首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field experiments were conducted at the Luancheng Agro-Ecosystem Experimental Station of the Chinese Academy of Sciences during the winter wheat growing seasons in 2006-2007 and 2007-2008. Experiments involving winter wheat with 1, 2, and 3 irrigation applications at jointing, heading, or milking were conducted, and the total irrigation water supplied was maintained at 120 mm. The results indicated that irrigation during the later part of the winter wheat growing season and increase in irrigation frequency decreased the available soil water; this result was mainly due to the changes in the vertical distribution of root length density. In ≤30-cm-deep soil profiles, 3 times irrigation at jointing, heading, and milking increased the root length density, while in >30-cm-deep soil profiles, 1 time irrigation at jointing resulted in the highest root length density. With regard to evapotranspiration (ET), there was no significant (LSD, P < 0.05) difference between the regimes wherein irrigation was applied only once at jointing; 2 times at jointing and heading; and 3 times at jointing, heading, and milking. Compared with 1 and 3 times irrigation during the winter wheat growing season, 2 times irrigation increased grain yield and 2 times irrigation at jointing and heading produced the highest water-use efficiency (WUE). Combining the results obtained regarding grain yield and WUE, it can be concluded that irrigation at the jointing and heading stages results in high grain yield and WUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.  相似文献   

2.
Optimizing irrigation scheduling for winter wheat in the North China Plain   总被引:1,自引:0,他引:1  
In the North China Plain (NCP), more than 70% of irrigation water resources are used for winter wheat (Triticum aestivum L.). A crucial target of groundwater conservation and sustainable crop production is to develop water-saving agriculture, particularly for winter wheat. The purpose of this study was to optimize irrigation scheduling for high wheat yield and water use efficiency (WUE). Field experiments were conducted for three growing seasons at the Wuqiao Experiment Station of China Agriculture University. Eleven, four and six irrigation treatments, consisting of frequency of irrigation (zero to four times) and timing (at raising, jointing, booting, flowering and milking stage), were employed for 1994/95, 1995/96 and 1996/97 seasons, respectively. Available water content (AWC), rain events, soil water use (SWU), evapotranspiration (ET) and grain yield were recorded, and water use efficiency (WUE) and irrigation water use efficiency (IWUE) were calculated.The results showed that after a 75-mm pre-sowing irrigation, soil water content and AWC in the root zone of a 2-m soil profile during sowing were 31.1% (or 90.7% of field capacity) and 16.1%, respectively. Rainfall events were variable and showed a limited impact on AWC. The AWC decreased significantly with the growth of wheat. At the jointing stage no water deficits occurred for all treatments, at the flowering stage water deficits were found only in the rain-fed treatment, and at harvest all treatments had moderate to severe soil water deficits. The SWU in the 2-m soil profile was negatively related to the irrigation water volume, i.e. applying 75 mm irrigation reduced SWU by 28.2 mm. Regression analyses showed that relationships between ET and grain yield or WUE could be described by quadratic functions. Grain yield and WUE reached their maximum values of 7423 kg/ha and 1.645 kg/m3 at the ET rate of 509 and 382 mm, respectively. IWUE was negatively correlated with irrigated water volume. From the above results, three irrigation schedules: (1) pre-sowing irrigation only, (2) pre-sowing irrigation + irrigation at jointing or booting stage, and (3) pre-sowing irrigation + irrigations at jointing and flowering stages were identified and recommended for practical winter wheat production in the NCP.  相似文献   

3.
Camelina sativa (L.) Crantz is a promising, biodiesel-producing oilseed that could potentially be implemented as a low-input alternative crop for production in the arid southwestern USA. However, little is known about camelina’s water use, irrigation management, and agronomic characteristics in this arid environment. Camelina experiments were conducted for 2 years (January to May in 2008 and 2010) in Maricopa, Arizona, to evaluate the effectiveness of previously developed heat unit and remote sensing basal crop coefficient (K cb ) methods for predicting camelina crop evapotranspiration (ET) and irrigation scheduling. Besides K cb methods, additional treatment factors included two different irrigation scheduling soil water depletion (SWD) levels (45 and 65 %) and two levels of seasonal N applications within a randomized complete block design with 4 blocks. Soil water content measurements taken in all treatment plots and applied in soil water balance calculations were used to evaluate the predicted ET. The heat-unit K cb method was updated and validated during the second experiment to predict ET to within 12–13 % of the ET calculated by the soil water balance. The remote sensing K cb method predicted ET within 7–10 % of the soil water balance. Seasonal ET from the soil water balance was significantly greater for the remote sensing than heat-unit K cb method and significantly greater for the 45 than 65 % SWD level. However, final seed yield means, which varied from 1,500 to 1,640 kg ha?1 for treatments, were not significantly different between treatments or years. Seed oil contents averaged 45 % in both years. Seed yield was found to be linearly related to seasonal ET with maximum yield occurring at about 470–490 mm of seasonal ET. Differences in camelina seed yields due to seasonal N applications (69–144 kg N ha?1 over the 2 years) were not significant. Further investigations are needed to characterize camelina yield response over a wider range of irrigation and N inputs.  相似文献   

4.
The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004–2005 data and validated with 13 independent data sets from experiments conducted during 2002–2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970–1971 to 2005–2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations.Mean Yp across 36 years ranged from 5.2 t ha−1 (10 October sowing) to 6.4 t ha−1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.  相似文献   

5.
黄淮海平原播前土壤水分对冬小麦产量的影响   总被引:2,自引:2,他引:0  
通过2个生长季的田间试验,研究了黄淮海平原播前土壤水分对冬小麦生长发育、籽粒产量及水分利用的影响。结果表明,在播前不灌水条件下,越冬期或返青期灌水都可以获得较高的籽粒产量和水分利用效率,表明播前土壤贮存的水分可以满足冬小麦返青以前对水分的需求。在播前储水灌溉条件下,越冬期不需要灌溉,返青期是适宜的灌水时间;在拔节期或灌浆期灌水都会降低冬小麦的产量和水分利用效率。  相似文献   

6.
In this research, the effects of soil water retention barriers (SWRB) and irrigation levels on soil water content, perennial ryegrass (Lolium perenne c.v Caddieshack) water consumption, fresh clipping yield, visual quality and leaf water content were investigated in 2010 and 2011. Treatments consisted of SWRB application at two different soil depths (30 and 40 cm) and three different irrigation levels (100, 66 and 33 % of available water-holding capacity) in sandy soil. Results showed that placement of SWRB at 40 cm depth (SWRB40) together with 34 % water deficit saved 52 % irrigation water compared with the control (no SWRB) treatment. Additionally, 498 and 653 mm total irrigation water were applied. The mean daily plant water consumption values were 5.94 and 6.51 mm in 2010 and 2011, respectively, in the SWRB40 treatment.  相似文献   

7.
A field experiment was conducted in 2003 and 2004 growing seasons to evaluate the effects of regulated deficit irrigation on yield performance in spring wheat (Triticum aestivum) in an arid area. Three regulated deficit irrigation treatments designed to subject the crops to various degrees of soil water deficit at different stages of crop development and a no-soil-water-deficit control was established. Soil moisture was measured gravimetrically in the increment of 0–20 cm every five to seven days in the given growth periods, while that in 20 increments to 40, 40–60, 60–80, and 80–100 cm depth measured by neutron probe. Compared to the no-soil-water-deficit treatment, grain yield, biomass, harvest index, water use efficiency (WUE), and water supply use efficiency (WsUE) in spring wheat were all greatly improved by 16.6–25.0, 12.4–19.2, 23.5–27.3, 32.7–39.9, and 44.6–58.8% under regulated deficit irrigation, and better yield components such as thousand-grain weight, grain weight per spike, number of grain, length of spike, and fertile spikelet number were also obtained, but irrigation water was substantially decreased by 14.0–22.9%. The patterns of soil moisture were similar in the regulated deficit treatments, and the soil moisture contents were greatly decreased by regulated deficit irrigation during wheat growing seasons. Significant differences were found between the no-soil-water-deficit treatment and the regulated soil water deficit treatments in grain yield, yield components, biomass, harvest index, WUE, and WsUE, but no significant differences occurred within the regulated soil water deficit treatments. Yield performance proved that regulated deficit irrigation treatment subjected to medium soil water deficit both during the middle vegetative stage (jointing) and the late reproductive stages (filling and maturity or filling) while subjected to no-soil-water-deficit both during the late vegetative stage (booting) and the early reproductive stage (heading) (MNNM) had the highest yield increase of 25.0 and 14.0% of significant water-saving, therefore, the optimum controlled soil water deficit levels in this study should range 50–60% of field water capacity (FWC) at the middle vegetative growth period (jointing), and 65–70% of FWC at both of the late vegetative period (booting) and early reproductive period (heading) followed by 50–60% of FWC at the late reproductive periods (the end of filling or filling and maturity) in treatment MNNM, with the corresponding optimum total irrigation water of 338 mm. In addition, the relationships among grain yield, biomass, and harvest index, the relationship between grain yield and WUE, WsUE, and the relationship between harvest index and WUE, WsUE under regulated deficit irrigation were also estimated through linear or non-linear regression models, which indicate that the highest grain yield was associated with the maximum biomass, harvest index, and water supply use efficiency, but not with the highest water use efficiency, which was reached by appropriate controlling soil moisture content and water consumption. The relations also indicate that the harvest index was associated with the maximum biomass and water supply use efficiency, but not with the highest water use efficiency.  相似文献   

8.
Irrigation technologies [i.e., automatic timer, automatic timer with rain sensor, automatic timer with soil water sensor (SWS), and evapotranspiration (ET) controller] were compared in a bahiagrass plot study by measuring irrigation applied, water volumes drained, and NO3–N and NH4–N leached. All irrigation technologies were scheduled to irrigate on Sunday and Thursday. Three different irrigation depths were evaluated with the automatic timer: 15, 19, and 32 mm. SWS treatment allowed scheduled irrigation if soil water content was estimated to be below 70 % of water holding capacity, while the ET treatment allowed scheduled irrigation if soil water content was estimated to be below 50 % of plant available water. The rain sensor, SWS, and ET controller treatments applied significantly less water (p < 0.05) than the automatic timer treatment (which irrigates on specific days and times without regard to system conditions), reducing water by 17–49, 64–75, and 66–70 %, respectively. NO3–N and NH4–N were only significantly different after the second fertilizer application, which coincided with the 32 mm per event irrigation rate for the automatic timer treatment. Under these conditions, the automatic timer treatment had significantly greater NO3–N and NH4–N leachate than other treatments due to greater occurrence of soil water content exceeding water holding capacity, which resulted in drainage. Findings suggest that water can be saved using rain sensors, SWSs, or ET controllers and that leachate NO3–N and NH4–N can be reduced using rain sensors, SWSs, or ET controllers.  相似文献   

9.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   

10.
Food production and water use are closely linked processes and, as competition for water intensifies, water must be used more efficiently in food production worldwide. A field experiment with wither wheat (Triticum Aestivum L.), involving six irrigation treatments (from rain-fed to 5 irrigation applications), was maintained in the North China Plain (NCP) for 6 years. The results revealed that dry matter production, grain yield and water use efficiency (WUE) were each curvilinearly related to evapotranspiration (ET). Maximum dry matter at maturity was achieved by irrigating to 94% and maximum grain yield to 84% of seasonal full ET. A positive relationship was found between harvest index (HI) and dry matter mobilization efficiency (DMME) during grain filling. Moderate water deficit during grain filling increased mobilization of assimilate stored in vegetative tissues to grains, resulting in greater grain yield and WUE. Generally, high WUE corresponded with low ET, being highest at about half potential ET. At this location in NCP, highest WUE and grain yield was obtained at seasonal water consumption in the range 250–420 mm. For that, with average seasonal rainfall of 132 mm, irrigation requirements was in the range of 120–300 mm and due to the deep root system of winter wheat and high water-holding capacity of the soil profile, soil moisture depletion of 100–150 mm constituted the greater part of the ET under limited water supply. The results reveal that WUE was maximized when around 35% ET was obtained from soil moisture depletion. For that, seasonal irrigation was around 60–140 mm in an average season.  相似文献   

11.
为探求西北内陆干旱地区制种玉米合理的灌溉制度,在石羊河流域设置了灌水定额、灌水次数、次追肥量和追肥次数的L9(34)正交试验。结果表明,制种玉米生育期表层土壤水分变化大,随制种玉米播后天数的增加呈降低趋势。相同灌水定额条件下,随灌水次数增加深层土壤水分含量出现多次峰值。制种玉米经济产量介于2 704.14~4 877.57 kg/hm~2,水分利用效率介于0.737~1.053 kg/m~3。制种玉米产量与耗水量呈显著正相关关系(R2=0.84)。产量与穗粗、穗长、秃尖长、穗行数及行粒数各产量特征值呈显著正相关关系。垄膜沟灌条件下,制种玉米全生育期灌水6次(播后灌水定额500 m~3/hm~2,拔节期、大喇叭口期、抽穗期、灌浆前期、灌浆后期灌水定额均为400m~3/hm~2),总灌溉定额为2500 m~3/hm~2,拔节期、大喇叭口期分别追施N肥1次(追肥量150 kg/hm~2)的水肥调控措施作物产量和水分利用效率最优。  相似文献   

12.
Lysimetric experiments were conducted to determine the contribution made by groundwater to the overall water requirements of safflower (Carthamus tinctorius L.). The plants were grown in 24 columns, each having a diameter of 0.40 m and packed with silty clay soil. The four replicate randomized complete block factorial experiments were carried out using different treatment combinations. Six treatments were applied during each experiment by maintaining groundwater, with an EC of 1 dS m?1, at three different water table levels (0.6, 0.8 and 1.10 m) with and without supplementary irrigation. The uptake of groundwater as a part of crop evapotranspiration was measured by taking daily readings of the water levels found in Mariotte tubes. The supplementary irrigation requirement for each treatment was applied by adding water (EC of 1 dS m?1). The average percentage contribution from groundwater for the treatments (with and without supplementary irrigation under water table levels of 0.6, 0.8 and 1.10 m) were found to be 65, 59, 38% and 72, 70, 47% of the average annual safflower water requirement (6,466 m3 ha?1). The increase in groundwater depths under supplementary irrigation treatments from 0.6 to 0.80 and 1.10 m caused seed and oil yield reductions of (7, 23.10%) and (48.23, 65.40%), respectively.  相似文献   

13.
A field experiment was carried out over three seasons on Vitis vinifera cv. Tempranillo in order to compare pre-veraison and post-veraison water restrictions on vine performance and fruit composition. Rain-fed vines were compared with a treatment named MAX that was constantly irrigated at 75?% of the estimated crop evapotranspiration (ETc). In addition, an early (pre-veraison) water deficit strategy (ED) was applied by withholding irrigation until plant water stress experienced by vines surpassed a threshold value of midday stem water potential of ?1.0?MPa. After that, 75?% of ETc was applied. A late season deficit (LD) treatment was irrigated as per the MAX up to veraison, and thereafter, water application was reduced to approximately 37?% of ETc. All irrigation regimes increased vine yield up to 58?% with respect to the rain-fed treatment, and no differences in yield among the irrigated treatments occurred. However, there were differences in berry composition among the different irrigation strategies. The ED strategy was more effective than the LD one in reducing berry growth leading to more concentrated berries in terms of sugars and anthocyanins. The LD water shortage impaired berry sugar accumulation due to the detrimental effect of water stress on leaf photosynthesis.  相似文献   

14.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

15.
Irrigation needs to be scheduled properly for winter wheat, the main food crop in North China where the water resources are limited. We optimized the irrigation timing of crops under limited water supply by integrating a soil water balance model, dated water production function with cumulative function of water sensitivity index, and a nonlinear search method. The optimization produced the optimal irrigation date series with the predetermined irrigation quota for each application, which aims to obtain higher crop yield with limited irrigation water and be convenient for irrigation management. This simulation–optimization model was used to investigate the irrigation scheduling of winter wheat in Xiaohe irrigation Area in North China. Results show that optimal irrigation date series, corresponding relative yield and relative evapotranspiration are all closely related to the irrigation quota and initial soil water conditions. For rich and medium initial soil water conditions in medium precipitation year, it takes four times of irrigation (60 mm each time) after greening in order to obtain higher crop yield. But it increases to five times for poor initial condition. With limited irrigation water, irrigation should generally be applied in the preferential sequence of early May or late April (in the jointing stage), then mid and late May (in the heading stage), and finally March (in the greening stage). Irrigation should be applied earlier with lower initial soil water storage. Higher irrigation quota increases the crop yield but tends to decrease the marginal value, especially when irrigation quota exceeds 180 mm. The study also indicates that the optimized relative yield is generally higher than that obtained in field experiment. Based on the optimization, we proposed to use the quadratic polynomial function to describe the frontier water production function, which shows the mathematical relationship between optimized relative yield and relative evapotranspiration.  相似文献   

16.
The objectives of this study were to: (1) to evaluate the effects of subsurface drip irrigation amount and frequency on maize production and water use efficiency, (2) develop production functions and quantify water use efficiency, and (3) develop and analyze crop yield response factors (Ky) for field maize (Zea mays L.). Five irrigation treatments were imposed: fully irrigated treatment (FIT), 25 % FIT, 50 % FIT, 75 % FIT, rainfed and an over-irrigation treatment (125 % FIT). There was no significant (P > 0.05) difference between irrigation frequencies regarding the maximum grain yield; however, at lower deficit irrigation regime, medium irrigation frequency resulted in lower grain yield. There was a decrease in grain yield with the 125 % FIT as compared to the FIT, which had statistically similar yield as 75 % FIT. Irrigation rate significantly impacted grain yield in 2005, 2006 and 2007, while irrigation frequency was only significant during the 2005 and 2006 growing seasons (two dry years) and the interacting effect was only significant in the driest year of 2005 (P = 0.006). For the pooled data from 2005 to 2008, irrigation rate was significant (P = 0.001) and irrigation frequency was also significant (P = 0.015), but their interaction was not significant (P = 0.207). Overall, there were no significant differences between irrigation frequencies in terms of grain yield. Ky had interannual variation and average seasonal Ky values were 1.65, 0.91, 0.91 and 0.83 in 2005, 2006, 2007 and 2008, respectively, and the pooled data (2005–2008) Ky value were 1.14.  相似文献   

17.
A field study was conducted at North Platte, Nebraska in 2007–2009, imposing eight irrigation treatments, ranging from dryland to fully irrigated. Four of the eight treatments allowed for various degrees of water stress only after tasseling and silking. In 2007, corn yield ranged from 8.9 Mg ha?1 with a season total of 41 mm of irrigation water to 11.5 Mg ha?1 for the fully irrigated treatment (264 mm of irrigation water). The treatment with the greatest reduction in irrigation water after tasseling and silking (158 mm) had a mean yield of 10.9 Mg ha?1, only 0.6 Mg ha?1 less than the fully irrigated treatment. In 2009, yields ranged from 12.6 to 13.5 Mg ha?1. There were no significant yield differences between the irrigation treatments for several possible reasons: more in-season precipitation and cooler weather required less irrigation water; much of the irrigation water was applied after the most water-stress sensitive stages of tasseling and silking; and lower atmospheric demand allowed for soil water contents well below 50 % management allowed depletion (MAD) not to cause any yield losses.  相似文献   

18.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

19.
Irrigation is necessary in order to produce sugarcane in semiarid south Texas, but water supplies are becoming increasing limited. Drip and sprinkler irrigation systems offer more precise water control than conventional furrow irrigation, but are more expensive. This study was conducted to evaluate four different methods (pan evaporation (Epan), evapotranspiration (ET), auto-tensiometers, manual tensiometers) for determining the amount of irrigation water to apply, and three different frequencies of water application on sugarcane, in order to make the most efficient use of available water using subsurface drip irrigation. The study was conducted over three sugarcane seasons: the plant crop and two ratoon crops. The amount of water applied based on the different methods varied from year to year, with the ET method prescribing the most water in the first ratoon crop but the least amount in the second ratoon. This was probably caused mostly by differences in annual weather conditions. The more frequently water was applied, the larger amount any method tended to prescribe, since more frequent applications resulted in keeping the soil profile fuller, therefore providing less capacity to store rainfall when it occurred. Number of stress days as determined by calculating a stress coefficient based on ET and soil water balance indicated a large amount of stress in the first ratoon but almost none in the second ratoon crop. Direct soil water monitoring indicated much less stress than the calculated levels. Growth measurements and sugarcane yields showed that the highest water applications resulted in the best responses, regardless of the scheduling method used. All irrigation scheduling methods were effective, prescribing similar amounts of water for a given season. Direct measurement using tensiometers gives the most accurate assessment of field conditions, but is expensive and labor intensive. Automated tensiometers were not very reliable. Pan evaporation and ET are effective once they are properly calibrated by developing appropriate coefficients for a particular region. Pan evaporation has been used for a long time, but it is more difficult to obtain reliable data compared to ET data from automated weather stations.  相似文献   

20.
This research explores the limited irrigation strategies based on root-to-shoot communication that exists in spring wheat, and examines the effects of root-sourced signals on water use and yield performance of three genotypes of spring wheat (Triticum aestivum) under three different irrigation regimes. Four treatments, CT (well-watered management), DIu (supplying water to the upper layer to maintain soil moisture in the entire pot at 50–60% of field water capacity (FWC)), and DId (supplying water to the lower layer to maintain soil moisture in the entire pot at 50–60% FWC), were employed. The treatment DIu was used to simulate frequent post-sowing irrigation with small amount of water in each time, and DId was used to simulate pre-sowing irrigation with the same amount of water. Plants were grown in cylinder pots outdoors. A non-hydraulic root signal was induced from seedling to tillering stage in the treatment DId. But after the jointing stage, the signal resulted in a reduction in root biomass and root length in the upper layer and an increase in root biomass and root length in the middle layer as compared with the treatment DIu. The water use efficiencies of the three genotypes were the highest in the treatment DId and the lowest in the treatment DIu for the genotypes A and C. This suggests that under the conditions of the same amount of water supply frequent post-sowing irrigation to the upper soil layer had lower water use efficiency and grain yield, whereas pre-sowing irrigation to the lower soil layer tended to have higher grain yield and higher water use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号