首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.  相似文献   

2.
The structure and tree species diversity of a subtropical evergreen broad-leaved forest in northern Okinawa Island, Japan, were studied. Enumeration of the six sampling plots revealed an average density of 5,580 individuals with DBH≧3.0 cm/ha, having an average basal area of 55 m2. The large-size trees of DBH≧20 cm contributed 10% of the total individuals, and 49% of the total basal area. The forest showed a high diversity of tree species, which is comparable to some tropical rain forests. A total of 54 over-story species of 24 families and a total of 63 understory species of 26 families were identified in the six sampling plots. Fagaceae and Theaceae were the most important families;Castanopsis sieboldii, Schima wallichii andDistylium racemosum were the most important species. The diversity index and equitability index of species were 4.15 and 0.72 for the overstory plots, and 4.72 and 0.79 for the understory subplots, respectively. The diversity index for the overstory was significantly correlated to the total basal area of trees over 20 cm DBH (p<0.05) and the importance value ofC. sieboldii (p<0.001), while for understory, the diversity index was not correlated to the structural parameters (allp>0.16). The size distribution pattern and age structure indicated differences in regeneration strategies for canopy dominants. In population dynamics of the succession process,C. sieboldii andD. racemosum were self-maintaining types, andS. wallichii was a gap- or opening-dependent type. This study was made possible by support from the Japanese Ministry of Education, Sciences, Sports and Culture, which provided a Monbusho scholarship to X.N. Xu.  相似文献   

3.
Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.  相似文献   

4.
Photoprotective responses during photosynthetic acclimation in Daphniphyllum humile Maxim, an evergreen understory shrub that grows in temperate deciduous forests, were examined in relation to changes in light availability and temperature caused by the seasonal dynamics of canopy leaf phenology. Gradual increases in irradiance in the understory from summer to autumn as overstory foliage senesced were accompanied by increased concentrations of xanthophyll cycle pigments (VAZ) in understory leaves. The chlorophyll (Chl) a/b ratio in understory leaves also increased from summer to autumn, reflecting the change in ratio of the light-harvesting antenna to the reaction center. However, low temperatures following overstory leaf fall reduced Rubisco activity. In contrast, the photosynthetic capactiy of leaves of D. humile growing at the forest border, which was higher in summer than that of leaves of understory plants, decreased in autumn. In autumn, Fv/Fm ratios decreased and concentrations of zeaxanthin (Z) and especially antheraxanthin (A) increased in leaves of both forest-border and understory plants. Although VAZ was twice as high in leaves of forest-border than of understory plants, NPQ was similar in both. We conclude that leaves of understory plants are able to acclimate to seasonal changes in light and temperature by varying their photosynthetic and photoprotective functions, thereby taking advantage of the favorable light conditions caused by overstory leaf fall.  相似文献   

5.
Oak regeneration within pine monocultures is an opportunity to diversify forest structure. We examined the relationships between overstory (Pinus brutia) light interception and understory oak (Quercus ithaburensis) performance in water-limited forests. The study was performed in a mature pine plantation in Mediterranean Israel. Twenty-year-old oaks differing in location with respect to pine overstory and representing a gradient of light availability, such as open space (irradiance 100 %), interface (17–77 %), and understory (14–23 %), were monitored. Photosynthetic photon flux density (PPFD), leaf gas exchange, and twig water potential (TWP) were measured during the growth season under increasing drought stress. Predawn TWP decreased sharply from early to late spring and was positively related to irradiance during mid-spring only. Predawn to midday TWP gradient was positively related to irradiance mostly so during mid-spring. Daily averages of stomatal conductance (gs), net carbon assimilation rate (A), and transpiration rate (E) were highest in early spring and decreased gradually toward late spring. They were positively related to irradiance though this relationship became less pronounced from early to late spring. Oak height and stem basal area were positively related to irradiance. A/gs ratio was positively related to irradiance throughout the entire growth season. It increased from early to mid-spring but decreased toward late spring. A/PPFD ratio decreased from early to late spring showing a negative relationship with irradiance. We concluded that light availability was mainly responsible for spatial variation in oak performance and proposed that small-scale overstory gaps aiming for direct sunlight exposure during early spring should achieve maximum understory oak performance with minimal pine removal.  相似文献   

6.
We quantified leaf phenologies of saplings and overstory trees of sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.), and the shrub hobblebush viburnum (Viburnum alnifolium Marsh.) in a 72-year-old northern hardwood forest. Seasonal changes in irradiance in the shrub layer, and in the leaf CO(2) exchange of viburnum, and sugar maple and beech saplings were also measured. Leaf expansion occurred earlier in the spring and green leaves were retained later in the autumn in saplings and shrubs than in overstory trees. During the spring light phase (before overstory closure), large CO(2) gains by all three shrub-layer species occurred as a result of a combination of relatively large leaf area, high photosynthetic capacity, and high irradiance. Throughout the summer shade phase, photosynthetic capacity at a given irradiance remained relatively constant, but CO(2) gain was typically limited by low irradiances. Even though irradiance in the shrub layer increased during the autumn light phase as the overstory opened, CO(2) gains were modest compared to springtime values because of declining leaf area and photosynthetic capacity in all three species. The CO(2) gains during the spring light phase, and to a lesser extent during the autumn light phase, may be important to the carbon balance and long-term persistence of saplings and shrubs in the usually light-limited shrub layer of a northern hardwood forest. Therefore, for some late-successional species, leaf phenology may be an important characteristic that permits their long-term persistence in the shrub layer of mature northern hardwood forests.  相似文献   

7.
8.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

9.
Two new density estimators for k-tree distance sampling are proposed and their performance is assessed in simulated distance sampling from 22 stem maps representing a wide range of natural to semi-natural forest tree stands with random to irregular (clustered) spatial distribution of trees. The new estimators are model-based. The first (Orbit) computes density as the inverse of the average of the areas associated with each of the k-trees nearest to a sample location. The area of the k-th tree is obtained as a prediction from a linear regression model while the area of the first is obtained via a Poisson probability integral. The second (GamPoi) is based on the expected distribution of distance to the k nearest tree in a forest where the local distribution of trees is random but the stem density varies from sample location to sample location as a gamma distribution. In a comprehensive assessment with 17 promising reference estimators, a subset composed of Morisita’s, Persson’s, Byth’s, Kleinn’s, Orbit, and GamPoi was significantly better, in terms of relative root mean square error (RRMSE), than average. GamPoi emerged as the better estimator for sample sizes larger than or equal to 30. For smaller sample sizes, both Kleinn’s and Morisita’s appear attractive.  相似文献   

10.
The effects of anthropogenic disturbances on forest structure and plant diversity of secondary forest ecosystems were evaluated based on the classification by site factors in the montane regions of northeastern China. Forty-five sample plots containing 720 sub-plots of overstory species (8 m × 8 m), 1,440 quadrats of understory species (2 m × 2 m), and 1,440 quadrats of herbaceous layer species (1 m × 1 m) were clustered into five groups (G1, G2, G3, G4 and G5) by site variables with Hierarchical Cluster Analysis. Meanwhile, the disturbance levels corresponding to the five groups were determined according to the factors influencing human disturbances (D0-G2, D1-G1, D2-G3, D3-G5, and D4-G4). Species diversities of overstory, understory, herbaceous layer and overall species were evaluated using species number, Margalef index, Pielou index, Shannon–Wiener index, and Simpson index; and β-diversities (Whittaker index, Cody index). Basal area of stands exhibited a decreasing trend along the disturbance level due to a gradual increase in the extraction of timber by the human disturbances. The indices of species diversity suggested that overstory and understory species were distributed evenly among the groups or disturbance levels. There were no absolutely dominant tree species in the secondary forest ecosystems. The differences in site factors and the current disturbance intensities were not intense enough to lead to loose changes in overstory and understory species. The species diversity indices exhibited the maximum values at D3 (G5) for herbaceous layer species; this may suggest that the current disturbance intensities were intense enough to lead the changes of herbaceous layer species. Three rare and endangered species (Juglans mandshurica, Fraxinus mandshurica and Acanthopanax senticosus) were found within the secondary forests. These rare and endangered species appeared in each clustered group or disturbance level, which suggested that the current disturbance intensity in the study area was not strong enough to influence the distribution of rare and endangered species. The current disturbances in the secondary forests may not lead to a decrease in stability and complexity of the overstory and understory species, but the higher disturbance level may be intense enough to change the habitat fitness for the herbaceous species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized authors.  相似文献   

11.
Tree species composition is a primary attribute of forest ecosystems, and is often manipulated by silvicultural practices. Forest management to diversify tree species is now being promoted to favor biodiversity. To assess the soundness of this policy we reviewed and analyzed the literature on the relationship between tree species composition and floristic diversity, including the mechanisms involved therein. Coniferous forests generally provide less diversified vascular understories than broadleaved forests. At the tree species scale, there are not enough reports to draw firm conclusions on the effect of any particular species. Mixing of deciduous and coniferous tree species generally affects understory diversity, but in almost all cases maximum diversity is observed in one of the pure stands, not in mixed stands. Understory vegetation is influenced by overstory composition and structure through modifications of resource availability (light, water and soil nutrients) and other effects, such as physical characteristics of the litter layer. Overstory light transmittance and diverse properties of forest litter are factors that have been most fully studied to date, but other factors such as throughfall water quantity and chemistry may also play a role. While the relative importance of mechanisms that account for the effect of overstory on understory biodiversity has often been discussed, these mechanisms have rarely been the subject of formal experiments. Overall, varying management practices and site attributes make it difficult to generalize results. They combine with the effects of tree species in influencing understory vegetation diversity, but they have been rarely considered. Future research is needed to gain a better understanding of the relationship between overstory and understory diversity and establish general laws.  相似文献   

12.
We studied the effects of the regeneration cut of the shelterwood system and four site preparation options on populations of eastern red-backed salamanders in 90–100-year-old white pine forests in central Ontario, Canada. We established the study in 1994 using a randomized complete block design with three replicates and five treatments: (1) no harvest, no site preparation; (2) harvest, no site preparation; (3) harvest, mechanical site preparation; (4) harvest, chemical site preparation; (5) harvest, mechanical and chemical site preparation. We applied harvest and site preparation treatments from fall 1995 to fall 1997. We collected pre-treatment data in spring and summer of 1995 and post-treatment data from 1998 to 2002. We monitored salamander abundance using a grid of 20 cover boards surveyed 10 times per year within each of the 15 treatment plots. We also quantified changes in overstory and understory cover, supply of downed woody debris, and disturbance to the forest floor. Our data suggest that shelterwood cutting and site preparation can have immediate negative effects on the abundance of red-backed salamander populations in pine forest. However, effects are relatively short lived (<5 years). Changes in abundance appeared to be related to overstory and understory cover, and forest floor disturbance.  相似文献   

13.
Chusquea ramosissima is a native monocarpic bamboo species growing in subtropical forests of northeastern Argentina, which can dominate gaps and open forests in the region, particularly after human disturbance. This bamboo species started to flower in different areas of northeastern Argentina in 2001, with the flowering peak during 2002 and 2003 and small isolated flowering events still occurring until 2010. We studied the effects of C. ramosissima flowering and die-back on microclimate, litter decomposition, nutrient availability, sapling growth, abundance and regeneration of tree canopy species. We wanted to know how environmental conditions and ecosystem processes change through time after bamboo flowering and if bamboo die-back would favor regeneration of canopy trees. Twenty 50 × 50 m plots of flowering and non-flowering bamboo were permanently marked and vegetation dynamics as well as nutrient cycling and microclimate studies were performed. C. ramosissima die-back enhanced growth and reduced mortality rate of tree saplings during the first year after flowering. Only growth of tree saplings previously established was enhanced by the flowering event and tree-species richness and saplings abundance of canopy trees did not change as expected due to bamboo flowering. The short-term effect of tree saplings growth was likely due to incident solar radiation at the forest floor which doubled in the first year after the bamboo flowering event. Increased light availability at the forest floor simultaneously promoted the growth of other understory plants such as ferns, lianas and Piper spp. that rapidly colonized gaps and intercepted a percentage of the incident solar radiation after the first year, which together with an increased litter layer due to the senescence of the bamboo, may have inhibited establishment of new tree individuals and affected tree growth. Contrary to predictions, soil water, litter decomposition and soil nutrients were not significantly affected by bamboo flowering. Thus, successful tree regeneration in gaps following bamboo flowering appears to be restricted to a very narrow window of increased light availability (i.e., 1 year) before growth of other understory plants and rapid re-colonization of bamboo. Changes in resource availability, and the opportunity for overstory regeneration after bamboo flowering events appears to depend on climatic and community characteristics of the ecosystem where the flowering event occurs and also, on the flowering patterns and their synchronicity.  相似文献   

14.
小陇山锐齿栎天然林结构动态分析   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]为了解锐齿栎天然林群落动态变化过程。[方法]采用每木定位监测样地重复观测的方法,对甘肃小陇山林区百花林场王安沟营林区内的锐齿栎天然林进行研究,从树种组成及多样性结构、径级结构、空间结构等几方面分析了锐齿栎天然林群落的结构动态特征。[结果]表明:2次调查群落树种组成和优势树种的重要值排序变化不大,有2个稀少种退出群落,死亡林木40株,死亡率8.3%;群落乔木层的物种丰富度和树种空间多样性下降,优势树种的集中性变大,物种个体数目分配的均匀程度下降。林分径级结构由典型的反"J"型分布变化为左偏的单峰状曲线;群落的空间结构没有发生显著变化,林木分布格局仍为随机分布,中林层和上林层林木个体增加,垂直结构更趋复杂;树种隔离程度下降,建群种锐齿栎的优势度增强,膀胱果、白桦和青榨槭种群的优势度下降。[结论]锐齿栎天然林群落组成和结构变化是一个复杂和缓慢的过程,6年间仅发生了一些微小的波动。  相似文献   

15.
本文基于阔叶红松林30hm2(500m×600m)固定监测样地,分析了红松在各林层(主林层、次林层、林下层)的空间分布、各林层之间的关联性。结果显示:(1)红松在各林层都在小尺度上呈聚集性分布,大尺度上呈随机分布;且在低林层聚集性强度高于高林层。(2)红松各林层关联性表现为主林层与次林层在小尺度上呈正相关,大尺度上关联性不显著;主林层与林下层在小尺度上呈负相关,大尺度上关联性不显著;次林层与林下层在所有尺度上呈现显著正相关。说明红松种子扩散和红松个体间竞争对空间分布起着重要作用。  相似文献   

16.
Nutrient dynamics of an Aleppo pine (Pinus halepensis, Mill.) ecosystem located in the Kassandra peninsula, Central Macedonia, Northern Greece, were studied using a chronosequence approach. The nutrient composition of the Aleppo pine trees, the understory evergreen broadleaves and forest floor in adjacent stands of 23, 48, 70 and over 100 years old was determined to estimate postfire nutrient losses. The concentration of nutrients in the Aleppo pine trees, except of Ca, was reduced with increasing stand age. Ca was the most abundant nutrient in the aboveground vegetation and in forest litter, followed by N, K, Mg and P. The accumulation of nutrients in the aboveground biomass was positively related to stand age. For younger stands nutrient accumulation was considerably larger in the understory vegetation as compared to the pines, due to substantial enhancement of the understory biomass and the number of understory species present. In middle-aged stands, however, nutrient accumulation in the understory and overstory vegetation reached a balance. In addition, considerable quantities of nutrients have been accumulated in the forest floor particularly in stands of 48 years old. Therefore, any destruction during the period of maximum nutrient accumulation in the forest floor will cause degradation of the ecosystem. It is postulated that the competition for nutrients between overstory and understory vegetation may be as important as competition in soil. Forest management practices leading to the direct conversion of the understory biomass into littermass would be of great significance for the sustainability of the Aleppo pine ecosystem.  相似文献   

17.
To clarify the mechanism by which overstory trees shade understory saplings, we investigated the relationships among light conditions of the saplings (measured as indirect site factor; ISF and direct site factor; DSF), the calculated competition effects of overstory trees on the saplings (W), and relative height growth rate of the saplings (RHGR). We calculated several W values in order to find a W value which can express the light conditions as appropriately as possible, and the results indicated that W explained only 21.9%–24.7% of the total variance of light conditions in the cases where W gave the best fit. In this study, W was calculated based on the basal areas of overstory trees. However, it is known that canopy structure also affects the light regimes in the forest understory, and this might yield the possible errors even within W representing the shading effects most adequately. Therefore, although W significantly represents the shading effect from overstory trees, a great proportion of the variance remained without being explained by W. RHGR was negatively correlated with W, and the W value which had the most adequate explanation of the shading effect also showed the best negative correlation with RHGR. This provides the evidence that the competitive effect of overstory trees on sapling growth is mediated by the shading effect, indicating that competition for light clearly exists within this forest. Such competition for light may closely relate to the well-known phenomenon of gap regeneration in subalpine forests in central Japan.  相似文献   

18.
Regeneration of commercial species is central to long-term success of multiaged management for wood production. We examined relationships between understory light, varying overstory tree retention, and growth of coast redwood (Sequoia sempervirens; commercial species) and tanoak (Notholithocarpus densiflorus) stump sprouts initiated by group selection and single-tree selection harvesting in 80–100 year old mixed stands at four sites. Treatments included a complete harvest in 1-ha group selection openings, low-density dispersed retention, and either aggregated or dispersed high-density retention. Post-harvest stand density index and basal area were useful predictors of understory light. Mean and maximum understory light did not differ significantly between treatments with the same density where residual trees were retained in aggregated versus dispersed spatial patterns. However, the dispersed retention had lower minimum light levels when compared to the aggregated retention treatment. Aspect appeared to influence understory light more in dispersed treatments. At all light levels, the dominant sprout within clumps of redwood stump sprouts generally grew faster than dominant tanoak sprouts within tanoak sprout clumps. Differences in sprout height growth between aggregated and dispersed treatments were minimal. Stump size had a significant effect on redwood stump sprout height growth, with sprouts on the largest stumps growing approximately twice as quickly as sprouts on the smallest stumps. In the low density dispersed treatment, redwood sprouts outperformed tanoak sprouts by the greatest margin. Regeneration of redwood and tanoak was most rapid within group selection openings.  相似文献   

19.
We evaluated effects of belowground competition on morphology of naturally established coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) saplings in 60- to 80-year-old thinned Douglas-fir stands in southwestern Washington. We separately quantified belowground competition from overstory and understory sources using trenching and understory removal. In this light-limited environment of 26 ± 16% (std. dev.) full sunlight, 2-year exclusion of tree root competition by trenching increased sapling stem biomass by 18%, total aboveground biomass by 21%, number of interwhorl buds by 68%, total foliar biomass by 33%, and foliar biomass on branch components over 4 years old by 143%. Belowground competition did not influence shoot:root ratio or foliar efficiency (i.e., stem growth per unit foliage biomass). Sapling needle size, specific leaf area, and internodal distance also were not affected by belowground competition; these variables were apparently a function of the low-light environment. The principal source of belowground competition was roots of overstory trees; effects of belowground competition from understory vegetation were minor. Thus, under a partial overstory, morphology of Douglas-fir regeneration was influenced by both belowground and aboveground competition from overstory trees. In this environment, understory vegetation control would not likely influence belowground competition to an extent that would affect sapling morphology.  相似文献   

20.
To better understand tree regeneration trajectories and the resultant coexistence of Abies with co-dominants, Picea jezoensis var. hondoensis, Tsuga diversifolia and Betula ermanii, in an old-growth subalpine forest, we investigated spatial mortality patterns during the regeneration of Abies mariesii and A. veitchii, which are abundant in the understory reflecting their shade tolerance. Regeneration of these Abies spp. from shaded understory to canopy status is affected by other canopy co-dominants. Snags of understory Abies spp. were common, suggesting that the primary mortality agent is suppression by the overstory. Although live, small Abies trees in the understory were positively associated with a Picea canopy, the long-term survival was reduced among Abies trees close to the canopy, suggesting that shading by large Picea in the overstory negatively affects understory Abies plants. The existence of shade-intolerant canopy co-dominants such as Picea and also Tsuga, which are larger and longer lived than the shade-tolerant Abies, may play an important role in preventing the Abies spp. from competitively displacing these other tree species, which are much rarer in the understory, though common in the canopy. Moreover, in spite of the fact that Betula canopies fostered recruitment and growth of Abies saplings, Abies showed no association with Betula canopy and their survival at later-stage was rather reduced near or beneath Betula canopies at the subsequent understory small tree stage. Based on spatially significant events related to tree death, this study detected such “habitat shifts” in the trajectory of tree regeneration. Accordingly, it can be concluded that careful consideration of the regeneration habitat is required for a fuller understanding of ecological processes in spatially complex old-growth forest systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号