首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Release of growth hormone (GH) is known to be regulated mainly by GH-releasing hormone (GHRH) and somatostatin (SRIF) secreted from the hypothalamus. A novel peripheral release-regulating hormone, ghrelin, was recently identified. In this study, differences of the GH secretory response to ghrelin and GHRH in growing and lactating dairy cattle were investigated and an alteration of plasma ghrelin levels was observed. The same amounts of ghrelin and GHRH (0.3 nmol/kg) were intravenously injected to suckling and weanling calves, early and mid-lactating cows and non-lactating cows. Plasma ghrelin levels were also determined in dairy cattle in various physiological conditions. The peak values of ghrelin-induced GH secretion were increased in early lactating cows compared to those in non-lactating cows. The relative responsiveness of GH secretion to ghrelin was also increased compared with that to GHRH in early lactating cows. GH secretory responses to GHRH were blunted in mature cows with and without lactation. Conversely, GHRH-induced GH secretory response was greater than that to ghrelin in calves, and also greater in calves than in mature cows. Plasma ghrelin concentrations were elevated in early lactating cows compared to those in non-lactating cows. Plasma GH concentrations were higher in suckling calves and early lactating cows compared with those in non-lactating cows. These results suggest that GHRH is an effective inducer of GH release in growing calves, and that the relative importance of ghrelin in contributing to the rise in plasma GH increases in early lactating cows.  相似文献   

2.
Ghrelin action, which stimulates growth hormone (GH) secretion, may alter during the weaning period in calves. Our objective was to compare the effects of intravenous ghrelin injection on plasma GH, insulin and glucose concentrations in calves around the weaning period. Four Holstein bull calves were fed whole milk and allowed free access to solid feeds, and weaned at 7 weeks of age. Measurements were performed at weeks 1, 2, 4, 6, 7, 9, 11 and 13, when calves were intravenously injected with ghrelin (1.0 μg/kg body weight (BW)) through a catheter, and jugular blood samples were obtained temporally relative to the injection time. Estimated digestible energy intake per metabolic BW transiently decreased at week 7 because of low solid intake immediately after weaning, and thereafter gradually increased. Plasma insulin and glucose concentrations were not affected by ghrelin injection at all ages. In contrast, plasma GH concentrations increased with ghrelin injection at all ages. The incremental area of GH at week 7 was greatest and significantly higher compared with weeks 2, 4, 6 and 9. This result suggests that nutrient insufficiency immediately after weaning enhances GH responsiveness to ghrelin.  相似文献   

3.
The objective of these experiments was to establish the relationship of plasma ghrelin concentrations with feed intake and hormones indicative of nutritional state of cattle. In Exp.1, 4 steers (BW 450 +/- 14.3 kg) were used in a crossover design to compare plasma ghrelin concentrations of feed-deprived steers with those of steers allowed to consume feed and to establish the relationship of plasma ghrelin concentrations with those of GH, insulin (INS), glucose (GLU), and NEFA. After adaptation to a once-daily feed offering (0800), 2 steers continued the once-daily feeding schedule (FED), whereas feed was withheld from the other 2 steers (FAST). Serial blood samples were collected via indwelling jugular catheter from times equivalent to 22 h through 48 h of feed deprivation. Average plasma ghrelin concentrations were greater (P < 0.001) in FAST compared with FED (690 and 123 +/- 6.5 pg/mL) steers. Average plasma ghrelin concentrations for FED steers prefeeding were elevated (P < 0.001) when compared with those postfeeding (174 and 102 +/- 4.2 pg/mL, respectively). Average plasma GH concentration was elevated (P < 0.05) for FAST steers compared with FED steers. Plasma GLU concentrations were not different; however, for FAST steers, NEFA concentrations were elevated (P < 0.001) and INS concentrations were decreased (P < 0.001). In Exp. 2, 4 steers (BW 416 +/- 17.2 kg) were used in a crossover design to determine the effects of i.v. injection of bovine ghrelin (bGR) on plasma GH, INS, GLU, and NEFA concentrations; length of time spent eating; and DMI. Steers were offered feed once daily (0800). Serial blood samples were collected from steers via indwelling jugular catheter. Saline or bGR was injected via jugular catheter at 1200 and 1400. A dosage of 0.08 microg/kg of BW bGR was used to achieve a plasma ghrelin concentration similar to the physiological concentration measured in a FAST steer in Exp. 1 (1,000 pg/mL). Injection of bGR resulted in elevated (P < 0.005) plasma GH concentrations after the 1200 but not the 1400 injection. Plasma INS, GLU, and NEFA concentrations were not affected by bGR injection. For the combined 1-h periods postinjection, length of time spent eating was greater (P = 0.02) and DMI tended to be increased (P = 0.06) for bGR steers. These data are consistent with the hypothesis that ghrelin serves as a metabolic signal for feed intake or energy balance in ruminants.  相似文献   

4.
Plasma concentrations of prolactin (PRL), growth hormone (GH), insulin, glucagon, glucose, urea and free fatty acids (FFA) were measured in Holstein calves, yearlings, bred heifers and primiparous cows, either sired by bulls with high predicted differences (PD) for milk (selection group) or by bulls from an unselected random bred control population (control group; n = 6). Serial blood samples were collected before and after feeding for an 8-h period from 0900 to 1700 h. All animals were fed a complete feed at 1100 h and administered insulin (.6 IU/100 kg body weight) at 1400 h. Mean plasma PRL was greater in control animals after feeding and insulin administration, while GH was greater overall in selection cattle. Insulin remained elevated longer in selection animals after exogenous administration, and plasma glucagon was increased in the control group. While plasma glucose and urea were unaffected by genetic group, plasma FFA were elevated in selection group calves and primiparous cows compared with the control group. All hormones and metabolites differed among the pre- and post-feeding and insulin administration periods and also with age. Mean PRL and GH increased after feeding, while glucagon decreased after exogenous insulin. Plasma FFA declined after feeding, while urea and glucose were similar before and after feeding. Mean PRL increased and glucagon decreased with advancing age and plasma GH and insulin showed inverse relationships at different ages. Plasma FFA changes closely followed GH changes with age, while plasma glucose more closely followed insulin changes with age. Results indicate that all hormones measured and FFA responded to genetic selection for milk, and increases in GH are uniformly associated with increased genetic potential for milk yield.  相似文献   

5.
The purpose of this study was to elucidate the effects of medium-chain fatty acids (MCFAs) on plasma ghrelin concentration in lactating dairy cows. Five early-lactating Holstein cows were randomly assigned to 2 dietary treatments in a crossover design with 2-wk periods. Treatments consisted of diets supplemented or not (control) with calcium salts of MCFAs (MCFA-Ca; 1.5% dry matter). Plasma hormone and metabolite concentrations in blood samples taken from the jugular vein were measured on the morning of feeding on day 14 of each period. Dry matter intake, milk protein, and lactose content of cows fed the MCFA-Ca diet were decreased compared with controls, but with no change in milk yield. Plasma ghrelin concentrations were higher in cows fed the MCFA-Ca diet; however, no significant effect was found on glucagon-like peptide-1 concentrations in plasma. Plasma insulin concentrations decreased, but plasma glucagon concentrations remained unchanged in cows fed the MCFA-Ca diet. The concentrations of nonesterified FAs, total cholesterol, and β-hydroxybutyrate in plasma increased in these cows. In conclusion, dietary MCFAs increase the plasma ghrelin concentrations in lactating dairy cows.  相似文献   

6.
Our objective was to determine the effects of calcium salts of long-chain fatty acids (CLFAs) and rumen-protected methionine (RPM) on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide, and pancreatic hormones in lactating cows. Four Holstein cows in midlactation were used in a 4 by 4 Latin square experiment in each 2-wk period. Cows were fed corn silage-based diets with supplements of CLFAs (1.5% added on dry matter basis), RPM (20 g/d), CLFAs plus RPM, and without supplement. Jugular blood samples were taken from 1 h before to 2 h after morning feeding at 10-min intervals on day 12 of each period. CLFAs decreased dry matter intake, but RPM did not affect dry matter intake. Both supplements of CLFAs and RPM did not affect metabolizable energy intake and milk yield and composition. Plasma concentrations of NEFAs, triglyceride (TG), and total cholesterol (T-Cho) were increased with CLFAs alone, but increases of plasma concentrations of TG and T-Cho were moderated by CLFAs plus RPM. Calcium salts of long-chain fatty acids increased plasma ghrelin concentration, and the ghrelin concentration with CLFAs plus RPM was the highest among the treatments. Plasma concentrations of glucagon-like peptide-1, glucagon, and insulin were decreased with CLFAs, whereas adding RPM moderated the decrease of plasma glucagon concentration by CLFAs. These results indicate that the addition of methionine to cows given CLFAs increases plasma concentrations of ghrelin and glucagon associated with the decrease in plasma concentrations of TG and T-Cho.  相似文献   

7.
Eleven primiparous Holstein Friesian and their crossbred calves (F1, Japanese Black cattle × Holstein Friesian) and 10 multiparous Holstein Friesian and their Holstein Friesian calves were used to evaluate vitamin E status in periparturient period. Plasma α‐tocopherol (α‐toc) concentrations of the multiparous cows were significantly higher than those of the primiparous cows from 60 days before expected calving to 90 days of lactation (P < 0.05). The multiparous cows had a further decrease in the concentrations of α‐toc and total lipid in plasma to the calving than the primiparous cows. Colostrum α‐toc concentrations in multiparous cows were significantly higher than those of the primiparous cows (P < 0.05). Plasma α‐toc concentrations of calves borne by the multiparous cows were significantly higher than those of the primiparous cows at 5 days of age (P < 0.05). Plasma α‐toc concentrations of calves were highest at 5 and 15 days of age in the calves borne by the multiparous and primiparous cows, respectively, and decreased thereafter till 90 days of age. The higher vitamin E status of multiparous cows over primiparous cows might have reflected nutritional composition in the rations. Their calves afforded higher plasma α‐toc levels after birth because of more α‐toc transfer via placenta and more α‐toc secretion in the colostrums thereafter. Plasma α‐toc concentrations of the calves might have decreased as the calves became dependent upon the solid feed of low vitamin E content.  相似文献   

8.
We investigated the effect of increasing nutrient intake on the responsiveness of the GH/IGF-I system in calves fed a high-protein milk replacer. Fifty-four Holstein bull calves were fed one of three levels (low, medium, and high; n = 18 per treatment) of a 30% crude protein, 20% fat milk replacer to achieve target rates of gain of 0.50, 0.95, or 1.40 kg/d, respectively, for low, medium, and high. Six calves per treatment were slaughtered at approximately 65, 85, and 105 kg BW. Additionally, six calves were slaughtered at 1 d of age to provide baseline data. Plasma aliquots from blood samples collected weekly were analyzed for IGF-I, insulin, glucose, NEFA, and plasma urea nitrogen (PUN). Plasma IGF-I and insulin, measured weekly, increased (P < 0.001) with greater nutrient intake from wk 2 of life to slaughter. Plasma glucose and NEFA also increased (P < 0.05) with nutrient intake. In addition, each calf underwent a GH challenge beginning 4 d before the scheduled slaughter. Plasma from blood collected before the first GH injection and 14 and 24 h after the third injection was analyzed for IGF-I and PUN. Response to challenge, calculated as the absolute difference between the prechallenge and 14-h postchallenge plasma IGF-I concentrations, was significant in calves on all three treatments. Plasma urea nitrogen was not different among treatments as measured weekly but decreased (P < 0.001) following GH challenge in all calves. Results of ribonuclease protection assays showed increased expression of hepatic mRNA for GH receptor 1A and IGF-I with increased intake. The amounts of GH receptor and IGF-I mRNA in muscle and adipose, however, were not affected by intake. In summary, plasma IGF-I was elevated in calves with increased nutrient intake, and the elevations in plasma IGF-I following short-term administration of GH were significant in all calves by 65 kg BW. Data demonstrate that in well-managed milk-fed calves the somatotropic (GH/IGF-I) axis is functionally coordinated and sensitive to nutrient intake and GH.  相似文献   

9.
Gastric-derived peptide hormone ghrelin is known for its potent growth hormone (GH) stimulatory effects. The acyl-modification on N-terminal Ser(3) residue is reported to be important to stimulate the ghrelin receptor, GH secretagogue-receptor type1a (GHS-R1a). However, major portion of circulating ghrelin lacks in acylation, and some biological properties of des-acyl ghrelin have been reported in monogastric animals. In the present study, the responsiveness of plasma hormones and metabolites to ghrelin in steers was characterized, and role for des-acyl ghrelin in these changes was investigated. The repeated intravenous administrations of bovine ghrelin (1.0 microg/kg BW) every 2h for 8h to Holstein steers significantly increased the plasma acylated ghrelin, total ghrelin, GH, insulin and NEFA levels. The GH responses in peak values and area under the curves (AUCs) were attenuated by repeated injections of ghrelin, however, the responses of plasma total ghrelin were similar. Plasma insulin AUC decreased after fourth injection of ghrelin while plasma NEFA AUCs gradually increased by repeated injections of ghrelin. Pretreatment of des-acyl ghrelin (10.0 microg/kg BW) 5 min prior to the single injection of ghrelin (1.0 microg/kg BW) did not affect the ghrelin-induced hormonal changes. Moreover, the responses of plasma GH to bovine and porcine ghrelin, which differ in C-terminal amino acid residues, were similar in calves. These data show that (1) GH release was attenuated by repeated administration of ghrelin, (2) ghrelin regulates glucose and fatty acid metabolism probably via different pathway, and (3) des-acyl ghrelin is unlikely the antagonist for ghrelin to induce endocrine effects in Holstein steers.  相似文献   

10.
An investigation was undertaken to ascertain the possibility of a relationship between calcium, inorganic phosphorus, magnesium, 1,25-dihydroxyvitamin D [1,25(OH)2D], and insulin-like growth factor-1 (IGF-1) concentrations in blood plasma and occurrence of congenital joint laxity and dwarfism (CJLD) in young cattle. Pregnant cows were fed hay (30 cows) or grass silage (122 cows) during winter months (October 15 to calving in March). Blood samples were taken from cows on seven occasions during the experiment and 48 hours after calving, and from calves at birth, and at seven, 14 and 56 days old. Five per cent of calves born (six of 122) to cows fed grass silage and none born to cows fed hay were affected by CJLD. The diet and health status of calves were not significantly (P greater than 0.05) associated with the plasma concentration of 1,25(OH)2D. The plasma calcium concentration declined with age of the calves (P less than 0.05) but was not affected by the occurrence of CJLD. Plasma phosphorus and magnesium concentrations in calves born to cows fed silage were higher (P less than 0.05) than in those born to cows fed hay. At birth and seven days old, plasma phosphorus concentrations were higher (P less than 0.05) in CJLD-affected calves than in healthy calves but the plasma concentration of IGF-1 was not different (P greater than 0.05). It was concluded that the high plasma phosphorus concentrations in CJLD-affected calves and their dams could be related to the aetiology of the CJLD condition in calves.  相似文献   

11.
Although Se is essential for antioxidant and thyroid hormone function, factors influencing its requirement are not well understood. A survey and two experiments were conducted to determine the influence of cattle breed and age on selenoprotein activity and the effect of maternal Se supplementation on cow and calf selenoprotein activity and neonatal thyroid hormone production. In our survey, four cowherds of different ages representing three breeds were bled to determine the influence of breed and age on erythrocyte glutathione peroxidase activity (RBC GPX-1). All females were nonlactating, pregnant, and consumed total mixed diets (Holstein) or grazed pasture (Angus and Hereford). In our survey of beef breeds, yearlings had greater average RBC GPX-1 activity than mature cows. In Exp. 1, neonatal Holstein heifers (n = 8) were bled daily from 0 to 6 d of age to determine thyroid hormone profile. An injection of Se and vitamin E (BO-SE) was given after the initial bleeding. Thyroxine (T4) and triiodothyronine (T3) concentrations were greatest on d 0 and decreased (P < 0.05) continuously until d 5 postpartum (156.13 to 65.88 and 6.69 to 1.95 nmol/L, d 0 to 5 for T4 and T3, respectively). Reverse T3 concentrations were 3.1 nmol/L on d 0 and decreased (P < 0.05) to 0.52 nmol/ L by d 5. In Exp. 2, multiparous Hereford cows were drenched weekly with either a placebo containing 10 mL of double-deionized H2O (n = 14) or 20 mg of Se as sodium selenite (n = 13). After 2 mo of treatment, Se-drenched cows had greater (P < 0.01) plasma concentrations than control cows (84.92 vs. 67.08 ng/mL), and at parturition, they had plasma Se concentrations twofold greater than (P < 0.05) control cows (95.51 vs. 47.14 ng Se/mL). After 4 mo, cows receiving Se had greater (P < 0.05) RBC GPX-1 activity than controls; this trend continued until parturition. Colostrum Se concentration was twofold greater (P < 0.05) in Se-drenched cows than control cows (169.97 vs. 87.00 ng/mL). Calves born to cows drenched with Se had greater (P < 0.05) plasma Se concentration, RBC GPX-1, and plasma glutathione peroxidase activity on d 0 compared with calves born to control cows. By d 7, no differences in plasma glutathione peroxidase activity in calves were observed. Maternal Se supplementation did not influence calf thyroid hormone concentrations. Selenium provided by salt and forages is not adequate for cattle in Se-deficient states.  相似文献   

12.
Ghrelin is a gut peptide which participates in growth regulation through its somatotropic, lipogenic and orexigenic effects. Synergism of ghrelin and growth hormone-releasing hormone (GHRH) on growth hormone (GH) secretion has been reported in humans and rats, but not in domestic animals in vivo. In this study, effects of a combination of ghrelin and GHRH on plasma GH and other metabolic parameters, and changes in plasma active and total ghrelin levels were studied in Holstein bull calves before and after weaning. Six calves were intravenously injected with vehicle (0.1% BSA-saline), ghrelin (1 microg/kg BW), GHRH (0.25 microg/kg BW) or a combination of ghrelin plus GHRH at the age of 5 weeks and 10 weeks (weaning at 6 weeks of age). Ghrelin stimulated GH release with similar potency as GHRH and their combined administration synergistically stimulated GH release in preweaning calves. After weaning, GH responses to ghrelin and GHRH became greater compared with the values of preweaning calves, but a synergistic effect of ghrelin and GHRH was not observed. The GH areas under the concentration curves for 2h post-injection were greater in weaned than in preweaning calves (P<0.05) if ghrelin or GHRH were injected alone, but were similar if ghrelin and GHRH were injected together. Basal plasma active and total ghrelin levels did not change around weaning, but transiently increased after ghrelin injection. Basal plasma insulin, glucose and non-esterified fatty acid levels were reduced after weaning, but no changes by treatments were observed. In conclusion, ghrelin and GHRH synergistically stimulated GH release in preweaning calves, but this effect was lost after weaning.  相似文献   

13.
Four experiments were conducted to clarify the effect of intravenous (i.v.) administration of recombinant bovine tumor necrosis factor alpha (rbTNF) on selected metabolites and on hormone secretion in Holstein heifers (n = 6; 347.0 kg average BW). In Exp. 1, rbTNF was injected at three dosage levels in a Latin square; 0 (CONT), 2.5 (TNF2.5), or 5.0 (TNF5) microg/kg BW. Plasma glucose and triglyceride concentrations were at first elevated (P < .05) by rbTNF treatment and then were decreased (P < .05) by TNF2.5 and TNF5. Plasma NEFA concentrations were increased (P < .05) in rbTNF-treated groups. The injection of rbTNF resulted in an increase in plasma insulin levels (P < .05 with TNF5) during the period between 2 and 24 h, except for the period between 6 and 8 h, after the treatment. In Exp. 2, 3, and 4, each heifer received i.v. injections of glucose (.625 mM/kg BW) + rbTNF (5 microg/kg) or glucose + saline (10 mL) (Exp. 2), insulin (0.2 U/kg) + rbTNF or insulin + saline (Exp. 3), and GHRH (0.25 microg/kg) + rbTNF or GHRH + saline (Exp. 4) at 1-wk intervals. In Exp. 2, rbTNF inhibited (P < .05) glucose-stimulated insulin secretion during the initial phase. Thereafter, plasma insulin was higher (P < .01) with the glucose + rbTNF treatment than with the glucose + saline treatment. Treatment with rbTNF inhibited the insulin-stimulated glucose utilization (Exp. 3) and GHRH-stimulated GH secretion (Exp. 4) during the initial phase. These results suggest that rbTNF directly and(or) indirectly affects the intermediary metabolism and hormone secretion in Holstein heifers.  相似文献   

14.
Effects of prepartum fat supplementation of the dam on cold tolerance of calves were determined in two studies. In Exp. 1, 22 F1, crossbred heifers gestating F2 calves received diets containing either 1.7 or 4.7% dietary fat starting at d 230+/-2d of gestation. Safflower seeds (Carthamus tinctorius) containing 37% oil with 79% linoleic acid were the supplemental fat source in isocaloric-isonitrogenous diets. Calves were separated from their dams at birth, fed pooled dairy-cow colostrum, muzzled to prevent sucking, and returned to their dams in a heated (22 degrees C) barn for 3.5 h. At 4 h of age, a jugular catheter was inserted. At 5 h of age, calves were placed in a 0 degrees C room for 140 min and rectal temperatures and blood samples were obtained at 10- and 20-min intervals. Blood was assayed for glucose, cortisol, and cholesterol. In Exp. 2, 18 multiparous, crossbred beef cows bred to Murray Grey sires were randomly assigned to receive diets containing either 1.7 or 3.1% dietary fat starting at 235+/-2 d gestation. Safflower seeds were used as the supplemental fat source in isocaloric-isonitrogenous diets. At d 260 of gestation, premature parturition was induced in one-half of the cows from each diet group by feeding Ponderosa pine (Pinus ponderosa) needles. Experimental protocols were the same as in Exp. 1, except that cold exposure was at 9 degrees C for 200 min. Rectal temperatures were affected in Exp. 1 by time and diet x time (both P < .01) and diet x calf sex (P < .05) and in Exp. 2 by calf age (P < .05), time, and calf age x time (both P < .01). Plasma cortisol concentrations were affected by time (P < .01) and calf sex x time (P < .05) in Exp. 1 and by time ( P < .01) in Exp. 2. Cholesterol concentrations in Exp. 1 were affected by diet x time (P < .05) and in Exp. 2 by time (P < .05). Plasma glucose concentrations were affected in Exp. 1 by diet (P < .05) and in Exp. 2 by calf age, time, and calf age x time (all P < .01). We conclude from Exp. 1 that feeding heifers supplemental fat during late gestation increased glucose concentrations in the newborn calf, resulting in favorable responses in body temperature in the cold-stressed newborns. This increase in substrate availability suggests a potential positive effect on heat generation in newborns during sustained periods of cold stress. In Exp. 2, premature calves had compromised cold tolerance possibly due to impaired shivering or brown adipose tissue thermogenesis.  相似文献   

15.
To understand the regulatory mechanism of the secretory rhythm of GH and the involvement of melatonin (MEL) in GH regulation in cattle, daytime and nighttime profiles of GH secretion and the effect of a photic stimulation on nocturnal GH and MEL secretion were investigated in Holstein steers. Steers were kept under a constant lighting condition of 12 h of light (LIGHT; 500 lx, 0600 to 1800 h):12 h of dark (DARK; 10 lx, 1800 to 0600 h). In Exp. 1, blood was taken for 4 h at 15-min intervals during LIGHT (1100 to 1500 h) and DARK (2300 to 0300 h), respectively. The sampling was also performed from 0500 to 0900 h, with the usual light transition (light onset at 0600 h; morning sampling). In Exp. 2, steers were exposed to light (500 lx) for 1 h from 0000 to 0100 h. Plasma GH and MEL concentrations were determined by RIA and enzyme immunoassay, respectively. Both GH (P < 0.05) and MEL (P < 0.01) concentrations in plasma for 4 h during DARK were greater than those during LIGHT. On the other hand, although MEL concentrations were decreased after the light onset at 0600 during the morning, GH release was not altered. Increased GH secretion during DARK was suppressed (P < 0.01) by the 1 h of light exposure, as were MEL concentrations (P < 0.05). Pineal MEL, which was affected by the photic condition, may play an important role in the secretory rhythm of GH secretion in cattle.  相似文献   

16.
Ghrelin in domestic animals: distribution in stomach and its possible role   总被引:12,自引:0,他引:12  
Ghrelin, a novel growth-hormone-releasing acylated peptide, was recently isolated from rat and human stomachs. In rat, peripheral or central administration of ghrelin stimulates the secretion of growth hormone (GH) from the pituitary gland. Recent work suggests that ghrelin plays an important role in energy homeostasis, body weight, and food intake. We examined the distribution of cells immunoreactive to ghrelin in the stomachs of domestic animals and rats, using a polyclonal antibody for the N-terminal fragment of rat ghrelin [1-11]. We measured the plasma levels of ghrelin before and after feeding in cows, and GH levels after central administration of ghrelin in Shiba goats, to elucidate the possible role of ghrelin. Immunostained cells were widely distributed from the neck to the base of the oxyntic gland in all animals. The plasma ghrelin concentration in cows decreased significantly 1 h after feeding, and then recovered to pre-feeding levels. Administration of ghrelin into the third ventricle in Shiba goats dramatically increased the plasma GH concentration dose-dependently. These results suggest that ghrelin plays an important role in GH secretion and feeding regulation in domestic animals.  相似文献   

17.
We determined the effects of short-term fasting and refeeding on temporal changes in plasma concentrations of leptin, insulin, insulin-like growth factor- 1 (IGF-1), growth hormone (GH), glucose, and nonesterified fatty acids (NEFA), in early lactating cows, non-lactating pregnant cows, and postpubertal heifers. In experiment 1, Holstein cows in early lactation were either fed ad libitum (Control, n=5) or feed deprived for 48 h (Fasted, n=6). Plasma leptin, insulin, and glucose concentrations rapidly declined (P<0.05) within 6h, and IGF-1 by 12h, but all these variables sharply returned to control levels (P>0.10) within 2h of refeeding. Plasma NEFA and GH concentrations were elevated (P<0.05) by 4 and 36 h of fasting and returned to control levels (P>0.10) by 8 and 24h after refeeding, respectively. In experiment 2, four ruminally cannulated pregnant non-lactating Holstein cows were used in a cross-over design and were fasted for 48 h (Fasted) or fasted with partial evacuation of rumen contents (Fasted-Evac). The plasma variables measured did not differ (P>0.10) between Fasted and Fasted-Evac cows. Plasma leptin, insulin, and IGF-1 concentrations were reduced by 10, 6, and 24h of fasting, respectively, in Fasted-Evac cows; and these variables were reduced by 24h in Fasted cows (P<0.05). Plasma glucose levels were reduced (P<0.05) by 48 h of fasting in both groups of fasted animals. Plasma NEFA and GH levels were increased (P<0.05) by 12 and 48 h of fasting, respectively. In experiment 3, postpubertal Holstein heifers were either fed ad libitum (Control, n=4) or feed deprived for 72 h (Fasted, n=5). Concentrations of leptin, insulin, IGF-1, and glucose in plasma were reduced (P<0.05) by 24, 10, 24, and 48 h of fasting, respectively. Plasma NEFA concentrations increased (P<0.05) by 4h, of fasting while GH levels were not significantly (P>0.10) affected by fasting. Collectively, our data provide evidence that plasma leptin concentrations are reduced with short-term fasting and rebound on refeeding in dairy cattle with the response dependent on the physiological state of the animals. Compared to the rapid induction of hypoleptinemia with fasting of early lactation cows, the fasting-induced hypoleptinemia was delayed in non-lactating cows and postpubertal heifers.  相似文献   

18.
The reported effects of feeding on growth hormone (GH) secretion in ruminants have been inconsistent, and are likely influenced by energy status of animals. High-producing dairy cows in early lactation and late lactation were used to assess the effects of energy balance on temporal variation of plasma metabolites and hormones. Cows were fed a single diet once daily, and feed was withdrawn for 90 min prior to feeding. Beginning at the time of feed withdrawal, plasma samples were collected via jugular catheters hourly for 24h. Concentrations of non-esterified fatty acids and GH were measured for all samples, while insulin, glucose, and acylated (active) ghrelin were quantified for four sample times around feeding. As expected, calculated energy balance was significantly lower in early lactation than late lactation cows (-43.5 MJ retained/day versus 7.2 MJ retained/day). Following the primary meal of the day, a GH surge was observed in early lactation but not in late lactation cows. This difference was not explained by temporal patterns in non-esterified fatty acid, insulin, or glucose concentrations. However, a preprandial ghrelin surge was observed in early lactation only, suggesting that ghrelin was responsible for the prandial GH surge in this group. Results of a stepwise regression statistical analysis showed that both preprandial ghrelin concentration and energy balance were significant predictors of prandial GH increase over baseline. Adaptations to negative energy balance in lactating dairy cattle likely include enhanced ghrelin secretion and greater GH response to ghrelin.  相似文献   

19.
An ovine-specific RIA, shown to be reliable for bovine leptin determination, was used to study the effects of breed, body fatness, feeding level, and meal intake on plasma leptin level in adult cattle. Eighteen fat Charolais, fat Holstein, and lean Holstein adult cows were either well-fed (130% of maintenance energy requirements [MER]) or underfed (60% of MER) for 3 wk. The breed tended to have a small effect on plasma leptin level, which was decreased by 70% (P < 0.05) in lean compared to fat Holstein cows. A strong curvilinear relationship was found between mean adipocyte volume and plasma leptin concentrations in well-fed (r = +0.95) and underfed (r = +0.91) cows. Underfeeding caused a significant decrease in plasma leptin levels from 8.0+/-3.1 to 6.1+/-2.3 ng/mL (P < 0.01). Nine adult Holstein cows initially fed at 130% of MER (control) were underfed to 21% of MER for 7 d, and five of them were refed to 237% of MER for 21 d. Plasma leptin measured 1 h before meal distribution was decreased from 5.9+/-0.4 to 3.8+/-0.2 ng/mL (P < 0.01) by underfeeding and increased to reach 8.8+/-1.0 ng/mL (P < 0.01) after refeeding. It was positively related to plasma glucose (r = +0.52, P < 0.01) and negatively related to plasma NEFA (r = -0.67, P < 0.001). Plasma leptin measured 4 h after meal distribution was positively related to feeding level and to plasma 3-OH-butyrate (r = +0.61, P < 0.005) and negatively related to plasma NEFA (r = -0.56, P < 0.01). Differences between pre- and postprandial leptin concentrations showed a decrease after meal intake in control and well-fed cows (-7 and -19%, P < 0.01, respectively) and an increase in underfed cows (+12%, P < 0.01). Leptin response to meal intake was positively related to glucose response (r = +0.66, P < 0.001) and negatively related to 3-OH-butyrate response (r = -0.78, P < 0.001). By using the "multispecies" commercial RIA, leptin concentrations were lower and we observed similar physiological responses, although less related to other hormones or metabolites. These data provide evidence, first, that a specific RIA for ruminant leptin determination is necessary to better understand leptin regulation, and second, that plasma leptin is strongly related to adipose cell size and positively related to feeding level in adult cattle, and that an effect of meal intake could be mediated by glucose and(or) ketone bodies.  相似文献   

20.
The present study evaluated whether feed deprivation can increase reactivity to stressful events, such as those that can occur at slaughter. Therefore, effects of 30 h of feed deprivation on behavior, including reactions to psychological stressors, and physiological status in cattle were determined. Sixteen Holstein cows (Exp. 1) and 32 Holstein heifers (Exp. 2) were either fed (FE) or 30-h feed deprived (FD). Throughout the first day of feed deprivation and during evening feed distribution to control animals, FD heifers and cows were more active than controls (P < 0.05). In Exp. 1, during a feeding test, in response to a sudden air blast arising from the bucket from which the cow was feeding, FD cows showed a longer latency to return to feed (P = 0.0002), spent less time in the bucket air blast zone (P = 0.008) and less time motionless (P = 0.03), and tended to withdraw over a longer distance (P = 0.07) than FE cows. In Exp. 2, during a reactivity test, FD heifers spent more (P = 0.0001) time motionless in response to social isolation than FE heifers. In Exp. 2, one-half of the FE and FD heifers were subjected to an additional physical and psychological stressor just before the reactivity test by driving them for 5 min through a labyrinth. Within heifers subjected to the additional stressor, FD heifers were less accepting of being detained (P = 0.05) and stroked (P = 0.003) by a familiar stockperson in a corner of the test arena. Compared with FE animals, FD heifers and FD cows had greater plasma cortisol concentrations (P < 0.05). Feed-deprived cows also had reduced β-hydroxybutyrate concentrations (P = 0.02) compared with FE cows. Thus, in cattle, FD influenced some of the classical indicators of energy metabolism and exacerbated reactivity to sudden events. In addition, when additional stressors were applied, FD cattle were more reluctant to accept handling. Results indicate that a multifactorial origin of stressors during the slaughter period may synergistically increase psychological stress of cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号