首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于Kinect V3深度传感器的田间植株点云配准方法   总被引:1,自引:1,他引:1  
准确建立植物的三维点云是以点云方式高通量获取植株各部位物理参数的前提。为实现田间复杂环境下的植株三维点云配准,该研究提出了一种基于多标定球的田间植株点云自动配准方法,并分别在室内简单场景及大田复杂场景下从不同角度对多种作物采集的点云数据进行验证。该方法采用随机抽样一致性算法(Random Sample Consensus, RANSAC)结合点云减法的概念从下采样后的点云中实现多标定球的自动提取,弥补了RANSAC一次只能提取单个物体的缺点。然后基于各标定球的球心距离信息实现三维点集的自动匹配。最后使用奇异值分解算法解算旋转平移矩阵,实现点云的自动配准。不同场景下各作物的配准结果表明,各植株的水平90°、180°、270°以及垂直方向上的点云配准到水平0°点云下的平均轴向误差在6~17 mm之间,平均点位误差在13~30 mm之间,与手动配准的商用同类软件LiDAR360的配准结果相当,但配准过程的自动化程度明显提高,效率提高了67%。该文所提出的方法可在田间复杂环境下对低成本深度相机获取的植株点云实现高精度的自动配准,为田间植物表型参数的提取提供了低成本的可行方案。  相似文献   

2.
基于可视化类库的植株三维形态配准方法及点云可视化   总被引:7,自引:7,他引:0  
精确的植物三维静态形态结构模型有助于植物空间结构相关的各种研究,是虚拟植物、植物建模等问题研究的一个重要方面。研究植物生长过程中的三维信息的获取可以获得作物生长过程中各参数的动态数据,可为精细农业植物生长模型建立等提供依据。该文以植物为研究对象,介绍了虚拟植物及植物三维可视化的研究现状,讨论了植物叶片三维可视化的可行性及必要性。针对植物三维点云的采集与处理上,讨论了三维扫描仪的精度测定方法,并针对基于基准体的植株点云配准问题,提出采用基准体点云平均法向量计算的方法,去除了部分基准体表面的噪声点,提高了植株体的配准精度;采用迭代最近点(iterative closest point,ICP)算法,对植株叶片进行进一步的高精度配准。最后采用基于可视化类库VTK(visualization toolkit)实现了植物点云配准与三维可视化。  相似文献   

3.
Alpha-shape算法构建枣树点云三维模型   总被引:1,自引:1,他引:0  
为了实现枣树智能化修剪作业,该研究提出了基于点云配准的自然光照环境下的果树三维重构方法,并针对传统最近点迭代(Iterative Closest Point,ICP)算法对待配准点云的空间位置要求苛刻的问题,提出了改进的点云配准算法。首先,使用彩色深度(RGB-D)相机采集不同角度下的枣树彩色和深度图像,并通过信息融合实现相应角度下的点云获取。其次,对点云进行背景去除和滤波处理,基于直方图设定分割阈值,提取单株枣树点云,并将放置在树根附近的标靶球作为标记,使用人工标记法进行两站点云初配准。最后,在初配准基础上计算点云的曲面法向量和曲率,由曲率相近的点构成配对点对,使用k维树最近点迭代(k dimensional-tree-Iterative Closest Point,kd-tree-ICP)算法完成精配准,对点云使用Alpha-shape算法面片化,实现表面重构。利用上述方法对多棵枣树进行全局配准并完整重构果树模型。试验结果表明,通过引入初配准,有效提高了点云配准的准确性和稳定性,配准误差均控制在1.0 cm以内,平均配准误差为0.78 cm;重构模型真实感较强,在外观上更加接近真实树,枝干相对误差控制在7%以内。该研究重构模型精度较高,可为枣树智能修剪提供可视化研究基础和技术支持。  相似文献   

4.
为实现温室番茄植株多模态三维重建,解决多光谱反射率配准和多视角点云三维重建问题,基于相位相关原理将多光谱反射率配准至RGB-D图像坐标系中,建立了基于Kinect传感器测量位姿自主标定的多视角RGB-D图像三维重建方法,实现植株RGB三维点云模型和多光谱反射率点云模型重建,通过归一化灰度相似系数、配准区域光谱重叠率、互信息值3个指标客观评价二维多光谱图像配准质量,采用豪斯多夫距离客观评价植株三维点云重建精度。结果表明:30株温室番茄,每株4个重建视角,视角间隔为90°,配准区域光谱重叠率和归一化灰度相似系数的平均值分别为0.920 6和0.908 5,异源图像配准后互信息值比配准前互信息值平均提升了9.81%,植株冠层多光谱图像能够准确配准至深度坐标系,番茄植株三维重建点云距离集小于0.6 cm的比例为78.39%,小于1.0 cm的比例为91.13%,番茄距离集均值的平均值为0.37 cm,表明植株三维点云模型重建精度较高,能够应用于温室番茄植株多模态三维重建。植株多模态三维模型是实现三维形态测量与生理诊断的关键要素,为高通量植株表型测量提供高效精准的测量方法,对植物表型组学等研究领域的发展具有重要的意义。  相似文献   

5.
基于点云配准的果树快速三维重建   总被引:1,自引:2,他引:1  
旨在为果园生产管理提供果树三维可视化基础数据,该文提出了一种基于点云配准的自然光照环境下的果树三维重构方法。首先,利用RGB-D相机采集不同视角下的果树彩色图像和深度图像,并通过信息融合获取相应视角下果树的三维点云数据;第二,对果树原始点云进行去背景和滤波等预处理,利用归一化对齐径向特征NARF(Normal Aligned Radial Feature)算法计算每片点云中的关键点,并在关键点初运用快速点特征直方图FPFH(Fast Point Feature Histograms)描述子得到关键点的特征向量。通过计算比较两片点云的FPFH特征,寻找两片相邻点云之间的空间映射关系,利用随机抽样一致性RANSAC(RANdomSAmple Consensus)算法提纯映射关系并完成相邻两片点云的初始配准;第三,在初始配准的基础上,利用迭代最近点ICP(Iterative Closest Point)算法完成点云的精确配准;最后,利用上述点云初始配准和精确配准方法对果树多片点云进行全局配准并完整重构果树的三维点云图像。针对配准过程中时间消耗过大的问题,该文提出了基于OpenMP技术对配准进行加速的方法。结果表明,该文所提出的果树三维重构方法具有较高的准确性,配准的平均距离误差为0.0068 m;同时,在不影响配准精度和稳定性的前提下大幅提高了果树三维重建的效率。  相似文献   

6.
基于点云采集设备的奶牛体尺指标测量   总被引:4,自引:4,他引:0  
为验证Xtion在奶牛体尺测量上应用的可行性,该文以提高现有体尺指标测量技术的精度、效率及自动化程度为目标,选用Xtion作为采集设备,石膏奶牛模型和真实奶牛作为试验对象,在实验室环境下,采用高精度三维扫描仪扫描奶牛模型作为对比点云数据,以不同距离下Xtion采集的数据作为测试点云数据,通过统计误差定量分析数据精度和密度随采集距离变化的规律,以确定合适的采集距离。养殖场环境下,在小于1.2 m采集距离条件下利用Xtion获取奶牛点云数据,采用Meshlab对点云数据进行可视化和交互测量,定性分析阳光、体表材质等因素对获取点云数据质量的影响,并将交互测量与人工测量结果进行对比分析。结果表明,在遮挡太阳光和采集距离大于0.6小于1.2 m条件下,平均误差小于±5 mm,相对误差小于10%,Xtion作为点云采集设备用于奶牛体尺测量是可行的。  相似文献   

7.
旨在为果园生产管理提供果树三维可视化基础数据,该文提出了一种基于点云配准的自然光照环境下的果树三维重构方法。首先,利用RGB-D相机采集不同视角下的果树彩色图像和深度图像,并通过信息融合获取相应视角下果树的三维点云数据;第二,对果树原始点云进行去背景和滤波等预处理,利用归一化对齐径向特征NARF(Normal Aligned Radial Feature)算法计算每片点云中的关键点,并在关键点初运用快速点特征直方图FPFH(Fast Point Feature Histograms)描述子得到关键点的特征向量。通过计算比较两片点云的FPFH特征,寻找两片相邻点云之间的空间映射关系,利用随机抽样一致性RANSAC(RANdom SAmple Consensus)算法提纯映射关系并完成相邻两片点云的初始配准;第三,在初始配准的基础上,利用迭代最近点ICP(Iterative Closest Point)算法完成点云的精确配准;最后,利用上述点云初始配准和精确配准方法对果树多片点云进行全局配准并完整重构果树的三维点云图像。针对配准过程中时间消耗过大的问题,该文提出了基于OpenMP技术对配准进行加速的方法。结果表明,该文所提出的果树三维重构方法具有较高的准确性,配准的平均距离误差为0.0068 m;同时,在不影响配准精度和稳定性的前提下大幅提高了果树三维重建的效率。  相似文献   

8.
果园精细管理中,苹果树冠层结构决定了叶幕期光照分布情况,而叶幕期光照分布又是关系到果实产量和质量的重要因素之一。该文以纺锤体苹果树为研究对象,提出了基于苹果树冠层计盒维数的光照分布预测方法。在冠层尺度内,按照网格法划分休眠期苹果树冠层三维点云数据,通过分析该数据构成的果树冠层空间结构,提出用计盒维数量化果树冠层结构的方法;通过分析休眠期冠层结构特征和叶幕期冠层相对光照分布特点,研究了休眠期苹果树三维冠层网格空间计盒维数与叶幕期冠层光照空间分布之间的关系,预测了叶幕成形期苹果树冠层光照分布。通过连续3 a的数据分析,叶幕期苹果树冠层阳面光照分布平均预测精度为76.11%,阴面平均光照分布预测精度为74.10%,该方法可为苹果树自动化修剪合理性评判提供技术支持。  相似文献   

9.
运用Optech ILRIS 36D地面三维激光扫描仪对某水电工程取料场开挖边坡进行三维扫描,获取料场同一边坡不同时期的三维点云数据.在Polyworks软件下,对获取的不同时期三维点云数据进行处理,建立模型,并在此基础上通过模型计算,在料场开采扰动面积、实施水土保持工程措施面积、料场开采量及其动态变化等方面获得较为准确的监测结果.  相似文献   

10.
基于三维点云的番茄植株茎叶分割与表型特征提取   总被引:1,自引:1,他引:0       下载免费PDF全文
针对当前温室番茄表型参数难以自动获取的问题,研究提出通过对三维点云进行配准、骨架提取以及分割从而自动获取苗期番茄植株株高、茎粗、叶倾角和叶面积参数的方法。首先通过机器人搭载机械臂在温室中自动获取多视角番茄点云,并通过配准得到完整植株点云;对番茄点云利用拉普拉斯收缩的骨架提取算法获取植株骨架,对骨架进行修正后分解为茎秆和叶片子骨架,实现茎秆叶柄分割;再通过基于区域生长的MeanShift聚类方法对叶片和叶柄进行分割;最后通过番茄点云获取株高、茎粗参数,通过骨架测量叶倾角,对叶片点云进行曲面拟合提取叶面积参数。试验结果表明,茎叶分割与叶片分割的精确率、召回率、F1分数和平均总体准确率分别为0.84、0.91、0.87、0.92和0.92、091、0.91、0.93。株高、茎粗、叶倾角和叶面积参数的提取值与人工测量值的决定系数分别为0.97、0.53、0.90和0.87,均方根误差分别为1.40 cm、1.52 mm、5.14°和37.56 cm2。结果表明该研究方法与人工测量值具有较强的相关性,可以为温室番茄的高通量自动化表型测量提供技术支持。  相似文献   

11.
为解决当前果园探测技术难以在恶劣的果园环境中提取果树冠层信息的问题。该研究将毫米波雷达应用于果园冠层探测,搭建了基于毫米波雷达的果园冠层探测系统,利用该系统扫描得到了果园点云,检测和估算得到每棵果树的株高、冠幅和体积参数。针对毫米波雷达在不同距离下产生点云密度不同的问题,该研究提出了一种基于可变轴的椭球模型自适应密度聚类算法,用以提高果树点云识别效果,进而使用Alpha-shape算法和随机抽样一致算法(Random Sample Consensus)对果树进行了表面重建和结构参数的提取。通过与人工测量数据比较,该研究提出的聚类算法可以有效的识别和提取单木冠层点云,代表果树识别精度的 F1 分数为 93.7%;检测到的果树的株高和冠幅的平均相对误差分别为8.7%和8.1%,决定系数分别为0.84和0.92,均方根误差分别为16.39和7.82 cm;使用Alpha-shape算法计算得到平均果树体积为5.6 m3,相比传统几何法测量体积,体积计算准确度提高了59.4%。该研究表明毫米波雷达可以用于果园冠层信息的准确提取,为采集果园冠层信息提供了技术,对农业信息采集和自动化作业技术的发展具有重要意义。  相似文献   

12.
基于点云的果树冠层叶片重建方法   总被引:1,自引:1,他引:1  
精确的果树三维冠层结构是农业科研人员进行功能结构模型研究的重要载体,该文提出一种快速、精确、自动的果树冠层叶片重建方法。首先根据带叶果树点云的局部和全局特征,建立椭球分层的点云密度收缩方法实现器官点云分离,然后利用邻近传播主成分分析算法实现叶片特征参数的求解,利用Laplacian收缩算法实现冠层骨架点的连通,从而实现冠层叶片的快速自动重建。最后利用C++及Point Cloud Library(PCL)点云库,开发果树叶片点云冠层自动重建系统,对苹果树、柑橘树等不同类型果树进行算法验证,结果表明该方法能够正确识别出的叶片数占冠层总叶片数的90%以上,叶面积指数的正确率大于95%,叶片倾角偏离5?以内的叶片数占总叶片数的90%以上。该方法得到了较好的可视化效果和叶冠三维重建精度,可为后期树体冠层内光合作用的研究、整形修剪、农业仿真试验等提供参考。  相似文献   

13.
真实环境中树的三维重建可在虚拟现实、景观设计及农林业应用方面发挥重要作用,为解决真实环境中树的三维重建问题,该文提出一种基于稀疏图像的交互式建模方法。在自然环境下采集2幅相差90°的树图像及对应4~7幅中间图像,采用交互式编辑方法在夹角相差90°的1幅图像上获取各级树枝二维投影位置及粗度信息,再通过中间图像找到各级树枝在另一幅图像上的匹配树枝,并交互式调整树枝位置信息,然后进行透视校正,生成树枝三维几何模型,最后根据叶序规则添加树叶完成重建。通过对苹果树、樱桃树和枫树的重建结果表明,该方法交互性好,对图像拍摄数量与角度要求不高,重建时间在55~125 min之间,且能较好保持树的拓扑结构,可为虚拟植物建模、虚拟修剪试验和植物拓扑结构分析等提供参考。  相似文献   

14.
针对当前果树智能化剪枝决策研究尚不完善的问题,以树形分析和人工智能剪枝决策为基础,建立苹果树剪枝决策系统.提出基于局部点云的树枝三维骨骼提取方法,该方法采用Harris角点检测、凝聚层次、深度层次分析算法提取三维骨骼关键点,并基于线覆盖法建立树枝的空间向量,获取苹果树枝的三维空间形态特征数据,从而生成树枝的三维骨骼图,...  相似文献   

15.
针对移动采摘机器人在果园作业时,果树较大冠层与行人等障碍物易影响机器人行驶的突出问题,该研究提出了一种基于改进人工势场法的机器人行间导航路径优化方法。首先,通过移动采摘机器人搭载的固态激光雷达实现果园行间三维点云信息获取,运用地面平面算法去除果园地面点云,提取了果园垄行与果树冠层点云。其次,采用最小二乘法(Least Squares Method, LSM)、霍夫(Hough)变换和随机采样一致性(Random Sample Consensus, RANSAC)3种方法对果园垄行点云数据进行了垄行线和初始路径的提取。最后,通过舍弃引力势场,建立了果树冠层轮廓点云势场,优化初始路径以躲避较大的果树冠层与行人障碍物。从实时性与抗噪能力两个方面,分别对利用LSM、Hough变换和RANSAC方法所提取的初始路径结果进行了分析,结果表明3种方法均可成功提取垄行线与初始路径,其中RANSAC实时性最优,平均运行时间约为0.147×10-3 s,标准差为0.014×10-3 s,且具有较好的抗噪能力。在RANSAC提取初始路径的基础上使用改进人工势场法对初始路径进行优化,避免了传统人工势场法易陷入震荡的问题。经改进人工势场法优化后的路径将障碍物点云距导航路径的最短距离由0.156 m提高至0.863 m,且平均耗时0.059 s,标准差为0.007 s,表明该优化方法具备实时优化路径以避开障碍物的能力。该研究提出的基于改进人工势场法的机器人行间导航路径优化方法基本满足安全性与实时性要求,为移动采摘机器人在果园环境下自主导航提供了技术参考。  相似文献   

16.
研究自2007年11月至2010年1月于台湾东部花东纵谷区域之台东县鹿野乡河床新兴地番荔枝栽植区,择定一面积32 000 m2之番荔枝果园为试区(22°56’56.4″N,121°8’56.4″E),果树平均高度为2.2 m,树龄5 a以上。先利用观测铁塔于距离地面2.5 m及6 m处来测定风向及风速,再藉分析以探讨该果园内之气流行进分布特性。结果表明:花东纵谷南部区域河床新兴地于每日出现逐时平均风速趋近静风状态时,可作为区分昼夜间风场特性之依据,而昼夜间之时段分别为7:00—19:00及20:00至翌日6:00。当强盛偏北气流行进至花东纵谷区域河床新兴地之风场内,区域内风速会在1.0 h内激增,且于果园试区内果树冠层上0.3 m高度之风速达3.8 m/s,对于果树之枝干将产生摇曳不止的情形,将造成果实易受磨损及不利果树生长。  相似文献   

17.
基于超声波传感器和DGPS的果树冠径检测   总被引:7,自引:5,他引:7  
为实现果园果树的仿形精确喷雾,适时获取果树冠径信息,采用超声波传感器,GPS接受机和电子罗盘等在拖拉机上建立了一套果树冠径检测试验系统。并在室外对5个圆柱规则外形树冠进行了检测试验。试验分别采用4种树冠直径检测计算方法,并选择0.31 m/s和0.65 m/s两种不同拖拉机行驶速度进行检测。采用误差分析的方法检验果树冠径检测系统的实际检测效果。误差分析表明拖拉机分别以0.31 m/s和0.65 m/s速度行驶时,应用超声波探测果树树冠两个轮廓边缘计算5个树冠直径的平均相对误差分别为5.54%和5.80%。用电子罗盘和DGPS数据进行加权平均融合修正拖拉机行驶轨迹,由超声波检测到的果树两个轮廓边缘的位置信息计算果树直径,在两种检测速度下的平均相对误差为14.38%。研究结果为果树仿行喷雾控制和果园果树生长信息采集提供了技术方法。  相似文献   

18.
我国4种主要苹果树形冠层结构和辐射三维分布比较研究   总被引:3,自引:0,他引:3  
树体结构和辐射分布是影响果树冠层光合生产力和果实产量品质的主要因素。本文以"富士"苹果(Malus domestica Borkh.cv.‘Fuji’)为试材,采用田间调查方法,系统研究了我国苹果生产中4种主要树形的树体结构参数以及叶面积密度(LAD)和光合有效辐射(PAR)的三维分布特征。结果表明,开心形树冠的枝量(894×103·hm-2)和叶面积指数(LAI,2.53)最小,其他3种树形中小冠疏层形分别为2 280×103·hm-2、4.14,疏散分层形分别为2 119×103·hm-2、3.98,纺锤形分别为2 190×103·hm-2、3.88。不同树形LAD三维分布各不相同,小冠疏层形苹果树的叶片主要分布在树冠的0.5~1.5 m之间,疏散分层形和纺锤形主要分布在0.5~2.0 m之间,开心形主要分布在1.0~2.0 m之间。通过对不同树形LAD和PAR三维分布比较发现,每种树形的PAR都随树冠深度的增加而降低,在树冠中部LAD最大部位辐射消减最快,PAR的三维分布主要与叶片分布有关。其中开心形树冠的平均PAR最高,分布最均匀。4种树冠内叶片得到的平均相对PAR小冠疏层形为24.85%,疏散分层形为28.84%,纺锤形为27.71%,开心形为37.28%。开心形树冠内低光区的叶片所占比例只有35%,其他树形都超过50%。研究表明,不同相对PAR范围内的叶片比例能够更好地反映果树冠层的辐射情况,开心形树冠在辐射分布上优于其他3种树形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号