首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 170 毫秒
1.
夏季肉牛舍湿帘风机纵向通风系统的环境CFD模拟   总被引:3,自引:2,他引:1  
为了研究湿帘风机纵向通风系统应用于肉牛舍的夏季降温效果,该试验在现场环境指标实测的基础上,采用计算流体力学(computational fluid dynamics,CFD)的方法对湿帘风机纵向通风肉牛舍的气流场与温度场进行模拟,并对系统进行改进与优化.模拟时将牛只按与实物原型等比例引入到模型中,结果表明:舍内温度分布均匀,但受牛体挡风的影响,气流分布不均,高风速区主要集中在屋顶及饲喂走道,可达0.9~1.2 m/s;牛活动区域风速较小,均小于0.6 m/s,不能满足饲养标准.在75个风速测定点剔除异常值后,气流场的相对误差范围为0.16%~94.41%,平均相对误差为34.53%,45个温度测点的相对误差范围为0.09%~10.74%,平均相对误差4.71%.通过温度场吻合性结果确定模拟与实测有较好的吻合度.在不改变牛舍围护结构及舍内构造的前提下,对牛舍进行优化,舍内安装导流板,使得温度与气流场的分布均匀性显著提高,降温效果更为显著.该研究可为湿帘风机牛舍的优化设计和环境调控提供参考.  相似文献   

2.
吊顶对湿帘风机纵向通风牛舍环境及牛生理的影响研究   总被引:1,自引:1,他引:0  
为了改善湿帘风机纵向通风系统应用于肉牛舍的降温效果和气流分布的均匀性,同时提高肉牛活动区的风速,该试验在实测的基础上,采用流体力学(computational fluid dynamics,CFD)的方法对安装吊顶的湿帘风机纵向通风肉牛舍的气流场进行模拟。模拟时将牛只按与实物原型等比例引入到模型中,经吻合性验证,风速的平均相对误差,Y=0.7m截面为27%,Y=1.2 m截面为14%,Y=1.7 m截面为13%,认为模型有效。结果表明:安装吊顶后,舍内的气流分布均匀,肉牛活动区域风速适宜,可为肉牛提供更为适宜的饲养环境。舍内Y=0.7 m截面的平均风速为0.75 m/s,Y=1.2 m截面的平均风速为0.88 m/s,Y=1.7 m截面的平均风速为1.00 m/s。未安装吊顶的牛舍,舍外平均温度(35.0±2.7)℃条件下,0.7 m高度处平均温度(30.0±0.7)℃,1.2 m高度处平均温度(30.1±0.8)℃,较舍外平均降温14%;安装吊顶的牛舍,舍外平均温度(37.2±2.1℃)℃条件下,0.7 m高度处平均温度(31.1±0.7)℃,1.2 m高度处平均温度(31.1±0.7)℃,较舍外平均降温16%,说明安装吊顶后降温效果显著。安装吊顶后,舍内平均相对湿度80.9%,有害气体浓度均在饲养标准范围内;呼吸频率为36次/min,平均等温指数(equivalent temperature index,ETI)为23.96,均未达到热应激水平。  相似文献   

3.
肉鸭产业规模化程度越来越高、空间集聚日益明显,层叠式笼养是发展最为迅速的立体养殖模式。该文对层叠式笼养鸭舍内的温湿度、气流、CO_2及NH_3质量浓度进行测试,构建了鸭舍的CFD模型,开展温度场和气流场的环境模拟,并提出现有鸭舍气流组织形式的优化方案。研究结果表明,测试期间(2018-12-18 00:00-2018-12-22 00:00),鸭舍内气温11.35~20.68℃,舍内外平均温差10.86℃;舍内平均相对湿度70.27%,略高于舍外;舍内CO_2、NH_3平均质量浓度分别为3285、0.33 mg/m~3。模拟原有鸭舍的温度场和气流场,与实测结果进行对比,平均相对误差为6.59%~8.87%,说明该文所建模型的数值模拟与试验数据具有很好的一致性。进一步通过降低一侧通风小窗的高度来优化鸭舍的气流组织,模拟发现优化后模型的舍内温度范围为11.07~19.71℃,其温度波动范围较原模型有明显减小,降低了肉鸭对温度的应激效应;优化后模型北侧第1列底层、第3列中层、第5列上层的平均风速分别为0.34、0.34、0.31 m/s,较原模型更加均匀。通过该研究,可为同类型鸭舍合理规划设计与改善舍内环境质量提供理论依据。  相似文献   

4.
冬季采暖保育猪舍送排风管道组合换气系统设计与评价   总被引:3,自引:2,他引:1  
为实现保育猪舍内局部环境通风调控,该研究设计一种垂直送排风管道组合换气系统。采用CFD(Computational Fluid Dynamics)技术对垂直管道通风模式下舍内的空气流场进行模拟,并以相对湿度和CO_2浓度作为输入变量建立通风模糊控制系统。模拟结果显示保育猪所在水泥地板区域风速保持在0.1~0.2 m/s。参照模拟结果,以猪栏为通风单元对保育猪舍通风系统进行改造,舍内气流不均匀性系数在0.1以下,表明采用该换气系统的保育猪舍通风均匀性较好;猪舍温度在21~25℃,相对湿度小于70%,NH_3浓度小于5mg/m~3,CO_2浓度小于1200mg/m~3,舍内各项环境参数适宜保育猪健康生长。系统运行功耗为270~1 150 W。现场测试与分析结果表明,该垂直送排风管道组合换气系统,可以精确控制猪舍环境,兼顾冬季猪舍通风与保温问题。  相似文献   

5.
针对华北地区常见围护结构的冬季不供暖密闭种兔舍保温与通风的矛盾问题,该文通过试验研究该类型兔舍不通风及运行显热回收通风系统(sensible heat recovery ventilation,SHRV)2种状态下的舍内空气质量、SHRV节能通风效果,并对比分析了SHRV结合均匀开孔送风和一端开口送风方式对舍内温度及气流分布的影响,探究SHRV在该兔舍的适用性。结果表明,相比于舍内不通风状态,运行SHRV时,舍内平均温度无显著波动;运行1 h后NH_3和CO_2浓度分别从9.9 mg/m~3和0.23%下降到4.2 mg/m~3和0.09%,湿度从84%下降到56%适宜水平,舍内空气质量改善明显。在该地区舍外温度-6~5℃时,SHRV可使新风温度平均提高3.4℃,平均显热回收效率和能效比(coefficient of performance,COP)分别为65%和5.1,达到了国家节能标准(60%和2.5)。比较分析风管一端开口送风与管道均匀开口送风发现,均匀开口送风可使舍内平均风速降低到0.2 m/s以下,减少舍内气流和温度分层,提高送风均匀性,降低动物冷应激。研究表明,在该地区常见围护结构不供暖密闭种兔舍使用SHRV可有效缓解通风与保温的矛盾,但若要达到更理想的节能通风效果,需采取适宜的芯体片间距,增加饲养密度、加强畜舍围护结构的密闭性提高保温效果。  相似文献   

6.
为减少冷应激对犊牛健康的影响,降低冬季犊牛养殖中通风与保温的矛盾,该研究在新疆地区对牛舍热回收通风系统的通风效果及热回收性能进行了评价。试验舍采用2套相同的热回收通风系统进行通风,对照舍自然通风。试验结果表明:热回收通风系统可使舍外进入舍内的新鲜空气温度平均提高10.15℃,日均CO2和NH3浓度分别显著降低173.15和0.63 mg/m~3(P0.05)。2套系统共可为试验舍提供通风量1 097.83 m~3/h,送风管小孔出风口的平均风速为2.45 m/s,风管始末端风速分别为2.76和2.34m/s。该系统的热回收效率为76.17%,能效比为3.1。该系统可以保证良好舍内环境和较高的能量回收效率,缓解冬季犊牛生产中通风与保温的矛盾。  相似文献   

7.
进风位置对纵向通风叠层鸡舍气流和温度影响CFD模拟   总被引:1,自引:1,他引:0  
为提高鸡舍夏季通风效率,改善舍内环境条件,该文通过计算流体力学(computational fluid dynamics, CFD)模拟分别探究了进风口内侧加设导流板及不加设导流板时,进风位置对叠层笼养鸡舍舍内及笼内气流、温度及分布的影响。鸡舍模型通过现场试验进行验证。结果表明:在进风口内侧不加设导流板时,近进风口区域(距首个笼17.5 m之内鸡笼区域)笼内平均风速随着进风位置与鸡笼间距离增加而增大,最大增幅为0.54m/s。而当进风口内侧加设导流板时,不同进风位置时对笼内平均风速相对差异小于10%。同时,随着进风位置与鸡笼间距离增加,近进风口处笼内气流分布均匀性增加,笼内温度呈降低趋势且其分布趋于均匀。但进风位置对笼内环境影响范围有限,文中研究显示,进风位置对气流速度的影响范围为距首个笼27 m之内笼内区域,对气流分布均匀性的影响范围为距首个笼45 m之内笼内区域,对温度分布的影响范围为距首个笼18 m之内笼内区域。研究表明,在叠层鸡舍夏季通风系统进风位置设计中,应尽量设计在山墙,及保证进风口与鸡笼区域无重合,使得进风气流充分发展后进入鸡笼,有助于减少笼内通风弱区及涡流区域。  相似文献   

8.
低屋面横向通风牛舍空气流场CFD模拟   总被引:15,自引:13,他引:2  
低屋面横向通风(low profile cross ventilated,LPCV)牛舍作为中国大型奶牛场一种新的牛舍建筑形式近年来得到了广泛应用,但实际运行中存在舍内气流分布不均匀、夏季高温高湿、冬季低温高湿等环境控制技术瓶颈。为了研究LPCV牛舍空气流场的分布规律,以指导该种牛舍的改进和优化设计,该文在现场实测的基础上,采用计算流体动力学CFD(computational fluid dynamics)方法,根据现场和实验室实测值所确定的风机、湿帘等边界条件,对LPCV牛舍的气流分布进行了三维数值模拟。模拟时将牛只按与实物原型等比例引入到模型中。模拟结果表明:挡风板和颈枷下面矮墙的设置影响了舍内气流分布的均匀性。在既有牛舍挡风板设置和矮墙高度不能改变的情况下对牛舍进行了局部改造,改造后舍内气流分布得到明显改善,平均风速增加了52.8%,气流不均匀性指标降低了41.8%。模拟值与实测值的对比表明,28个测点测试值与模拟值平均相对误差的平均值为17.1%,说明现场实测与数值模拟有较好的吻合度。该研究可为中国LPCV牛舍结构优化设计和环境调控提供参考。  相似文献   

9.
低屋面横向通风(Low Profile Cross Ventilated,LPCV)牛舍在华北地区应用,引发高温高湿问题。为解决此问题,该研究选择石家庄某奶牛场的2栋不同尺寸的LPCV牛舍,加装数量不同的轴流风机。结果表明:轴流风机的工作效率受牛舍跨度以及其安装位置的影响,30m跨度牛舍运行更稳定,风速不均匀系数小于0.20;在74m跨度牛舍,南侧湿帘端的风机工作效率更高。舍内环境与奶牛生理指标评价表明:30m跨度舍加装轴流风机后,过帘风速为2.17±0.20 m/s,提升45.6%,舍内卧栏处风速为1.95±0.85 m/s、提升10.8%,进风量增加418 339.09 m3/h,舍内平均温度为27.7±1.9℃,相对湿度下降9.2%、平均值为(75.9±6.6)%。74 m跨度舍过帘风速为1.96±0.20 m/s,卧栏处平均风速为1.62±0.91 m/s,进风量为1 008 568.80 m3/h,平均温度为27.7±1.8℃,舍内平均相对湿度为(74.6±5.8)%;二栋牛舍内平均温度、相对湿度、奶牛呼吸频率与皮肤温度在加装轴流风机后无显著性差异(P0.05)。综上,加装轴流风机可以显著改善舍内环境,并创造有利于奶牛生存的环境。  相似文献   

10.
挡风板对低屋面横向通风牛舍内空气流场影响的PIV测试   总被引:2,自引:2,他引:0  
低屋面横向通风(low profile cross ventilated,LPCV)牛舍内的空气流场由于受到舍内建筑设施的影响而分布不均匀。为了研究舍内挡风板、矮墙、入口风速、奶牛等对舍内气流的影响,分析目前LPCV牛舍内气流分布不均匀的原因,该文按模型/原型=1/15的比例制作了LPCV牛舍和奶牛的模型。计算结果表明原型牛舍在正常通风情况下的雷诺数为4.92×10~5,只要模型入口风速大于2.56 m/s,欧拉数不再随着雷诺数的增加而改变,此时空气流动已经进入自动模拟区,根据近似模型法理论,原型和模型中的气体流动已经进入了自动模拟区,两者的气体流动是相似的。根据挡风板、矮墙的设置情况、不同的入口风速等设计了6种不同工况,采用粒子图像测速(particle image velocimetry,PIV)技术分别对模型内6种工况下的空气流场进行测试。结果表明:LPCV牛舍内挡风板和矮墙的同时设置是造成舍内空气流向发生偏转的根本原因,挡风板和矮墙单独设置时都不会造成舍内气流分布的不均匀,但挡风板能够增加舍内下方奶牛活动区域的气流速度。舍内奶牛的存在和入口风速的大小都不会对舍内气流的分布造成影响。该研究可为LPCV牛舍内挡风板优化设置提供参考。  相似文献   

11.
种鹅舍环境智能监控系统的研制和试验   总被引:1,自引:1,他引:0  
针对种鹅反季节繁殖生产中硬件设备功能低下、难以实施舍内环境操作的适时精细调控、难以获取记录舍内环境数据进行问题溯源等问题,提出一种专门应用于种鹅反季节繁殖生产舍的环境智能监控系统。该系统通过BP神经网络建立温湿度智能调控模型,取代人工手动操作以满足舍内环境要求。通过GPRS模块无线传输舍内环境参数,并利用其GSM功能通过移动终端远程控制风机、照明、水泵等设备。以EXT、Hibernate和Spring为基本框架技术,构建了轻量级、强壮的多级缓存的J2EE企业级Web应用程序,实现鹅舍环境参数的远程监控,并与现有商用人工控制器进行了现场试验和性能对比。试验结果表明:该智能监控系统长期运行稳定、可靠,能够满足鹅反季节繁殖对光照和温湿度的环境调控要求。与人工粗略控制、上海梵龙的畜禽控制器相比,控制精度分别提高5.49%和2.83%。在夏季风机湿帘负压通风降温时测定的舍内温度相对于设定值的均方根误差分别为0.202、0.494、0.372℃,相对湿度相对于设定值的均方根误差分别为1.745%、3.166%、2.621%,控制效果显著优于人工粗略控制和现有控制器(P0.05)。在精准的光照调控下,种鹅均能按预期的时间开产,并在高峰期长期维持产蛋率35%~45%,表现出稳定、良好的产蛋性能。  相似文献   

12.
农户用机械通风钢网式小麦干燥储藏仓的气流场分析   总被引:1,自引:1,他引:0  
为保障农户收获后高水分粮食不落地安全储藏,针对一种仓壁透气中心带通风立筒的圆形钢网式农户储粮干燥仓,应用CFD法对收获后高水分小麦在进行机械通风时的气流场进行仿真分析,将仓内小麦堆等效为多孔介质,分析静压、动压、流量等空间分布规律。结果表明:仓内静压和动压值随半径(横向)增加呈指数衰减;柱面流量随半径呈幂函数衰减;横截面流量随高度呈指数衰减;粮堆区竖向通风均匀度显著优于横向(径向);流量分布为仓底上粮面仓壁,仓壁气流流量只占总流量的24.6%;实仓风速测试结果与仿真分析结果规律一致,平均相对误差为16.35%,表明基于多孔介质模型和CFD法分析钢网式储粮干燥仓的流场分析具有较好的准确性,研究结果为此类钢网式储粮仓流场分析和优化提供了方法和依据。  相似文献   

13.
Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse   总被引:8,自引:4,他引:8  
The effect of ventilation configuration of a tunnel greenhouse with crop on airflow and temperature patterns was numerically investigated using a commercial computational fluid dynamics (CFD) code. The numerical model was firstly validated against experimental data collected in a tunnel greenhouse identical with the one used in simulations. The airflow patterns were measured and collected using a three-dimensional sonic anemometer and the greenhouse ventilation rate was deduced using a tracer gas technique. A good qualitative and quantitative agreement was found between the numerical results and the experimental measurements. After its validation, the CFD model was used to study the consequences of four different ventilator configurations on the natural ventilation system. The ventilation configuration affects the ventilation rate of the greenhouse and the airflow and air temperature distributions as well. For the different configurations, computed ventilation rates varied from 10 to 58 air changes per hour for an outside wind speed of 3 m s−1 and for a wind direction perpendicular to the openings. Likewise, the simulations highlight that while the mean air temperature at the middle of the tunnels varied from 28·2 to 29·8°C, for an outside air temperature of 28°C, there are regions inside tunnels 6°C warmer than outside air. Average air velocity in the crop cover varied according to the arrangement of the vents from 0·2 to 0·7 m s−1. The consequences of the marked climate heterogeneity on plant activity through the variation of crop aerodynamic resistance as well as the influence of the vent configurations on the efficiencies of ventilation on flow rate and air temperature differences between inside and outside, are also discussed.  相似文献   

14.
为增加植物工厂多层栽培模式中作物冠层内部气流扰动,该研究设计了一种冠层微环境管道通风装置,利用计算流体力学软件(Computational Fluid Dynamics,CFD)构建三维栽培模型。在模型中,将植物冠层区域考虑为多孔介质,多孔介质的黏滞阻力系数为25,惯性阻力系数为1.3;LED灯管设置为热源模型,热源模型散热量为297 525 kW/m3。利用模型模拟并实测入口速度为8 m/s时植物冠层表面和上部空间气流速度,发现空气流域的平均误差为16%,模拟值与实测值吻合较好。利用验证的模型模拟不同入口速度下植物冠层的气流分布,结果表明:进气速度设置为8 m/s,该速度下植物冠层内部适宜速度区域体积占比为67.58%,冠层表面适宜速度区域面积占比为55.23%,冠层内部气流平均速度为0.14 m/s。研究表明植物工厂冠层微环境管道通风模式能有效增加冠层气流扰动。  相似文献   

15.
果园风送喷雾机导流板角度对气流场三维分布的影响   总被引:1,自引:4,他引:1  
风送喷雾条件下,雾滴是在空气流携带下进入果树冠层的各个部位,所以喷雾机气流场的运动和分布对雾滴的分布和穿透非常重要。为了研究果园风送喷雾机导流板角度变化对外部气流速度场三维空间分布的影响,该文采用ICEM建立几何模型,并进行全结构网格划分,采用k-ε湍流模型和CFX求解器进行数值求解。通过变换上导流板角度(30°、45°、60°、90°)与下导流板角度(0°、10°、20°、30°),来模拟分析风机外部流场在各工况下的空间稳态流场、湍流状态,以及对气流场空间分布的影响。结果表明,下导流板角度由0°增加至30°过程中,由于地面摩擦阻力对气流的影响逐渐减小,同时地面摩擦阻力与两侧空气阻力形成的夹角越来越大,因此单一气流束逐渐分成3条气流束,这样的气流分布优于单一方向气流对果树枝叶的吹动效果,有利于气流携带雾滴进入果树冠层;上下导流板导向气流主要集中在导流板指向区域,因此,导流板的角度设置应根据树冠高度、树干高度来调整。通过设置合理的导流板角度,使得风场分布与果树冠形相吻合,达到仿形喷雾效果。对于行距4 m、树高3.0~3.2 m的果园喷雾,上、下导流板角度均为30°;对于棚架果园,上导流板角度为90°(或卸掉上导流板),下导流板为30°。该研究有利于指导田间喷雾作业、喷雾参数调整,可达到更好的喷雾效果、减少环境污染。  相似文献   

16.
基于CFD离散相模型雾滴沉积特性的模拟分析   总被引:6,自引:4,他引:2  
为分析三维空间中气流对雾滴飘移的影响,该文基于计算流体力学(computational fluid dynamics,CFD)离散相模型的粒子跟踪技术,研究了不同喷雾条件下的雾滴特性。该文在条件为3m×2m×2m的长方体计算区域,喷嘴置于长方体顶端(上表面的几何中心),在合适的边界条件参数下,对喷雾高度为0.25~2m,风速为0~3m/s变化范围内的雾滴沉积特性进行了分析。结果显示,雾滴的分布趋势(偏移量)随风速和喷雾高度大小而变化:雾滴的沉积量随喷雾高度和风速的增加逐渐减小,其最大值为100%(喷雾高度为0.25m,风速为0),最小值为7.2%(喷雾高度为2m,风速为3m/s),其沉积率最大值和最小值分别为79.07%和3.98%,并基于该方法建立了雾滴沉积量和沉积率的预测模型。该研究为精量施药提供参考。  相似文献   

17.
植物工厂是当前可控农业环境的最高形式之一,但植物工厂内温度、气流空间分布不均,不同栽培架之间存在一定温差、气流速度差。为解决气流植物工厂内局部环境因子差异大的问题,该研究对植物工厂进风口设置进行改进,在侧进上出气流循环模式下,借鉴均流板原理设计了一款全网孔通风墙型植物工厂,并通过计算流体力学软件(computational fluid dynamics, CFD)进行模拟,分析该类型工厂下温度、气流速度、CO2浓度、相对湿度、适宜风速占比、空气龄、指定流线速度变化情况,以评价全网孔通风墙对植物工厂内局部环境差异的改进效果。该设计平均空气龄为7.5 s,是无全网孔通风墙条件下的1/9,空气更新效率有效提升。研究表明全网孔通风墙型植物工厂能有效提升植物工厂内环境因子分布均匀性。  相似文献   

18.
农田休闲期垄作地形对近地表风场的影响   总被引:1,自引:0,他引:1  
垄作是旱作农田常用的保护性耕作技术,而其防风抗蚀的机制尚需研究。通过野外试验,对垄脊高25cm,垄沟宽1.5m的垄作田上风向、垄间及下风向地带0~4m的风流场进行了同步观测,对不同观测位置的时均风速、空气动力学粗糙度、摩阻速度和风速脉动进行了对比分析。结果表明,土垄间和下风向近地表0~1m内时均风速比上风向平坦地表明显降低,其中高0.3m处降低幅度最大。水平方向上风速降低幅度、空气动力学粗糙度和摩阻速度均随观测点与垄作地表距离的增大而减小。受风速递增的影响,风速的绝对脉动强度随高度呈对数关系递增。风速的相对脉动强度在0~1m内随高度增大而降低,1m以上基本无变化。高0.05m处风速的相对脉动强度在水平方向上随与垄作田距离的减小而增大,其中垄间最大,时均风速相同时对地面剪切力最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号