首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A series of cross‐linked hydroxypropylated corn starches were extruded with a Leistritz micro‐18 co‐rotating extruder. Extrusion process variables including moisture (30, 35, and 40%), barrel temperature (60, 80, and 100°C), and screw design (low, medium, and high shear) were investigated. Scanning electron microscopy (SEM) of extruded starches showed a gel phase with distorted granules and granule fragments after extrusion at 60°C. After extrusion at 100°C only a gel phase was observed with no granular structures remaining. High performance size exclusion chromatography (HPSEC) equipped with multiangle laser light‐scattering (MALLS) and refractive index (RI) detectors showed extruded starches degraded to different extents, depending on extrusion conditions. The average molecular weight of the amylopectin of unextruded native corn starch was 7.7 × 108. Extrusion at 30% moisture, 100°C, and high shear reduced the molecular weight of amylopectin to 1.0 × 108. Hydroxypropylated normal corn starch extruded at identical conditions showed greater decreases in amylopectin molecular weight. With the addition of cross‐linking, the amylopectin fractions of the extruded starches were less degraded than those of their native and hydroxypropylated corn starch counterparts. Similarly, increasing moisture content during extrusion lowered amylopectin degradation in the extruded starches. Increasing temperature during extrusion of cross‐linked hydroxypropylated starches at high moisture content (e.g., 40%) lowered amylopectin molecular weights of the extruded starches, whereas increasing extrusion temperature at low moisture content (30%) resulted in less degraded molecules. This difference was attributed to the higher glass transition temperatures of the cross‐linked starches.  相似文献   

2.
Waxy hull-less barley (HB) starches containing 0 or 5% amylose were cross-linked with phosphorus oxychloride and the cross-linked starches were hydroxypropylated with propylene oxide. For comparison, waxy corn and potato starches were similarly modified. For all starches, cross-linking inhibited granule swelling and prevented swollen granules from disintegration, resulting in dramatic improvement in pasting properties and tolerance to cooking shear and autoclaving. Cross-linked waxy HB starches were more tolerant to cold storage and cooking shear than cross-linked waxy corn starch. Hydroxypropylation of the cross-linked starches reduced granule crystallinity and gelatinization temperature, and improved granule swelling, paste clarity, and freeze-thaw stability. The double-modified waxy HB starches showed higher cold tolerance than similarly modified waxy corn and potato starches, as judged by freeze-thaw stability and clarity after cold storage. These results indicated that the cross-linked and double-modified waxy HB starches together may have a wide range of food applications. This study indicated that the behavior of granule swelling and disintegration of swollen granules played an important role in governing paste viscosity, clarity, and freeze-thaw stability of waxy HB starches.  相似文献   

3.
A series of cross‐linked (0, 0.014, 0.018, 0.024, and 0.028% POCl3, dry starch basis) hydroxypropylated (8%) corn starches were extruded using a Leistritz micro‐18 co‐rotating extruder. Process variables included moisture, barrel temperature, and screw design. Differential scanning calorimetry and X‐ray diffraction studies showed the level of starch crystallinity decreased with increasing severity of extrusion conditions. Pasting properties of the extruded starches were examined using a Rapid Visco Analyser. Pasting profiles of starches extruded at different conditions displayed different hot paste viscosity and final viscosity. Increasing starch moisture content during extrusion and level of cross‐linking increased starch viscosity (P < 0.0001), whereas increasing extrusion temperature and shear decreased starch viscosity (P < 0.0001). Interactions were found between level of cross‐linking and screw design and between extrusion temperature and starch moisture content (P < 0.0001).  相似文献   

4.
Laboratory-isolated buckwheat (Fagopyrum esculentum) starch was compared to commercial corn and wheat starches. Buckwheat starch granules (2.9–9.3 μm) were round and polygonal with some holes and pits on the surface. Buckwheat starch had higher amylose content, waterbinding capacity, and peak viscosity, and it had lower intrinsic viscosity when compared with corn and wheat starches. Buckwheat starch also showed restricted swelling power at 85–95°C and lower solubility in water at 55–95°C and was more susceptible to acid and enzymatic attack. Gelatinization temperatures, determined by differential scanning calorimetry, were 61.1–80.1°C for buckwheat starch compared to 64.7–79.2°C and 57.1–73.5°C for corn and wheat starches, respectively. A second endotherm observed at 84.5°C was an amylose-lipid complex attributed to the internal lipids in buckwheat starch, as evidenced by selective extraction. The retrogradation of buckwheat, corn, and wheat starch gels was examined after storage at 25, 4, and -12°C for 1–15 days. In general, buckwheat starch retrogradation was slower than that of corn and wheat starch, but it increased as storage time increased, as did that of the other starch pastes. When the values of the three storage temperatures were averaged for each storage period analyzed, buckwheat starch gels showed a lower percentage of retrogradation than did corn and wheat starch gels. Buckwheat starch also had a lower percentage of water syneresis when stored at 4°C for 3–10 days and had better stability to syneresis after three freeze-thaw cycles at -12 and 25°C.  相似文献   

5.
Resistant starches (RS) were prepared by phosphorylation of wheat, waxy wheat, corn, waxy corn, high‐amylose corn, oat, rice, tapioca, mung bean, banana, and potato starches in aqueous slurry (≈33% starch solids, w/w) with 1–19% (starch basis) of a 99:1 (w/w) mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) at pH 10.5–12.3 and 25–70°C for 0.5–24 hr with sodium sulfate or sodium chloride at 0–20% (starch basis). The RS4 products contain ≤100% dietary fiber when assayed with the total dietary fiber method of the Association of Official Analytical Chemists (AOAC). In vitro digestion of four RS4 wheat starches showed they contained 13–22% slowly digestible starch (SDS) and 36–66% RS. However after gelatinization, RS levels fell by 7–25% of ungelatinized levels, while SDS levels remained nearly the same. The cross‐linked RS4 starches were distinguished from native starches by elevated phosphorus levels, low swelling powers (≈3g/g) at 95°C, insolubilities (<1%) in 1M potassium hydroxide or 95% dimethyl sulfoxide, and increased temperatures and decreased enthalpies of gelatinization measured by differential scanning calorimetry.  相似文献   

6.
The effects of amylose, protein, and fiber contents on ethanol yields were evaluated using artificially formulated media made from commercial corn starches with different contents of amylose, corn protein, and corn fiber, as well as media made from different cereal sources including corn, sorghum, and wheat with different amylose contents. Second‐order response‐surface regression models were used to study the effects and interactions of amylose, protein, and fiber contents on ethanol yield and conversion efficiency. The results showed that the amylose content of starches had a significant (P < 0.001) effect on ethanol conversion efficiency. No significant effect of protein content on ethanol production was observed. Fiber did not show a significant effect on ethanol fermentation either. Conversion efficiencies increased as the amylose content decreased, especially when the amylose content was >35%. The reduced quadratic model fits the conversion efficiency data better than the full quadratic model does. Fermentation tests on mashes made from corn, sorghum, and wheat samples with different amylose contents confirmed the adverse effect of amylose content on fermentation efficiency. High‐temperature cooking with agitation significantly increased the conversion efficiencies on mashes made from high‐amylose (35–70%) ground corn and starches. A cooking temperature of ≥160°C was needed on high‐amylose corn and starches to obtain a conversion efficiency equal to that of normal corn and starch.  相似文献   

7.
A traditional waxy rice gel cake in Korea, Injulmi, was prepared with hydroxypropylated waxy rice and corn starches (molar substitutions 0.13 and 0.11, respectively), and the textural and retrogradation characteristics of the cake were compared with a conventional cake made of waxy rice flour. In the pasting viscogram, hydroxypropylated starches exhibited reduced pasting temperatures, but increased peak viscosities compared with the unmodified starches. Under differential scanning calorimetry, the Tg′ and ice melting enthalpy of the starch gel cakes were reduced by hydroxypropylation, which indicated that the modified starches had higher water‐holding capacity than the unmodified starches. The degree of retrogradation, as measured by the hardness of the gel cake and the melting enthalpy, was significantly reduced by hydroxypropylation and hydroxypropylated waxy rice starch was more effective in retarding the retrogradation than hydroxypropylated waxy corn starch  相似文献   

8.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

9.
Maize starches extracted from selected maize cultivars with 0.2–60.8% amylose contents were used to produce bihon-type noodles. Starch dough using a pregelatinized starch binder was prepared and extruded through a laboratory-scale extruder simulating the traditional process of making bihon in the Philippines. The normal maize starches with amylose content of ≈28% were successfully used for bihon-type noodle production, but waxy maize starches with 0.2–3.8% amylose content and high-amylose maize starches with 40.0–60.8% amylose content failed to produce bihon-type noodles. Viscoamylograph profile parameters and swelling volume are significantly correlated to amylose content of maize starch samples evaluated. These physicochemical properties may be used to indicate that the starch samples at normal amylose levels may be used for bihon-type noodles. Starch noodles produced in the laboratory were not significantly different in terms of either cooking quality or textural properties from two commercially produced maize noodle samples, except for adhesiveness. The laboratory process and fabricated extruder can be used to produce bihon-type noodles.  相似文献   

10.
Zero amylose starch isolated from hull-less barley (HB) showed a typical A-type diffraction pattern. The X-ray analysis suggested that granules of zero amylose (SB94794) and 5% amylose (CDC Candle) HB starches had lower crystallinity than did commercial waxy corn starch. Differential scanning calorimetry showed lower transition temperatures and endothermal enthalpies for the HB starches than for the waxy corn starch. The zero amylose HB starch showed a Brabender pasting curve similar to that of waxy corn starch, but with lower pasting and peak temperatures and a higher peak viscosity. Noteworthy characteristics of zero amylose HB starch were its low pasting temperature and high paste clarity and freezethaw stability, which make this starch useful for many food and industrial applications.  相似文献   

11.
Starch is often added to batters to improve the texture and appearance of fried food products. However, comparisons of commercially available starches in terms of batter characteristics are rare. In this study, various corn starches, native or modified, were mixed with wheat flour (20% dry solids basis), and the physical properties of the batters after deep-fat frying were examined. Native corn starches of different amylose contents (high-amylose, normal, and waxy) and chemically modified corn starches (oxidized and cross-linked) were tested. The batter was prepared by adding water to the starch-flour mixtures (42% solids) and deep-fat frying at 180°C for 30 sec. The texture of the fried batter was analyzed using a texture analyzer (TA) with a Kramer shear cell. The pasting viscosity profile of the starch-flour mixtures (7% solids in water) was also measured with a Rapid Visco Analyser. When the native corn starches of different amylose contents were compared, the crispness (peak number before breakage) and hardness (maximum peak force) measured using the instrument were positively correlated with the amylose content in starches but negatively correlated with the residual moisture content of the fried batters. The peak viscosity and breakdown in viscosity profiles of the starch-flour mixtures were also negatively correlated with crispness. The use of high-amylose corn starch was effective not only in increasing the crispness, but also in reducing the oil uptake. However, the fried batter containing high-amylose starch was denser and harder than the batter containing normal starch. Among the modified starches tested, oxidized (0.4% active Cl2) and cross-linked (4% 99:1 mixture of STMP and STPP) starches showed improvements in the overall properties of the fried batters. With excessive oxidizations (>0.4% Cl2), however, the crispness was reduced.  相似文献   

12.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

13.
Objectives of this study were to compare thermal properties, swelling power, and enzymatic hydrolysis of a type 5 resistant starch (RS5) with that of normal corn starch (NCS) and high‐amylose corn starch (HA7). The RS5 was prepared by complexing debranched HA7 with stearic acid (SA). Because of amylose‐helical‐complex formation with SA, the RS5 starch granules showed restricted swelling at 95°C. The RS5 displayed a larger RS content (67.8%) than the HA7 (33.5%) and NCS (0.8%), analyzed following AOAC method 991.43 (AACC International Approved Method 32‐07.01). When the cooked RS5, HA7, and NCS were used to prepare diets for rats with 55% (w/w) starch content, RS contents of the diets were 33.7, 15.8, and 2.6%, respectively. After the diet was fed to the rats in week 1, ≈16% of the starch in the RS5 diet was found in the feces, substantially greater than that of the HA7 diet (≈6%) and NCS diet (0.1%). The percentage of starch not being utilized in the RS5 diet decreased to ≈5% in week 9, which could be partially attributed to fermentation of RS5 by gut microflora. Large proportions (68–99%) of the SA in the RS5 diet were unabsorbed and discharged in the rat feces. The results suggest that the interactions between starch and SA can be used to enhance resistance of starch to in vitro and in vivo digestion.  相似文献   

14.
The degradation rates of rice and corn starches with different contents of amylose treated in methanol containing 0.36% HCl at 25 degrees C for 1-15 days were evaluated by monitoring the weight average degree of polymerization of starch. A two-stage degradation pattern during acid-methanol treatment was found for the starches studied, which were the slow (first) and the rapid (second) degradation stages. Waxy starches showed a shorter time period of the first stage than that of nonwaxy starch. Rice starch showed a shorter time period of the first stage and a higher degradation rate of the second stage than the counterpart corn starch with similar amylose content. Despite the botanic source and amylose content of starch, the degradation rate of starch in the second stage significantly (p < 0.05) correlated to the S/L ratio (r = -0.886) and polydispersity (r = 0.859) of amylopectin branch chains of native starch.  相似文献   

15.
Starches of wheat, corn, smooth and wrinkled peas, and chickpeas were modified to a free‐flowing powder of granular cold‐water gelling (GCWG) starch using liquid ammonia and ethanol at 23°C and atmospheric pressure. Amylose content of starches was 26.3% in wheat, 27.1% in corn, 35.4% in chickpeas, 43.2% in smooth peas, and 79.9% in wrinkled peas. The modified starches remained in granular form with an increased number of grooves and fissures on the surface of the granules compared with native starch, while the crystallinity was mostly lost, as shown by X‐ray diffractograms and DSC endothermic enthalpies. Pasting viscosity of modified starches at 23°C was 171 BU and 305 BU in wheat and corn, respectively, and much higher in legume starches, ranging from 545 BU to 814 BU. Viscosities of modified legume starches at 23°C were at least twice as high as those of native starches determined at 92.5°C. Swelling power of modified starches at 23°C ranged from 8.7 g/g to 15.3 g/g, while swelling power of native starches heated to 92.5°C ranged from 4.8 g/g to 16.0 g/g. GCWG starches exhibited higher dextrose equivalent (DE) values of enzymatic hydrolysis, ranging from 25.2 to 27.0 compared with native starches (1.5–2.9). Modified starches from wheat, corn, smooth peas, and chickpeas formed weak gels without heat treatment and experienced no changes in gel hardness during storage, while native starch gels formed by heat treatment showed an increase in hardness by 1.1–7.5 N during 96 hr of storage at 4°C.  相似文献   

16.
High‐amylose (80%) corn starch was modified by hydroxypropylation with different molar substitution (MS). The unique microstructure of high‐amylose starch keeps its granules intact after hydroxypropylation. However, the microstructures and thermal properties strongly depend on the MS of hydroxypropylation. With increasing MS, the granule size was increased, which is partly due to disrupted granule structure, particularly in the amorphous region. Unlike normal starch, the modified high‐amylose corn starch showed a narrow gelatinization range measured by differential scanning calorimetry (DSC), which can be explained by destruction of amylose‐lipid complex. Internal microstructures and morphologies of hydroxypropylated starch were investigated using confocal laser scanning microscopy and to further explore the mechanism of chemical reaction and phase transitions.  相似文献   

17.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

18.
Pulse starches were isolated from different cultivars of pea, lentil, and chickpea grown in Canada under identical environmental conditions. The in vitro digestibility and physicochemical properties were investigated and the correlations between the physicochemical properties and starch digestibility were determined. Pulse starch granules were irregularly shaped, ranging from oval to round. The amylose content was 34.9–39.0%. The amount of short A chains (DP 6‐12) of chickpea starch was much higher than the other pulse starches, but the proportions of B1 and B2 chains (DP 13‐24 and DP 25‐36, respectively) were lower. The X‐ray pattern of all starches was of the C type. The relative crystallinity of lentil (26.2–28.3%) was higher than that of pea (24.4–25.5%) and chickpea starches (23.0–24.8%). The swelling factor (SF) in the temperature range 60–90°C followed the order of lentil ≈ chickpea > pea. The extent of amylose leaching (AML) at 60°C followed the order of pea ≈ chickpea > lentil. However, in the temperature range 70–90°C, AML followed the order of lentil > pea > chickpea. The gelatinization temperatures followed the order of lentil > pea > chickpea. The peak viscosity, setback, and final viscosity of pea starch were lower than those of the other starches. Lentil starch exhibited lower rapidly digestible starch (RDS) content, hydrolysis rate, and expected glycemic index (eGI). The resistant starch (RS) content of both lentil cultivars was nearly similar. However, pea and chickpea cultivars exhibited wide variations in their RS content. Digestibility of the pulse starches were significantly correlated (P < 0.05) with swelling factor (60°C), amylose leaching (60°C), gelatinization temperature, gelatinization enthalpy, relative crystallinity, and chain length distribution of amylopectin (A, B1, and B2 chains).  相似文献   

19.
Retrogradation in 2% pastes prepared from unmodified commercial starches by cooking at 98–100°C under low shear, then held at 4°C for 56 days, was examined by turbidometric analysis and light microscopy. Turbidometric analysis revealed that retrogradation rates followed the order of wheat, common corn > rice, tapioca, potato ≫ waxy maize. Microstructures of stored pastes were examined both before and after centrifugation. Granule remnant morphologies and fresh and stored paste microstructures were unique to each starch examined. Fresh pastes from amylose-containing starches were dominated by networked amylose that condensed into higher density aggregates upon storage. Unique phenomena seen in some stored pastes included interactions of granular remnants with aggregated amylose, composite networks of co-associated amylopectin and amylose, and slight birefringence regained by granule remnants. Microstructural changes in stored pastes could be related to changes in turbidity and to the results of other methods used to quantitate retrogradation.  相似文献   

20.
Resistant starches (RS) were prepared from wheat starch and lintnerized wheat starch by autoclaving and cooling and by cross‐linking. Heat‐moisture treatment also was used on one sample to increase RS. The experimental resistant starches made from wheat starch contained 10–73% RS measured as Prosky dietary fiber, whereas two commercial resistant starches, Novelose 240 and 330, produced from high‐amylose maize starch, contained 58 and 40%, respectively. At 25°C in excess water, the experimental RS starches, except for the cross‐linked wheat starch, gained 3–6 times more water than the commercial RS starches, and at 95°C gained 2–4 times more. Cross‐linked RS4 wheat starch and Novelose 240 showed 95°C swelling powers and solubilities of 2 g/g and 1%, and 3 g/g and 2%, respectively. All starches showed similar water vapor sorption and desorption isotherms at 25°C and water activities (aw) < 0.8. At aw 0.84–0.97, the resistant starches made from wheat starch, except the cross‐linked wheat starch, showed ≈10% higher water sorption than the commercial resistant starches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号