while weaning weight is increased. Thus, if the breeding objective is to manipulate growth to 18 mo of age, implementation of multiple-trait breeding programs considering hip height and weight at weaning will help to predict hip height at 18 mo of age.  相似文献   

16.
Tail length and tail lesions are the major triggers for tail biting in pigs. Against this background, 2 datasets were analyzed to estimate genetic parameters for tail characteristics and growth traits. Dataset 1 considered measurements for trait tail length (T-LEN) and for the growth traits birth weight (BW), weaning weight (WW), postweaning weight (PWW), and average daily gain (ADG) from 9,348 piglets. Piglets were born in the period from 2015 to 2018 and kept on the university Gießen research station. Dataset 2 included 4,943 binary observations from 1,648 pigs from the birth years 2016 to 2019 for tail lesions (T-LES) as indicators for nail necrosis, tail abnormalities, or tail biting. T-LES were recorded at 30 ± 7 d after entry for rearing (T-Les-1), at 50 ± 7 d after entry for rearing (end of the rearing period, T-LES-2), and 130 ± 20 d after entry for rearing (end of fattening period, T-LES-3). Genetic statistical model evaluation for dataset 1 based on Akaike’s information criterion and likelihood ration tests suggested multiple-trait animal models considering covariances between direct and maternal genetic effects. The direct heritability for T-LEN was 0.42 (±0.03), indicating the potential for genetic selection on short tails. The maternal genetic heritability for T-LEN was 0.05 (±0.04), indicating the influence of uterine characteristics on morphological traits. The negative correlation between direct and maternal effects for T-LEN of –0.35 (±0.13), as well as the antagonistic relationships (i.e., positive direct genetic correlations in the range from 0.03 to 0.40) between T-LEN with the growth traits BW, WW, PWW, and ADG, complicate selection strategies and breeding goal definitions. The correlations between direct effects for T-LEN and maternal effects for breeding goal traits, and vice versa, were positive but associated with a quite large SE. The heritability for T-LES when considering the 3 repeated measurements was 0.23 (±0.04) from the linear (repeatability of 0.30) and 0.21 (±0.06; repeatability of 0.29) from the threshold model. The breeding value correlations between T-LES-3 with breeding values from the repeatability models were quite large (0.74 to 0.90), suggesting trait lesion recording at the end of the rearing period. To understand all genetic mechanisms in detail, ongoing studies are focusing on association analyses between T-LEN and T-LES, and the identification of tail biting from an actor’s perspective.  相似文献   

17.
Genetic and phenotypic parameters were estimated for lamb growth traits for the Dorper sheep in semi-arid Kenya using an animal model. Data on lamb growth performance were extracted from available performance records at the Sheep and Goats Station in Naivasha, Kenya. Growth traits considered were body weights at birth (BW0, kg), at 1 month (BW1, kg), at 2 months (BW2, kg), at weaning (WW, kg), at 6 months (BW6, kg), at 9 months (BW9, kg) and at yearling (YW, kg), average daily gain from birth to 6 months (ADG0–6, gm) and from 6 months to 1 year (ADG6–12, gm). Direct heritability estimates were, correspondingly, 0.18, 0.36, 0.32, 0.28, 0.21, 0.14, 0.29, 0.12 and 0.30 for BW0, BW1, BW2, WW, BW6, BW9, YW, ADG0–6 and ADG6–12. The corresponding maternal genetic heritability estimates for body weights up to 9 months were 0.16, 0.10, 0.10, 0.19, 0.21 and 0.18. Direct-maternal genetic correlations were negative and high ranging between −0.47 to −0.94. Negative genetic correlations were observed for ADG0–6–ADG6–12, BW2–ADG6–12, WW–ADG6–12 and BW6–ADG6–12. Phenotypic correlations ranged from 0.15 to 0.96. Maternal effects are important in the growth performance of the Dorper sheep though a negative correlation exists between direct and maternal genetic effects. The current study has provided important information on the extent of additive genetic variation in the existing flocks that could now be used in determining the merit of breeding rams and ewes for sale to the commercial flocks. The estimates provided would form the basis of designing breeding schemes for the Dorper sheep in Kenya. Implications of the study to future Dorper sheep breeding programmes are also discussed.  相似文献   

18.
Data on 187 DNA‐tested purebred Landrace pigs were used to compare heterozygous RYR1 genotypes (Nn) and normal homozygotes (NN) in performance (growth, fat deposition rate and feeding behaviour patterns), and carcass, meat and fat quality traits. From 75 to 165 days of age, live body weight (BW), ultrasonic midback (UMB) and loin (ULB) backfat measurements were recorded periodically on the same animal. Individual voluntary feed intake (DFI), number of visits (NVD) and feeding time (FTD) were measured on a daily basis using an automatic feeding system. Polynomial models with random regression coefficients were used to describe BW, UMB, ULB, DFI, NVD and FTD as a function of age. Carcass, meat and fat quality traits were analysed using a mixed model with the RYR1 genotype as a fixed effect. No significant (p < 0.05) differences were observed between NN and Nn genotypes for growth, feed intake and feed efficiency at any age, but the NN pigs showed higher values for UMB and ULB (0.68 ± 0.30 mm and 0.88 ± 0.40 mm, respectively, at 165 days). The Nn pigs had higher predicted carcass lean content (+11.1 ± 3.7 g/kg) and higher proportion of ham in the carcass (+2.9 ± 1.4 g/kg). However, they showed lower values of pH measurements at 45 min post‐mortem (–0.26 ± 0.05 in M. longissimus dorsi, LD), and higher electrical conductivity at 45 min (+1.03 ± 0.17 μs in LD) and 24 h post‐mortem (+1.63 ± 0.29 μs in LD). No significant differences were found between genotypes for intramuscular fat in the M. semimembranosus (SM) and for fatty acid profiles in the subcutaneous backfat and in the intramuscular fat of the SM. The results of this study suggest that Nn pigs would attain their maximum growth rate at later stages than the NN without any relevant change in the feeding behaviour pattern. Also they confirm that Nn pigs are leaner, have greater proportion of high‐priced cuts in the carcass and are more prone to develop pale, soft and exudative meats. However, no effect on fat quality traits was found.  相似文献   

19.
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 ± 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 ± 0.01, 0.48 ± 0.02, and 0.19 ± 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 ± 0.07 (WW), -0.13 ± 0.08 (ADG), and -0.11 ± 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that longterm selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.  相似文献   

20.
Angus heifers (n = 88) were used over 3 yr to determine the relationship between two sets of traits considered to be indicators of growth. Data were collected at weaning (7 to 8 mo), yearling (10 to 11 mo), andprebreeding (13 to 14 mo) and included BW, hip height (HH), hip width (HW), pelvic height (PH), pelvic width (PW), lactate dehydrogenase (LDH) activity, longissimus area (LA), and backfat thickness (BKFAT). Measurements were grouped into two sets of traits; Set 1 included BW, HH, HW, and LDH activity; Set 2 included PH, PW, LA, and BKFAT. Weight was correlated (P < 0.01) with all variables studied except LDH activity. At weaning, heifers with lower LDH activity had a larger PH just prior to the breeding season. The first canonical variate between Set 1 measurements at weaning or yearling was correlated (r > 0.8; P < 0.01) with Set 2 measurements at prebreeding. Additional linear combinations of Set 1 traits at weaning and yearling were correlated (r > 0.48; P < 0.01) with Set 2 traits at prebreeding. These results suggest that the Set 1 measurements, as early as at weaning, could be used as indicators of Set 2 variables at prebreeding. The canonical coefficients of Set 1 traits were used to rank heifers as either above or below the mean. Ranking heifers based on Set 1 measurements at weaning resulted in a greater (P < 0.01) percentage of heifers calving as 2-yr olds. Correlations between Set 1 and Set 2 traits suggest that external measurements coupled with LDH activity could be used in identifying replacement beef heifers that have larger pelvic dimensions at breeding and a greater frequency of calving as 2-yr olds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号