首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study focuses on CO2 and water vapor flux measurements, water use efficiency estimates and evapotranspiration modeling during the course of growth of a young banana crop in a screenhouse in northern Israel. An eddy covariance system was deployed at the center of the screenhouse during two growth periods of the banana crop: small and large plants. Results show that daily whole canopy evapotranspiration increased during the measurement period from 2.2 mm day?1 for the smaller plants to 3.4 mm day?1 for the larger plants. The increase in net daily CO2 consumption doubled during the same period, from about 11 to 21.5 g m?2 day?1 per unit ground area. Water vapor and CO2 fluxes per unit leaf area were independent of plant size and averaged with 51 and 0.29 g m?2 day?1, respectively. Consequently, water use efficiency, defined as the ratio between net vertical fluxes of CO2 and water vapor, was nearly constant during growth of the plants. Evapotranspiration models provided more accurate predictions for larger than for smaller plants. This was due to inadequate treatment of the partial cover of young plants, which could be overcome by the use of a crop coefficient. A modified Penman–Monteith evapotranspiration model adapted to the screenhouse environment, applied here for the first time to a banana screenhouse, was in better agreement with the measurements than an open canopy model.  相似文献   

2.
Irrigation of crops in arid regions with marginal water is expanding. Due to economic and environmental issues arising from use of low-quality water, irrigation should follow the actual crop water demands. However, direct measurements of transpiration are scant, and indirect methods are commonly applied; e.g., the Penman–Monteith (PM) equation that integrates physiological and meteorological parameters. In this study, the effects of environmental conditions on canopy resistance and water loss were experimentally characterized, and a model to calculate palm tree evapotranspiration ETc was developed. A novel addition was to integrate water salinity into the model, thus accounting for irrigation water quality as an additional factor. Palm tree ETc was affected by irrigation water salinity, and maximum values were reduced by 25 % in plants irrigated with 4 dS m?1 and by 50 % in the trees irrigated with 8 dS m?1. Results relating the responses of stomata to the environment exhibited an exponential relation between increased light intensities and stomatal conductance, a surprising positive response of stomata to high vapor pressure deficits and a decrease in conductance as water salinity increased. These findings were integrated into a modified ‘Jarvis–PM’ canopy conductance model using only meteorological and water quality inputs. The new approach produced weekly irrigation recommendations based on field water salinity (2.8 dS m?1) and climatic forecasts that led to a 20 % decrease in irrigation water use when compared with current irrigation recommendations.  相似文献   

3.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

4.
Water requirements of maize in the middle Heihe River basin, China   总被引:2,自引:0,他引:2  
As part of an intercomparison study on crop evapotranspiration (ETc), six methods for estimating ETc have been applied to maize field in the middle Heihe River basin, China. The ETc was estimated by the soil water balance and Bowen ratio-energy balance methods while the Priestley-Taylor, Penman, Penman-Monteith and Hargreaves methods were used for estimating the reference evapotranspiration (ET0). The results showed that the trend of ETc was very similar, while the differences were significant among the different methods. The variations of ETc were closely related to the LAI as well as to the meteorological features. The ETc for the Bowen ratio-energy balance, Penman, Penman-Monteith, soil water balance, Priestley-Taylor and Hargreaves methods totaled 777.75, 693.13, 618.34, 615.67, 560.31 and 552.07 mm, respectively, with the daily mean values for 5.26, 4.68, 4.18, 4.16, 3.79 and 3.73 mm day−1. The Penman-Monteith method provided fairly good estimation of ETo as compared with the Priestley-Taylor, Penman, Hargreaves methods. By contrast with the Penman-Monteith method, the Bowen ratio-energy balance and Penman methods were 25.8% and 12.0% higher, while the Priestley-Taylor and Hargreaves methods were 9.4% and 10.7% lower, respectively. Therefore, the Hargreaves and Priestley-Taylor methods were the alternative ETc methods in arid regions of Northwest China.  相似文献   

5.
The aim of this study was to present a methodology to analyse the main factors that influence annual water application costs in centre pivot irrigation systems and to determine the most cost-effective centre pivot design, given the variables of machine length, lateral pipe diameter, sprinkler type (LEPA and fixed and rotating spray plate sprinklers (FSPS and RSPS)), system capacity, application efficiency, and water and energy costs for the irrigation of crops such as maize under conditions in Spain. Annual water application costs were calculated as the sum of the investment (Ca), energy (Ce), water (Cw), and equipment maintenance costs (Cm). Parameters used to assess the influences on pivot design were system capacity S c = 1.25 L s?1 ha?1; application efficiency Ea = 80% for FSPS, Ea = 85% for RSPS, and Ea = 90% for LEPA; water price P w = 0.06 € m?3 (0.081 US dollars); energy price Ene = 0.10 € kWh?1 (0.135 US dollars); net annual crop irrigation water requirement N n = 7,000 m3 ha?1 year?1; and net daily peak crop water requirement N nmax = 7.63 mm d?1 for maize. Results indicate that for plots smaller than 30 ha, the recommended pipeline diameter is 127.0 mm (5 in); for 30–40 ha, 168.3 mm (6 5/8 in); for 40–75 ha, 219.1 mm (8 5/8 in); and for 75–100 ha, 254.0 mm (10 in). A multidiameter pipe solution only slightly reduced water application costs in most cases studied. It was also determined that water costs and irrigation efficiency have a major influence on the total annual cost of water application; however, system capacity and energy price did not strongly affect total cost. For this reason, water application uniformity is very important and can be accomplished using a proper nozzle package and regular maintenance. The paper helps farmers determine the most cost-effective centre pivot design and management.  相似文献   

6.
Estimation of crop evapotranspiration (ETC) for certain crops such as potato is very important for irrigation planning, irrigation scheduling and irrigation systems management. The primary focus of this study was to investigate the accuracy of the adaptive neurofuzzy inference system (ANFIS) and support vector machines (SVM) for potato ETC estimation when lysimeter measurements or the complete weather data for applying the FAO method are not available. The estimates of the ANFIS and SVM models were compared with the empirical equations of Blaney–Criddle, Makkink, Turc, Priestley–Taylor, Hargreaves and Ritchie. The performances of the different SVM and ANFIS models were evaluated by comparing the corresponding values of root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (r). The drawn conclusions confirmed that the SVM and ANFIS models could provide more accurate ETC estimates than the empirical equations. Overall, the minimum RMSE (0.042 mm/day) and MAE (0.031 mm/day) values and the maximum r value (0.98) were obtained using the SVM model with mean air temperature, relative humidity, solar radiation, sunshine hours and wind speed as inputs.  相似文献   

7.
An experiment was carried out in a naturally ventilated greenhouse to study the relationship between banana (Musa sp.) plant transpiration (Tr) measured with load cells, reference crop evapotranspiration (ETo) calculated with five widely used models (i.e. the Priestley-Taylor, FAO radiation, Hargreaves, FAO Penman and FAO Penman-Monteith models) and pan evaporation (Epan) measured with a standard Chinese 20 cm pan. Microclimatic conditions were measured inside the greenhouse. Results show that vapor pressure deficit and air temperature had good linear correlations to banana Tr with R2 of 0.67 and 0.62, respectively. Among the five models tested, banana Tr and ETo calculated with the FAO-Penman model yielded the highest determination coefficient (R2 = 0.67), followed by the FAO-PM model (R2=0.63), the FAO radiation model (R2=0.52), the Hargreaves model (R2=0.49) and the Priestley-Taylor model (R2=0.47). Banana transpiration Tr vs. Epan yielded an R2 of 0.83, which is higher than the five models tested. In conclusion, the 20 cm pan can be useful for estimating banana Tr in greenhouses.  相似文献   

8.
Spatial and temporal patterns of water depletion in the irrigated land of Khorezm, a region located in Central Asia in the lower floodplains of the Amu Darya River, were mapped and monitored by means of MODIS land products. Land cover and land use were classified by using a recursive partitioning and regression tree with 250 m MODIS Normalized Difference Vegetation Index (NDVI) time series. Seasonal actual evapotranspiration (ETact) was obtained by applying the Surface Energy Balance Algorithm for Land (SEBAL) to 1 km daily MODIS data. Elements of the SEBAL based METRIC model (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) were adopted and modified. The upstream–downstream difference in irrigation was reflected by analyzing agricultural land use and amounts of depleted water (ETact) using Geographical Information Systems (GIS). The validity of the MODIS albedo and emissivity used for modeling ETact was assessed with data extracted from literature. The r 2 value of 0.6 indicated a moderate but significant association between ETact and class-A-pan evaporation. Deviations of ETact from the 10-day reference evapotranspiration of wheat and cotton were found to be explainable. In Khorezm, seasonal maximum values superior to 1,200 and 1,000 mm ETact were estimated for rice and cotton fields, respectively. Spatio-temporal comparisons of agricultural land use with seasonal ETact disclosed unequal water consumption in Khorezm. Seasonal ETact on agricultural land decreased with increasing distance to the water intake points of the irrigation system (972–712 mm). Free MODIS data provided reliable, exhaustive, and consistent information on water use relevant for decision support in Central Asian water management.  相似文献   

9.
Climate change will have important implications in the agriculture of semi-arid regions, such as Southern Spain, where the expected warmer and drier conditions might augment crop water demand. To evaluate these effects, a data set consisting of observed daily values of air temperature, relative humidity, sunshine duration and wind speed from eight weather stations in Andalusia and covering the period 1960-2005 was used for estimating reference evapotranspiration (ETo). ETo was calculated using five methods: the more complex Penman-Monteith FAO-56 (PM) equation, considered as a reference in this study, and four alternative methods with fewer data requirements, Hargreaves, Blaney-Criddle, Radiation and Priestley-Taylor. These methods were compared to PM with respect to ETo average values and trends. The non-parametric Mann-Kendall test was used to evaluate annual and seasonal trends in the main climate variables and ETo.Due to increases in air temperature and solar radiation, and decreases in relative humidity, statistically significant increases in PM-ETo were detected (up to 3.5 mm year−1). Although the Hargreaves equation provided the closest average values to PM, this method did not detect any ETo trend. On the other hand, trends found from Blaney-Criddle and Radiation ETo values were similar to those obtained from PM. In addition, after a local adjustment, these two methods gave accurate ETo average values. Therefore, Blaney-Criddle and Radiation methods have shown themselves to be the most accurate approaches for ETo determination in climate change studies, when available data provided by climate models are limited.  相似文献   

10.
Gross sprinkler evaporation losses (SELg) can be large and decrease irrigation application efficiency. However, it is not universally established how much of the SELg contributes to decrease the crop evapotranspiration during the sprinkler irrigation and how much are the net sprinkler losses (SELn). The components of SEL were the wind drift and evaporation losses (WDEL) and the water intercepted by the crop (IL). The gross WDEL (WDELg) and evapotranspiration (ET) were measured simultaneously in two alfalfa (Medicago sativa L.) plots, one being irrigated (moist, MT) and the other one not being irrigated (dry, DT). Catch can measurements, mass gains, and losses in the lysimeters and micrometeorological measurements were performed to establish net WDEL (WDELn) during the irrigation and net IL (ILn) after the irrigation as the difference between ETMT and ETDT. Also, equations to estimate ILn and net sprinkler evaporation losses (SELn) were developed. ILn was strongly related to vapor pressure deficit (VPD). SELn were 8.3 % of the total applied water. During daytime irrigations, SELn was 9.8 % of the irrigation water and slightly less than WDELg (10.9 %). During nighttime irrigations, SELn were slightly greater than WDELg (5.4 and 3.7 %, respectively). SELn was mainly a function of wind speed.  相似文献   

11.
Growth and yield responses of developing almond trees (Prunus amygdalus, Ruby cultivar) to a range of trickle irrigation amounts were determined in 1985 through 1987 (the fifth through seventh year after planting) at the University of California's West Side Field Station in the semi-arid San Joaquin Valley. The treatments consisted of six levels of irrigation, ranging from 50 through 175% of the estimated crop evapotranspiration (ETc), applied to a clean-cultivated orchard using a line source trickle irrigation system with 6 emitters per tree. ETc was estimated as grass reference evapotranspiration (ET0) times a crop coefficient with adjustments based upon shaded area of trees and period during the growing season. Differential irrigation experiments prior to 1984 on the trees used in this study significantly influenced the initial trunk cross-section area and canopy size in the 50% ETc treatment and 125% ETc treatment. In these cases, treatment effects must be identified as relative effects rather than absolute. The soil of the experimental field was a Panoche clay loam (nonacid, thermic, Typic Torriorthents). The mean increase in trunk cross-sectional area for the 3-year period was a positive linear function (r 2 = 0.98) of total amounts of applied water. With increases in water application above the 50% ETc treatment, nut retention with respect to flower and fertile nut counts after flowering, was increased approximately 10%. In 1985 and 1987, the nut meat yields and mean kernel weights increased significantly with increasing water application from 50% to 150% ETc. Particularly in the higher water application treatments, crop consumptive use was difficult to quantify due to uncertainty in estimates of deep percolation and soil water uptake. Maintenance of leaf water potentials higher than –2.3 MPa during early nut development (March through May) and greater than –2.5 MPa the remainder of the irrigation season (through August) were positively correlated with sustained higher vegetative growth rates and higher nut yields.  相似文献   

12.
Accurate quantification of the rate of groundwater (GW) recharge, a pre-requisite for the sustainable management of GW resources, needs to capture complex processes, such as the upward flow of water under shallow GW conditions, which are often disregarded when estimating recharge at a larger scale. This paper provides (1) a method to determine GW recharge at the field level, (2) a consequent procedure for up-scaling these findings from field to irrigation scheme level and (3) an assessment of the impacts of improved irrigation efficiency on the rate of GW recharge. The study is based on field data from the 2007 growing season in a Water Users Association (WUA Shomakhulum) in Khorezm district of Uzbekistan, Central Asia, an arid region that is characterized by a predominance of cotton, wheat and rice under irrigation. Previous qualitative studies in the region reported irrigation water supplies far above the crop water requirements, which cause GW recharge. A field water balance model was adapted to the local irrigation scheme; recharge was considered to be a fraction of the irrigation water losses, determined as the difference between net and gross irrigation requirements. Capillary rise contribution from shallow GW levels was determined with the HYDRUS-1D model. Six hydrological response units (HRUs) were created based on GW levels and soil texture using GIS and remote sensing techniques. Recharge calculated at the field level was up-scaled first to these HRUs and then to the whole WUA. To quantify the impact of improved irrigation efficiency on recharge rates, four improved irrigation efficiency scenarios were developed. The area under cotton had the second highest recharge (895 mm) in the peak irrigation period, after rice with 2,514 mm. But with a low area share of rice in the WUA of <1 %, rice impacted the total recharge only marginally. Due to the higher recharge rates of cotton, which is grown on about 40 % of the cropped area, HRUs with a higher share of cotton showed higher recharge (9.6 mm day?1 during August) than those with a lower share of cotton (4.4 mm day?1). The high recharge rates in the cotton fields were caused by its water requirements and the special treatment given to this crop by water management planners due to its strategic importance in the country. The scenario simulations showed that seasonal recharge under improved irrigation efficiency could potentially be reduced from 4 mm day?1 (business-as-usual scenario) to 1.4 mm day?1 (scenario with maximum achievable efficiency). The combination of field-level modeling/monitoring and GIS approaches improved recharge estimates because spatial variability was accounted for, which can assist water managers to assess the impact of improved irrigation efficiencies on groundwater recharge. This impact assessment enables managers to identify options for a recharge policy, which is an important component of integrated management of surface and groundwater resources.  相似文献   

13.
The use of overhead trellis systems for the production of dry-on-vine (DOV) raisins and table grapes in California is expanding. Studies were conducted from 2006 to 2009 using Thompson Seedless grapevines grown in a weighing lysimeter trained to an overhead arbor trellis and farmed as DOV raisins for the first two years and for use as table grapes thereafter. Maximum canopy coverage for the two lysimeter vines across years was in excess of 80 %. Seasonal (15 March–31 October) evapotranspiration for the lysimeter vines (ETLys) was 952 mm in 2007 (farmed as DOV raisins) and 943 and 952 mm (when farmed as table grapes). The maximum crop coefficient (K cLys) across all 4 years ranged from 1.3 to 1.4. These maximum values were similar to those estimated using the relationship where K c is a function of the amount of shaded area measured beneath the canopy at solar noon (K c = 0.017 × percent shaded area). Covering the lysimeter’s soil surface with plastic (and then removing it) numerous times during the 2009 growing season (1 June–14 September) reduced ETLys from an average of 6.4 to 5.6 mm day?1 and the K c from 1.07 to 0.93. A seasonal basal K c (K cb) was calculated for grapevines using an overhead trellis system with a 13 % reduction in the K cLys across the growing season.  相似文献   

14.
This study was conducted to determine the effect of different supplemental irrigation rates on chickpea grown under semiarid climatic conditions. Chickpea plots were irrigated with drip irrigation system and irrigation rates included the applications of 0 (I 0) 25 (I 25), 50 (I 50), 75 (I 75), 100 (I 100), and 125 % (I 125) of gravimetrically measured soil water deficit. Plant height, 1,000 seed weight, yield, biomass, and harvest index (HI) parameters were determined in addition to yield-water functions, evapotranspiration (ET), water use efficiency (WUE), and irrigation water use efficiency (IWUE). Significant differences were noted for plant height (ranging from 24.0 to 37.5 cm), 1,000 seed weight (ranging from 192.0 to 428.7 g), and aboveground biomass (ranging from 2,722 to 6,083 kg ha?1) for water applications of I 0 and I 125. Statistical analysis indicated a strong relationship between the amount of irrigation and yield, which ranged from 256.5 to 1,957.3 kg ha?1. Harvest index values ranged between 0.092 and 0.325, while WUE and IWUE values ranged between 1.15–4.55 and 1.34–8.36 (kg ha?1 mm?1), respectively.  相似文献   

15.
Consumptive water use and crop coefficients of irrigated sunflower   总被引:2,自引:1,他引:1  
In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing seasons. The experimental work was conducted in the lysimeter facilities located in Albacete (Central Spain). A weighing lysimeter with an overall resolution of 250 g was used to measure the daily sunflower evapotranspiration throughout the growing season under sprinkler irrigation. The lysimeter container was 2.3 m × 2.7 m × 1.7 m deep, with an approximate total weight of 14.5 Mg. Daily ET c values were calculated as the difference between lysimeter mass losses and lysimeter mass gains divided by the lysimeter area. In the lysimeter, sprinkler irrigation was applied to replace cumulative ET c, thus maintaining non-limiting soil water conditions. Seasonal lysimeter ET c was 619 mm in 2009 and 576 mm in 2011. The higher ET c value in 2009 was due to earlier planting and a longer growing season with the maximum cover coinciding with the maximum ET o period. For the two study years, maximum average K c values reached values of approximately 1.10 and 1.20, respectively, during mid-season stage and coincided with maximum ground cover values of 75 and 88 %, respectively. The dual crop coefficient approach was used to separate crop transpiration (K cb) from soil evaporation (K e). As the crop canopy expanded, K cb values increased while the K e values decreased. The seasonal evaporation component was estimated to be about 25 % of ET c. Linear relationships were found between the lysimeter K cb and the canopy ground cover (f c) for the each season, and a single relationship that related K cb to growing degree-days was established allowing extrapolation of our results to other environments.  相似文献   

16.
The standard FAO methodology for the determination of crop water requirements uses the product of reference evapotranspiration (ETo) and crop coefficient values. This methodology can be also applied to soil-grown plastic greenhouse crops, which occupy extended areas in the Mediterranean basin, but there are few data assessing methodologies for estimating ETo in plastic greenhouses. Free-drainage lysimeters were used between 1993 and 2004 to measure ETo inside a plastic greenhouse with a perennial grass in Almería, south-eastern Spain. Mean daily measured greenhouse ETo ranged from values slightly less than 1 mm day−1 during winter to values of approximately 4 mm day−1 during summer in July. When the greenhouse surface was whitened from March to September (a common practice to control temperature), measured ETo was reduced by an average of 21.4%. Different methodologies to calculate ETo were checked against the measurements in the greenhouse without and with whitening. The methods that performed best in terms of accuracy and statistics were: FAO56 Penman–Monteith with a fixed aerodynamic resistance of 150 s m−1, FAO24 Pan Evaporation with a constant Kp of 0.79, a locally-calibrated radiation method and Hargreaves. Given the data requirements of the different methods, the Hargreaves and the radiation methods are recommended for the calculation of greenhouse ETo because of their simplicity.  相似文献   

17.
Two crop coefficient equations were derived as a function of fraction of thermal units from lysimeter measured corn evapotranspiration (ETc-lys) during 1997 and 1998, and reference evapotranspiration obtained from: (a) lysimeter measurements (Kcmes) or FAO Penman-Monteith (ETo-PM) estimates (Kcest-PM). For validation, corn evapotranspiration (ETc-est) was estimated in 2005 and 2006 from ETo-PM and: (a) the equation for Kcmes with (ETc-est-lyslc) or without (ETc-est-lys) locally calibrated ETo-PM; (b) the equation for Kcest-PM; and (c) the FAO approach (ETc-est-FAO). The ETc-est_lys estimates showed the lowest bias (0.09 mm day−1); the ETc-est-PM and ETc-est-FAO, the highest (0.50-0.51 mm day−1). However, the root mean square error (RMSE, 1.23–1.27 mm day−1) and the index of agreement (IA, around 0.94) of the ETc-est-lys, ETc-est-lyslc and ETc-est-PM were similar. Therefore, ETc-est-lys is recommended although the ETc-est-lyslc was similarly accurate. The ETc-est-PM is less recommended due to poorer bias and systematic mean square error, and a general underestimation except for low corn ET values. For real time irrigation scheduling, the ETc-est-FAO should be avoided as RMSE (1.35 mm day−1), IA (0.93) and bias were slightly worse, corn ET was overestimated but for high values, and the length of the four phenological stages must be known in advance.  相似文献   

18.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

19.
Anticipating, or forecasting near-term irrigation demands is a requirement for improved management of conveyance and delivery systems. The most important component of a forecasting regime for irrigation is a simple, yet reliable, approach for forecasting crop water demands, which in this paper is represented by the reference or potential evapotranspiration (ETo). In most cases, weather data in the area is limited to a reduced number of variables measured, therefore current or future ETo estimation is restricted. This paper summarizes the results of testing of two proposed forecasting ETo schemes under the mentioned conditions. The first or “direct” approach involved forecasting ETo using historically computed ETo values. The second or “indirect” approach involved forecasting the required weather parameters for the ETo calculation based on historical data and then computing ETo. An statistical machine learning algorithm, the Multivariate Relevance Vector Machine (MVRVM) is applied to both of the forecastings schemes. The general ETo model used is the 1985 Hargreaves Equation which requires only minimum and maximum daily air temperatures and is thus well suited to regions lacking more comprehensive climatic data. The utility and practicality of the forecasting methodology is demonstrated with an application to an irrigation project in Central Utah. To determine the advantage and suitability of the applied algorithm, another learning machine, the Multilayer Perceptron (MLP), is used for comparison purposes. The robustness and stability of the proposed schemes are tested by the application of the bootstrap analysis.  相似文献   

20.
Understanding reference crop evapotranspiration (ET0) is essential in planning the most effective use of water resources in the arid northwest China. The objective of the present work in the middle Heihe River basin were: (1) to determine the best model for calculating the areal distribution of reference crop evapotranspiration in this region, and (2) to estimate the spatial distribution of the irrigation requirements of spring wheat. Note that eight commonly used formulates were tested and that FAO-Penman was the best.The irrigation amount of spring wheat in 2000 was estimated by three steps. First, DEM-based and GIS-assisted methods were employed to estimate the spatial distribution of reference crop evapotranspiration (ET0) according to FAO-Penman model. Then, spring wheat evapotranspiration (ET) was calculated by ET0 and crop-coefficient (Kc). Finally, the maximum irrigation amount of spring wheat was estimated with the spring wheat evapotranspiration and precipitation in the different growing stage. The maximum irrigation has temporal–spatial variation. Temporally the irrigation amount appears the largest in June when it is the peak period of spring wheat development. The irrigation amount is the smallest in July because spring wheat was in late-season stage. In April, spring wheat was in seedling stage during which the water demand is also small. Spatially the irrigation amount increases from southeast to northwest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号