首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Starch digestibility was evaluated in freshly prepared tortillas elaborated from masa obtained from different procedures (laboratory‐made masa, commercial masa, and nixtamalized corn flour) and from laboratory‐made masa with added commercial hydrocolloid, and stored for 24, 48, and 74 hr. Tortillas prepared with commercial masa had the highest available starch (AS) content and the commercial tortillas had the lowest, showing a decrease in AS content when storage time increased. Tortilla of commercial masa showed the lowest resistant starch (RS) content that agrees with the AS measured. However, tortilla of laboratory‐made masa presented the highest AS and RS contents. RS increased with storage time, a pattern that is related to the starch retrogradation phenomenon observed when retrograded resistant starch (RRS) was quantified. Commercial tortillas showed predicted glycemic index (pGI) values of 62–75% using a chewing/dialysis procedure (semi in vitro method). Index values were lower than those determined in vitro. The pGI of tortillas decreased, and the values were different depending on the method used to prepare the masa and tortilla. Commercial tortilla and tortilla of NCF had the lowest pGI. Therefore, the procedure to obtain masa and thereafter obtain tortillas influenced the starch digestibility of the product.  相似文献   

2.
Nixtamal, masa, and tortilla samples were stored for 24–96 hr and their chemical composition, retrogradation, and in vitro starch digestibility features were evaluated. Ash and fat contents in the three products were smaller than in the original corn sample, but protein levels were higher, all in accordance with previous studies. In general, a minor decrease in available starch (AS) content was observed with storage time. Masa showed the greatest AS values, followed by tortilla and nixtamal. Tortilla presented slightly higher retrograded resistant starch (RS3) values (1.1–1.8%, dmb) than masa (0.7–0.9%) and nixtamal (0.7–0.8%) and only minor increases were observed after 24 hr of storage, suggesting that retrogradation phenomenon in these samples takes place very rapidly and is more pronounced in the final product (tortilla). The development of RS3 explains the observed decrease in AS. Higher total resistant starch values were found in all samples at a range of 2.1–2.6% for nixtamal and masa, and a range of 3.1–3.9% in tortilla. This indicates that, apart from retrograded resistant starch, some ungelatinized fractions appear to contibute to the indigestible content of these products. The α‐amylolysis rate of the three materials decreased with storage. Tortilla showed the greatest hydrolysis indices. Differential scanning calorimetry (DSC) analysis showed that the nixtamal, masa, and tortilla did not show differences in amylopectin crystal melting temperature with storage time, but tortilla exhibited higher enthalpy values after 72 hr of storage, in accordance with the greater total RS contents recorded after prolonged storage.  相似文献   

3.
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications.  相似文献   

4.
《Cereal Chemistry》2017,94(3):400-408
The chemical composition, functional properties, starch digestibility, and cookie‐baking performance of bean powders from 25 edible dry bean varieties grown in Michigan were evaluated. The beans were ground into coarse (particle size ≤1.0 mm) or fine (≤0.5 mm) powders. Starch and protein contents of the bean powders varied between 34.4 and 44.5% and between 19.1 and 26.6% (dry basis [db]), respectively. Thermal properties, pasting properties, and water‐holding and oil‐binding capacities of the bean powders differed and were affected by particle size. After blending the bean powders with corn starch (bean/starch = 7:3, db), the blends were used for cookie baking following a standard method ( 1 Approved Method 10‐54.01). Generally, the cookies baked from the fine bean powders had smaller diameters, greater thicknesses, and greater hardness values than those from the coarse counterparts. Differences in the cookie‐baking performances of the bean powders were observed among the 25 varieties. Larger proportions of resistant starch (RS) were retained in the bean‐based cookies (54.7–126.7%) than in the wheat‐flour‐based cookies (10.4–19.7%) after baking. With higher contents of RS and protein, the bean‐based cookies had more desirable nutritional profiles than those baked from wheat flour alone.  相似文献   

5.
Resistant starches (RS) were prepared by phosphorylation of wheat, waxy wheat, corn, waxy corn, high‐amylose corn, oat, rice, tapioca, mung bean, banana, and potato starches in aqueous slurry (≈33% starch solids, w/w) with 1–19% (starch basis) of a 99:1 (w/w) mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) at pH 10.5–12.3 and 25–70°C for 0.5–24 hr with sodium sulfate or sodium chloride at 0–20% (starch basis). The RS4 products contain ≤100% dietary fiber when assayed with the total dietary fiber method of the Association of Official Analytical Chemists (AOAC). In vitro digestion of four RS4 wheat starches showed they contained 13–22% slowly digestible starch (SDS) and 36–66% RS. However after gelatinization, RS levels fell by 7–25% of ungelatinized levels, while SDS levels remained nearly the same. The cross‐linked RS4 starches were distinguished from native starches by elevated phosphorus levels, low swelling powers (≈3g/g) at 95°C, insolubilities (<1%) in 1M potassium hydroxide or 95% dimethyl sulfoxide, and increased temperatures and decreased enthalpies of gelatinization measured by differential scanning calorimetry.  相似文献   

6.
Retrograded amylose is resistant to digestion by amylolytic enzymes, which is known as resistant starch type III (RS3). In this study we investigated the effect of β-amylase hydrolysis on the formation and physicochemical properties of RS3 from debranched corn starches. Three types of corn starch (Hylon VII, Hylon V, and common corn) were first gelatinized and then hydrolyzed using β-amylase to varying degrees. The resultant hydrolyzed starch was debranched with isoamylase and then exposed to temperature cycling to promote RS formation. A broad endotherm from approximately 45 to 120 °C and a small endotherm above 150 °C were noted for all retrograded starches. All three corn starches had increased RS contents after moderate β-amylolysis, with Hylon V having the highest RS content at 70.7% after 4 h of β-amylolysis. The results suggest that RS3 formation is affected by the starch composition as well as the starch structure and can be increased by moderate β-amylolysis.  相似文献   

7.
Gluten‐free and high indigestible carbohydrate food development is a topic that deserves investigation because of an increased focus on gluten intolerance and celiac disease and on metabolic disorders caused by overweight and obesity. Here, chickpea and maize flours were used as sources of protein and carbohydrate (because of the level used in the mixture) and unripe plantain as an indigestible carbohydrate source in composite gluten‐free spaghetti elaboration. The mixture of unripe plantain, chickpea, and maize was used at different levels to prepare spaghetti (samples S15Pla and S25Pla); control pasta was made of 100% semolina (S100Sem), and a 100% unripe plantain flour (S100Pla) pasta was also evaluated. In vitro amylolysis rate of fresh and stored (three and five days) spaghetti was assessed. The spaghetti with 100% unripe plantain (S100Pla) had higher resistant starch (RS) content than the control sample and the two cooked composite gluten‐free spaghettis (S15Pla, S25Pla), and RS further increased with the storage time. The plantain spaghetti (S100Pla) also had the highest rapidly digestible starch and the lowest slowly digestible starch contents; this pattern agrees with the hydrolysis rate, especially after cold storage. The stored S25Pla spaghetti showed the lowest hydrolysis rate and predicted glycemic index. Blending chickpea, maize, and unripe plantain flours represents a way to obtain gluten‐free spaghetti with high nondigestible carbohydrate content and slow digestion properties.  相似文献   

8.
Two cooked brown rice and six white rice varieties were selected for assessing the variations in predicted glycemic index (pGI) determined by using in vitro starch digestion and the glycemic index (GI) determined in vivo. Marked varietal differences in apparent amylose content, dietary fiber content, pGI, and GI were observed. Most of the tested rice samples were classified as medium‐GI foods. The varieties Khazar and Taikeng 9 were categorized as high‐GI foods when bread was used as the reference. But brown and white rice samples of TRGC9152 and Taichung Sen 17 fell into the low‐GI category when glucose was used as the reference. A significant correlation coefficient (r = 0.946) was found between pGI and GI of rice samples by using bread as the reference with a regression equation of GI = 28.778 + 0.717 × pGI (R2 = 0.8951, P ≤ 0.001). Overall, the in vitro pGI measurement is a rapid and useful method to predict the GI of cooked rice samples.  相似文献   

9.
Prime and tailings starches of garbanzo beans and peas were separated and the chemical composition, physical properties, thermal behavior, and gel properties were determined. Starch granules <35 μm were 85% in garbanzo beans, 66.8% in a smooth pea cv. Latah, and only 18.4% in a smooth pea cv. SS Alaska. Amylose content of prime starch was 35.9% in garbanzo beans, 44.5–48.8% in smooth peas, and 86.0% in wrinkled pea cv. Scout. Tailings starch amylose content was at least 8% higher than the corresponding prime starch. The endothermic enthalpy value of garbanzo bean and two smooth pea prime starches ranged from 12.1 to 14.2 J/g, while prime starch from wrinkled peas gave a distinctly lower enthalpy value of 1.1 J/g. Differential scanning calorimetry endothermic enthalpy and amylograph pasting properties of prime starch were significantly related to its amylose content (P < 0.05). Prime starches of garbanzo beans and smooth peas produced highly cohesive elastic gels. Wrinkled pea prime starch formed the strongest (though brittle) gel, as indicated by high hardness (21.8 N), low cohesiveness (0.29), and low springiness (0.82). Hardness of gel stored at 22°C and at 4°C was positively correlated with amylose content of starch.  相似文献   

10.
Influence of botanical source and gelatinization procedure (autoclaving or boiling) on resistant starch (RS) formation was investigated in starches from wheat, corn, rice, and potato. RS yields did not vary within the same sample but differed among samples with different starch botanical sources. Differences also existed in RS contents in native and retrograded starches. Slight or minor variations in RS values were found after both gelatinization procedures, although no clear pattern was found in the behavior of samples based on gelatinization procedure. The degree of polymerization (DP) of retrograded samples was assigned using high-performance anion exchange chromatography with pulsed amperometric detector (average DP 50–60), with no differences between autoclaved and boiled samples.  相似文献   

11.
Objectives of this study were to compare thermal properties, swelling power, and enzymatic hydrolysis of a type 5 resistant starch (RS5) with that of normal corn starch (NCS) and high‐amylose corn starch (HA7). The RS5 was prepared by complexing debranched HA7 with stearic acid (SA). Because of amylose‐helical‐complex formation with SA, the RS5 starch granules showed restricted swelling at 95°C. The RS5 displayed a larger RS content (67.8%) than the HA7 (33.5%) and NCS (0.8%), analyzed following AOAC method 991.43 (AACC International Approved Method 32‐07.01). When the cooked RS5, HA7, and NCS were used to prepare diets for rats with 55% (w/w) starch content, RS contents of the diets were 33.7, 15.8, and 2.6%, respectively. After the diet was fed to the rats in week 1, ≈16% of the starch in the RS5 diet was found in the feces, substantially greater than that of the HA7 diet (≈6%) and NCS diet (0.1%). The percentage of starch not being utilized in the RS5 diet decreased to ≈5% in week 9, which could be partially attributed to fermentation of RS5 by gut microflora. Large proportions (68–99%) of the SA in the RS5 diet were unabsorbed and discharged in the rat feces. The results suggest that the interactions between starch and SA can be used to enhance resistance of starch to in vitro and in vivo digestion.  相似文献   

12.
《Cereal Chemistry》2017,94(3):524-531
The aim of this study was to characterize the physicochemical, functional, and digestion properties of bagasses derived from broad beans, chickpeas, lentils, and white beans, and to isolate the starch and a fiber‐rich fraction that can be used as a food ingredient. The bagasses showed different chemical compositions that were related to their botanical origin. The further processing that involved mechanical separation of starch yielded up to 69.65% with ≥80.12% recovery and high purity (≥94.42%), and a fiber‐rich fraction (total dietary fiber content ≥72.75%) in which the majority was insoluble fiber. The starch digestion fractions of the isolated lentil starch showed the highest amount of slowly digestible starch (30.76%), whereas the white bean contained the highest resistant starch content (15.65%). All starches showed predicted glycemic indexes ≤ 66.90, which classify them as medium glycemic foods. In vitro protein digestion was higher for the bagasse fraction (up to 89.78%), followed by the fiber‐rich fraction (84.36%). This research demonstrates that it is possible to revalorize the use of pulses bagasse, which could contribute to enhance the technological and economic output of the protein isolation process, rendering two potentially functional fractions.  相似文献   

13.
An objective rollability method that imitates subjective rollability scores of corn tortilla texture was developed. Force and work required to pull an axle that caused a tortilla to roll around a dowel were measured. The sensitivity of the technique to detect changes in corn tortilla texture during storage was evaluated, and other factors affecting objective rollability and tortilla texture were studied. The objective rollability technique was fast, simple, and sensitive to changes in the tortillas, and worked effectively on commercial samples. Data was significantly correlated to subjective rollability and flexibility scores. Textural differences among fresh tortillas during the first 24 hr of storage, and among tortillas with different thicknesses and additives, were detected by the objective rollability method. Thicker tortillas required more force and work to roll than thin tortillas. The objective technique is more sensitive to changes in texture than subjective evaluations, which do not detect differences in tortilla variability during the first 24 hr after baking, and it can be used to evaluate the effect of formulation and processing changes on fresh and stored tortillas.  相似文献   

14.
Nixtamalized corn flour for tortilla preparation had added xanthan gum at different concentrations. Rollability, puncture, and extensibility tests using a texture analyzer machine measured the effect of xanthan gum on the staling of corn tortillas. Rollability, puncture, and extensibility tests were simple, fast, and repeatable. The rollability parameters showed that the addition of gum produced more flexible tortillas with decreased staling. The addition of hydrocolloid decreased the force required to penetrate the tortilla, but this parameter was slightly increased when storage time increased. The parameters determined in the extensibility test showed textural differences because the fresh tortillas had a higher distance of extensibility and this parameter decreased when storage time increased. Untreated stored tortillas presented a higher modulus of deformation, work, and rupture force values. However, the addition of xanthan gum decreased these values. The addition of hydrocolloid to tortilla decreased the hardness and increased the flexibility and rubbery characteristics of tortillas.  相似文献   

15.
The formation of resistant starch (RS) and the rate of starch hydrolysis were evaluated in vitro in a wild type of green-seeded pea genotype RRRbRb BC3 (33-Am) with 32.7% amylose content and in two mutants RRrbrb BC3 (23-Am) and rrRbRb BC3 (65-Am) with amylose contents of 23.3 and 65.1%, respectively. Pea samples were intact or homogenized and subjected either to autoclaving or to boiling at atmospheric pressure. The amount of RS (total starch basis) varied from 6.2 to 12.9% in the 23-Am products and from 31.2 to 33.4% in the 65-Am products. The RS level of the 33-Am product with a regular amylose content was 11.0%. Both the 23-Am and the 65-Am products were abundant sources of dietary fiber (39 and 34%, dry matter basis, respectively) versus 23% in the regular pea product. The amylose/amylopectin ratio was an important determinant of the rate of starch hydrolysis. The hydrolysis indices (HI) and predicted glycemic indices were lowest in the 65-Am peas (HI range = 42-59) as compared to the 23-Am peas (HI range = 53-84). It is concluded that the pea genotypes covered a wide range in starch availability, which is likely to affect nutritional parameters such as glycemic responses and colonic delivery of starch.  相似文献   

16.
Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introgressed exotic germplasm backgrounds, selected for high yield, were grown in three tropical and temperate locations and analyzed for starch thermal characteristics and RS levels. Although actual values for all starch characteristics were within normal levels, most characteristics had significant genotypic effects, and all had significant location effects. Thermal properties of retrograded starch were more influenced by the environment than the thermal properties of raw starch, making retrograded starch traits more heritable than raw starch traits. This suggests that a breeding strategy based on retrograded starch traits will have a better chance of success than a breeding strategy based on raw starch traits. A significant genotype effect for RS levels indicates that genotypic selection to raise the level of RS and increase the healthful aspects of corn food should be successful. Significant location effects indicate that breeders using winter nurseries to accelerate their breeding progress need to be careful when making selections using RS data collected on seed grown in the tropics. A small but highly significant correlation between RS and some thermal characteristics, especially percentage of retrogradation, indicates that we may be able to select promising genotypes for RS selection based on our extensive database of thermal characteristics collected on a wide number of diverse corn lines.  相似文献   

17.
The effects of raw and gelatinized sorghum and rice flours on the structure and texture of baked corn and tortilla chips were evaluated. Dry masa flour was hydrated into masa, sheeted, and cut. Corn chips were baked in an air-impingement oven, and tortilla chips were baked first in a three-tier oven and then in an air-impingement oven. Baked tortilla chips required significantly greater force to break and were less susceptible to breakage during handling than baked corn chips. Raw and gelatinized, normal and waxy rice and sorghum flours significantly changed the texture and structure of baked chips. Waxy rice and sorghum flours reduced peak force and work, increased chip thickness, and improved overall acceptability (as assessed by a taste panel), but waxy rice and sorghum chips were more fragile and had a greater number of large central air cells. Waxy rice was more beneficial than waxy sorghum flour. Gelatinization of waxy flours increased thickness of baked chips, whereas gelatinization of nonwaxy flours had no improvement over waxy flours alone. Gelatinization of sorghum flour significantly decreased the peak force and work values for baked tortilla chips when compared with the control chips. Gelatinized rice flour tortilla chips were not significantly different than the control chips but were significantly harder than the other baked tortilla chips. The complex interactions that occur in baked corn and baked tortilla chips suggest that each ingredient acts differently in the two products. Thus, each ingredient must be evaluated for specific products and processes.  相似文献   

18.
A high‐amylose, non‐floury corn, a floury corn, and a 1:1 blend were made into masa and then tortillas. The masa flour made with the high‐amylose corn had a greater amount of resistant starch (RS 28.8%) and a greater amount of total dietary fiber (TDF 42.1%) than that with the floury corn (RS 2.9%, TDF 9.6%), producing a high‐fiber tortilla. The masa was evaluated for pasting properties using a Rapid ViscoAnalyser (RVA). The high‐amylose masa slurry gelatinized little at 95°C. The floury masa had the greatest peak viscosity, whereas the 1:1 blend was intermediate in value. Sensory evaluations of the tortillas for the textural attributes showed the floury tortillas to be chewier, more rollable, and grittier than the high‐amylose tortillas, whereas the blend tortillas were intermediate for most attributes. The cutting force of the high‐amylose tortillas, measured on a texture analyzer, was very low; the blend and floury tortillas required more force. Chewiness was correlated to rollability (r = 0.99, P = 0.05). The %RS and %TDF were correlated to rollability (r = –0.99), and cutting force (r = 0.99). The floury and blend tortillas had firm textures expected of desirable tortillas, whereas the high‐amylose tortillas broke under little force, and would not roll. The high‐amylose tortillas had high amounts of RS and TDF but poor texture. The blend tortillas retained most floury tortilla textural properties, making them suitable products for consumer use.  相似文献   

19.
为寻找改善普通米淀粉制品的结构及品质的新型食品添加剂,该文以普通米淀粉为原料,采用快速黏度分析仪、扫描电子显微镜、质构分析仪、全自动X射线衍射仪及示差扫描量热仪等手段,研究添加锥栗、马铃薯与绿豆回生抗性淀粉(retrograded resistant starch,RSⅢ)对米淀粉凝胶微观结构及理化性质的影响。结果表明:添加锥栗、马铃薯及绿豆RSⅢ对米淀粉凝胶的结构及性质产生显著影响(P0.01),以锥栗RSⅢ的作用最为突出。添加锥栗、马铃薯与绿豆RSⅢ对米淀粉糊的黏度特性没有影响(P0.05)。未添加RSⅢ的米淀粉凝胶存在很多不规则、深浅不一的大洞,而加入RSⅢ使米淀粉凝胶的网状结构变得更为规整、致密,且其胶着性与黏聚性变化不大(P0.05);添加锥栗、马铃薯与绿豆RSⅢ后能加速米淀粉凝胶的形成,与未添加RSⅢ的米淀粉凝胶比,其硬度分别增加了2.38、1.97和1.25倍(P0.01),黏着性分别增加2.56、1.99和1.32倍(P0.01),弹性增加1.07、0.81和0.53倍(P0.01)。米淀粉以A-型晶体占优,锥栗RSⅢ以V-型晶体占优,马铃薯与绿豆RSⅢ均以B-型晶体占优;不加或加入RSⅢ的米淀粉凝胶粉末都转变为以V-型晶体为主,且总相对结晶度没有改变(P0.05)。加入RSⅢ后的米淀粉糊除有低温吸热峰外还出现高温吸热峰,是否添加RSⅢ对低温吸热峰的温度参数影响不大(P0.05),但吸热焓显著降低(P0.01);而对于高温吸热峰,添加马铃薯与绿豆RSⅢ的各项参数没有差别(P0.05),但比添加锥栗RSⅢ的显著增高(P0.01)。可见添加不同来源的RSⅢ可以有效改善米淀粉凝胶的结构与品质。该研究结果为抗性淀粉用于提高米制品品质与营养功能的研究和生产提供了重要参考。  相似文献   

20.
The effect of enzymatic pretreatment on the degree of corn and mung bean starch derivatization by propylene oxide was investigated. The starch was enzymatically treated in the granular state with a mixture of fungal alpha-amylase and glucoamylase at 35 degrees C for 16 h and then chemically modified to produce enzyme-hydrolyzed-hydroxypropyl (HP) starch. Partial enzyme hydrolysis of starch in the granular state appeared to enhance the subsequent hydroxypropylation, as judged from the significant increase in the molar substitution. A variable degree of granule modification was obtained after enzyme hydrolysis, and one of the determinants of the modification degree appeared to be the presence of natural pores in the granules. Enzyme-hydrolyzed-HP starch exhibited significantly different functional properties compared to hydroxypropyl starch prepared from untreated (native) starch. It is evident that the dual modification of starch using this approach provides a range of functional properties that can be customized for specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号