首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this contribution, we have analyzed the effect of sucrose on dynamic interfacial (dynamic surface pressure and surface dilatational properties) and foaming (foam capacity and foam stability) characteristics of soy globulins (7S and 11S). The protein (at 1 x 10(-3), 1 x 10(-2), 0.1, and 1 wt %) and sucrose (at 0, 0.25, 0.5, and 1.0 M) concentrations in aqueous solution and the pH (at 5 and 7), and ionic strength (at 0.05 and 0.5 M) were analyzed as variables. The temperature was maintained constant at 20 degrees C. We have observed the following. (i) The dynamics of adsorption (presence of a lag period, diffusion, and penetration at the air-water interface) of soy globulins depend on the peculiar molecular features of proteins (7S or 11S soy globulin) and the level of association/dissociation of these proteins by varying the pH and ionic strength, as well as the effect of sucrose in the aqueous phase on the unfolding of the protein. The rate of adsorption increases with the protein concentration in solution, at pH 7 compared to pH 5, at high ionic strength, and in the absence of sucrose. (ii) The surface dilatational properties reflect the fact that soy globulin adsorbed films exhibit viscoelastic behavior. The surface dilatational modulus increases at pH 7 compared to pH 5, but decreases with the addition of sucrose into the aqueous phase. (iii) The rate of adsorption and surface dilatational properties (surface dilatational modulus and phase angle) during adsorption at the air-water interface play an important role in the formation of foams generated from aqueous solutions of soy globulins. (iv) The increased interfacial adsorption (at high surface pressures) and the combined effects of interfacial adsorption and interfacial interactions between adsorbed soy globulin molecules (at high surface dilatational modulus) can explain the higher stability of the foam, with few exceptions.  相似文献   

2.
Surface hydrophobicity (SH) of milk proteins treated physicochemically (by heating and Maillard reaction) or modified enzymatically (by transglutaminase, lactoperoxidase, laccase, and glucose oxidase) was assessed in relation to their techno-functional properties. Heat-treatment increased SH of whey protein isolate and decreased SH of sodium caseinate and bovine serum albumin. Maillard reaction of milk proteins caused time-depended decreases of SH. Only for total milk protein reacting with glucose and lactose elevated SH-values were detected. Protein modification with transglutaminase, laccase, and lactoperoxidase strongly increased the SH of whey protein isolate and total milk protein. Incubation with glucose oxidase elevated SH values of sodium caseinate, whey protein isolate, and total milk protein. When correlating SH with techno-functional properties, a positive correlation was observed between SH and foam formation, and a negative correlation was observed between SH and foam stability as well as emulsion stability. No clear correlation was detected between SH and emulsifying activity, surface tension, viscosity, and heat stability of enzymatically and physicochemically treated milk proteins.  相似文献   

3.
Interfacial shear rheology of adsorbed beta-lactoglobulin films (bulk protein concentration 10(-)(3) wt %) has been studied over the temperature range 20-90 degrees C using a two-dimensional Couette-type viscometer. Effects of the type of interface (air-water, triolein-water, and n-dodecane-water), the pH (2.0, 5.6, 6.0, 7.0, and 9.0), and the extent of the heat treatment have been assessed via measurements of changes in the apparent interfacial shear viscosity and elasticity before and after the addition of increasing amounts of nonionic surfactant Tween 20 (polyoxyethylene sorbitan monolaurate). The highest interfacial viscosities were obtained at the n-dodecane-water interface and the lowest at the air-water interface. Competitive displacement of protein from the interface by Tween 20 was easier at the air-water and n-dodecane-water interfaces as compared to the triolein-water interface. The surface shear viscosity was higher and the displacement by Tween 20 more difficult as the isoelectric point of the protein was approached, which is in agreement with the presence of a more strongly cross-linked protein network at the interface. The effect of heat treatment was dependent on the pH of the aqueous solution. No simple relationship between the surface rheological characteristics and the ease of displacement by Tween 20 could be inferred.  相似文献   

4.
Lateral phase separation in two-dimensional mixed films of soy 11S/beta-casein, acidic subunits of soy 11 (AS11S)/beta-casein, and alpha-lactalbumin/beta-casein adsorbed at the air-water interface has been studied using an epifluorescence microscopy method. No distinct lateral phase separation was observed in the mixed protein films when they were examined after 24 h of adsorption from the bulk phase. However, when the soy 11S/beta-casein and AS11S/beta-casein films were aged at the air-water interface for 96 h, phase-separated regions of the constituent proteins were evident, indicating that the phase separation process was kinetically limited by a viscosity barrier against lateral diffusion. In these films, beta-casein always formed the continuous phase and the other globular protein the dispersed phase. The morphology of the dispersed patches was affected by the protein composition in the film. In contrast with soy 11S/beta-casein and AS11S/beta-casein films, no lateral phase separation was observed in the alpha-lactalbumin/beta-casein film at both low and high concentration ratios in the film. The results of these studies proved that proteins in adsorbed binary films exhibit limited miscibility, and the deviation of competitive adsorption behavior of proteins at the air-water interface from that predicted by the ideal Langmuir model (Razumovsky, L.; Damodaran, S. J. Agric. Food Chem. 2001, 49, 3080-3086) is in fact due to thermodynamic incompatibility of mixing of the proteins in the binary film. It is hypothesized that phase separation in adsorbed mixed protein films at the air-water and possibly oil-water interfaces of foams and emulsions might be a source of instability in these dispersed systems.  相似文献   

5.
The interactions between proteins and plant polyphenols are responsible for astringency and haze formation in beverages and may participate in foam stabilization. The effect of phenolic compounds with different structures, namely, catechin (C), epicatechin (Ec), epigallocatechin (Egc), epicatechin gallate (EcG), and epigallocatechin gallate (EgcG), on the surface properties at the air/liquid interface of beta-casein, chosen as model protein, were monitored by tensiometry and ellipsometry. The formation of complexes in the bulk phase was measured by electrospray ionization mass spectrometry (ESI-MS). Adsorption of polyphenols from pure solution was not observed. Surface pressure, surface concentration, and dilational modulus of the protein adsorption layer were greatly modified in the presence of galloylated flavanol monomers (EcG and EgcG) but not of lower molecular weight polyphenols (<306 g/mol). The formation of polyphenol-protein aggregates in the bulk, as evidenced by ESI-MS and light scattering experiments, was related to the slowdown of protein adsorption.  相似文献   

6.
The functional properties of wheat powders depend largely on the surface characteristics of their particles. X-ray photoelectron spectroscopy (XPS) has been considered to investigate the surface composition of wheat powders. The objective of the present study is to evaluate the ability of XPS to discriminate wheat components and to calculate the surface composition of wheat powders. First, XPS surveys for the main wheat isolated components (starch, proteins, arabinoxylans, and lipids) were determined. XPS results demonstrate that it is able to distinguish wheat proteins, polysaccharides, and lipids, but it is not able to distinguish starch and arabinoxylan because of their similarity in chemical structure. The XPS analyses of simple reconstituted wheat flours based on two components (starch and protein) or three components (by adding arabinoxylan) demonstrated the ability of XPS to measure the surface composition of the wheat flours. The surface composition of native wheat flour demonstrated an overrepresentation of protein (54%) and lipids (44%) and an underrepresentation of starch (2%) compared to the bulk composition. Results are discussed with regard to difficulties in discriminating arabinoxylans and starch components.  相似文献   

7.
Foam properties of a sunflower isolate (SI), as well as those of helianthinin and sunflower albumins (SFAs), were studied at various pH values and ionic strengths and after heat treatment. Less foam could be formed from helianthinin than from SFAs, but foam prepared with helianthinin was more stable against Ostwald ripening and drainage than foam prepared with SFAs. Foams made with SFAs suffered from extensive coalescence. The formation and stability of foams made from reconstituted mixtures of both proteins and from SI showed the deteriorating effect of SFAs on foam stability. Foam stability against Ostwald ripening increased after acid and heat treatment of helianthinin. Partial unfolding of sunflower proteins, resulting in increased structural flexibility, improved protein performance at the air/water interface. Furthermore, it was observed that the protein available is used inefficiently and that typically only approximately 20% of the protein present is incorporated in the foam.  相似文献   

8.
In this contribution, we have analyzed the effect of different strategies, such as change of pH (5 or 7) or ionic strength (at 0.05 and 0.5 M), and addition of sucrose (at 1 M) and Tween 20 (at 1 x 10(-4) M) on interfacial characteristics (adsorption, structure, dynamics of adsorption, and surface dilatational properties) and foam properties (foam capacity and stability) of soy globulins (7S and 11S at 0.1 wt %). We have observed that (1) the adsorption (presence of a lag period, diffusion, and penetration at the air-water interface) of soy globulins depends on the modification in the 11S/7S ratio and on the level of association/dissociation of these proteins by varying the pH and ionic strength (I), the effect of sucrose on the unfolding of the protein, and the competitive adsorption between protein and Tween 20 in the aqueous phase. The rate of adsorption increases at pH 7, at high ionic strength, and in the presence of sucrose. (2) The surface dilatational properties reflect the fact that soy globulin adsorbed films exhibit viscoelastic behavior but do not have the capacity to form a gel-like elastic film. The surface dilatational modulus increases at pH 7 and at high ionic strength but decreases with the addition of sucrose or Tween 20 into the aqueous phase. (3) The rate of adsorption and surface dilatational properties (surface dilatational modulus and phase angle) during adsorption at the air-water interface plays an important role in the formation of foams generated from aqueous solutions of soy globulins. However, the dynamic surface pressure and dilatational modulus are not enough to explain the stability of the foam.  相似文献   

9.
The present work aims at identifying the contribution of the different wine components to the foaming properties of wines. Twelve fractions were isolated from wine, and foam aptitude of each fraction was measured individually at the concentration at which it was recovered, using wine model solutions. For these concentrations, the maximum foam height (HM) was 8.4-11.7 cm, foam height on stability was 6.9-7.5 cm, and foam stability (TS) was 3.0-6.5 s. Moreover, foam measurements were also performed using 2-, 5-, and 10-fold concentrations of these compounds in wine. The HM increased linearly with the concentration of mannoproteins having low content of protein (MP1), and TS increased exponentially. The fractions that individually showed higher foaming properties were mixed in binary and ternary combinations, demonstrating that MP1 when mixed with low molecular weight hydrophobic compounds strengthens the air/water interface of these solutions, a characteristic that is on the basis of sparkling wines' foamability and foam stability.  相似文献   

10.
Amaranth meal is a rich source of proteins, carbohydrates, and minerals with a low amount of anti‐nutritional factors. It exhibits good functional properties. The effect of NaCl and NaHCO3 salts and pH level on the functional properties of amaranth meal was studied. The water absorption capacity and protein solubility were improved in the presence of the salts. Protein solubility was high at extreme pH values and minimum at pH 4. Foaming capacity was poor in the presence of the two salts, while foam stability was better at lower concentrations of NaCl (0.2–0.6M). Changes in pH had a pronounced effect on the foaming properties of amaranth meal. Salts did not change the emulsification properties but significantly increased the relative viscosity of amaranth seed meal at higher concentrations of NaCl and NaHCO3 (0.6–1.0M). Relative viscosity was highest at pH 10 and lowest at pH 4.  相似文献   

11.
Response surface methodology was employed to study the functional properties of starch acetate foams blended with 0, 7.5, and 15% wood, oat, and cellulose fibers. The blends were extruded with 14, 17, and 20% ethanol as a blowing agent, using a twin‐screw extruder with 160°C barrel temperature and 225 rpm screw speed. Physical characteristics of the extrudates including radial expansion ratio, unit density, and bulk density; and mechanical properties including unit spring index and bulk spring index were determined. Scanning electron micrographs were taken to observe foam cell textures. Higher fiber content resulted in lower radial expansion. Ethanol content had a positive effect on foam expansion. Higher expansion was obtained in starch acetate‐cellulose foams because better starch acetate‐fiber matrix was formed. Mechanical properties increased with higher fiber and ethanol contents. Micrographs showed that uniform cell structures were associated with better mechanical properties.  相似文献   

12.
The foam stability of beer is one of the important key factors in evaluating the quality of beer. The purpose of this study was to investigate the relationship between the level of malt modification (degradation of protein, starch, and so on) and the beer foam stability. This was achieved by examining foam-promoting proteins using two-dimensional gel electrophoresis (2DE). We found that the foam stability of beer samples brewed from the barley malts of cultivars B and C decreased as the level of malt modification increased; however, the foam stability of cultivar A did not change. To identify the property providing the increased foam stability of cultivar A, we analyzed beer proteins using 2DE. We analyzed three fractions that could contain beer foam-promoting proteins, namely, beer whole proteins, salt-precipitated proteins, and the proteins concentrated from beer foam. As a result, we found that in cultivar A, some protein spots did not change in any of these three protein fractions even when the level of malt modification increased, although the corresponding protein spots in cultivars B and C decreased. We analyzed these protein spots by peptide mass finger printing using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As a result, all of these spots were identified as barley dimeric alpha-amylase inhibitor-I (BDAI-I). These results suggest that BDAI-I is an important contributor to beer foam stability.  相似文献   

13.
Improvement in the water stability and other related functional properties of thin (<50 μm) kafirin protein films was investigated. Thin conventional kafirin films and kafirin microparticle films were prepared by casting in acetic acid solution. Thin kafirin films cast from microparticles were more stable in water than conventional cast kafirin films. Treatment of kafirin microparticles with heat and transglutaminase resulted in slightly thicker films with reduced tensile strength. In contrast, glutaraldehyde treatment resulted in up to a 43% increase in film tensile strength. The films prepared from microparticles treated with glutaraldehyde were quite stable in ambient temperature water, despite the loss of plasticizer. This was probably due to the formation of covalent cross-linking between free amino groups of the kafirin polypeptides and carbonyl groups of the aldehyde. Thus, such thin glutaraldehyde-treated kafirin microparticle films appear to have good potential for use as biomaterials in aqueous applications.  相似文献   

14.
This article addresses the effect of moisture content (0.8-9.9%) during dry-heating (80 degrees C) on selected physicochemical (solubility, turbidity, residual denaturation enthalpy, aggregation, surface hydrophobicity, and sulfhydryl content) and functional (foaming ability, foam density, and stability) properties of freeze-dried egg white (FDEW). Moisture content during dry-heating proved to be a parameter determining the functionality of the resulting egg white powder. The degree of conformational changes induced in the egg white proteins by dry-heating was strongly dependent on the amount of water present. Preferentially, dry-heating at 80 degrees C should be performed on egg white powder with a moisture content below 6.8%, as the loss of protein solubility above this value is extensive. In addition to insoluble aggregates, soluble, strongly stabilized aggregates were also formed, especially at higher moisture contents. The decrease in denaturation enthalpy, increase in surface hydrophobicity, and exposure of SH groups previously hidden in the protein core and their subsequent oxidation were more pronounced at prolonged dry-heating times and at higher moisture contents. These conformational changes resulted in improved foaming ability and foams with lower density. No effect of dry-heating on the foam stability was observed.  相似文献   

15.
《Cereal Chemistry》2017,94(2):242-250
The global market for frozen bread dough is rising; however, its quality could deteriorate during extended storage. Our previous study indicated that undesirable changes caused by freezing could be reduced by adding arabinoxylan‐rich fiber sources. The present study investigated the changes in arabinoxylan properties of yeasted dough during frozen storage. Dough samples made from refined, whole, and fiber‐enriched (15% either wheat aleurone or bran) flours were stored at –18°C for nine weeks, and structural properties of arabinoxylan were probed during storage. Water‐extractable arabinoxylan (WEAX) content in dough samples increased by about 19–33% during the first three weeks of storage. Prolonged storage of dough (weeks 6 and 9), however, correlated with a decline in WEAX content. Average molecular weight and intrinsic viscosity of WEAX decreased during storage for all frozen dough samples. Arabinose‐to‐xylose ratios also decreased by 11 and 6% for control and composite dough samples, respectively. There was a significant positive correlation (r = 0.89, P < 0.0001) between WEAX content of dough and bread quality throughout the storage period. The results demonstrated that changes in dough quality during frozen storage were related to changes in the content and structure of WEAX that took place during frozen storage.  相似文献   

16.
Defatted sesame meal ( approximately 40-50% protein content) is very important as a protein source for human consumption due to the presence of sulfur-containing amino acids, mainly methionine. Sesame protein isolate (SPI) is produced from dehulled, defatted sesame meal and used as a starting material to produce protein hydrolysate by papain. Protein solubility at different pH values, emulsifying properties in terms of emulsion activity index (EAI) and emulsion stability index (ESI), foaming properties in terms of foam capacity (FC) and foam stability (FS), and molecular weight distribution of the SPI hydrolysates were investigated. Within 10 min of hydrolysis, the maximum cleavage of peptide bonds occurred as observed from the degree of hydrolysis. Protein hydrolysates have better functional properties than the original SPI. Significant increase in protein solubility, EAI, and ESI were observed. The greatest increase in solubility was observed between pH 5.0 and 7.0. The molecular weight of the hydrolysates was also reduced significantly during hydrolysis. These improved functional properties of different protein hydrolysates would make them useful products, especially in the food, pharmaceutical, and related industries.  相似文献   

17.
Abstract

Changes in soil physical properties and structural stability of a sandy soil as a result of straw retention in the presence of gypsum (at a rate of 2.5 t/ha) were investigated in a field pot experiment. After six months of equilibration, significant improvements in soil structure in terms of lower bulk density, lower penetration resistance, and increased water stability were detected in the surface 0–25 mm layer when compared to the straw only treatment. While the increase in stability when straw was applied alone can be explained in terms of reduction in wetting rate, further increase in stability detected due to the gypsum was probably due to formation of additional calcium (Ca) bondings with the clay surfaces and organics.  相似文献   

18.
The influence on wheat flour gluten-starch separation of a xylanase from Aspergillus aculeatus (XAA) with hydrolysis selectivity toward water extractable arabinoxylan (WE-AX) and that is not inhibited by wheat flour xylanase inhibitors was compared to that of a xylanase from Bacillus subtilis (XBS) with hydrolysis selectivity toward water unextractable arabinoxylan (WU-AX) and that is inhibited by such inhibitors. XAA improved gluten agglomeration through degradation of WE-AX and concomitant reduction in viscosity, which in the laboratory scale batter procedure with a set of vibrating sieves (400, 250, and 125 microm), increased protein recoveries on the 400 microm sieve. In contrast, XBS had a negative effect as it decreased gluten protein recovery on this sieve, probably as a result of the viscosity increase that accompanied WU-AX solubilization. Hence, it was active even if most likely a considerable part of its activity was prevented by xylanase inhibitors. A combination of XAA and XBS at a low dosage yielded a distribution of gluten proteins on the different sieves comparable to that of the control. At a high combined dosage, the gluten agglomeration was better than that with XAA alone, indicating that both WE-AX and WU-AX have a negative impact on gluten agglomeration. Finally, experiments with endoxylanase addition at different moments during the separation process suggest that the status of the arabinoxylan population during dough mixing is far less critical for its impact on gluten agglomeration than that during the batter phase.  相似文献   

19.
Whey protein and casein were hydrolyzed with 11 commercially available enzymes. Foam properties of 44 samples were measured and were related to biochemical properties of the hydrolysates using statistical data analysis. All casein hydrolysates formed high initial foam levels, whereas whey hydrolysates differed in their foam-forming abilities. Regression analysis using the molecular weight distribution of whey hydrolysates as predictors showed that the hydrolysate fraction containing peptides of 3-5 kDa was most strongly related to foam formation. Foam stability of whey hydrolysates and of most casein hydrolysates was inferior to that of the intact proteins. The foam stability of casein hydrolysate foams was correlated to the molecular weight distribution of the hydrolysates; a high proportion of peptides >7 kDa, composed of both intact casein and high molecular weight peptides, was positively related to foam stability.  相似文献   

20.
喷液包埋技术提高微波泡沫干燥后树莓浆果品质   总被引:2,自引:1,他引:1  
为了在微波泡沫干燥浆果果浆后期喷施大豆分离蛋白和麦芽糊精混合液,使浆果干品表面形成可以降低活性成分降解的包埋层,研究了喷液包埋条件对果浆的干燥特性影响规律,分析了喷液包埋技术对浆果干品中活性成分的保护原因。选择树莓果浆为研究物料,采用微波泡沫干燥工艺,以微波强度、保护液成分质量比和起泡果浆与保护液质量比为影响因素,以物料含水率、干燥温度、活性成分降解率为目标因素,应用电镜对树莓果浆干品微观结构进行观察分析,应用高效液相色谱技术测定干品花青素成分。结果表明浆果微波泡沫干燥中的起泡剂与喷液包埋中保护液成分相近,工艺步骤衔接密切,不影响果浆干燥速度与温度;保护液可使干燥后干品表层形成致密包埋层,有效削弱氧气、光照对活性成分的降解作用,提高矢车菊色素与天竺葵色素2种花青素成分保存量(保存率75%);在微波强度14 W/g,大豆分离蛋白与麦芽糊精质量比3∶7,起泡果浆与保护液质量比4∶1的工艺条件下,可获得花青素和维生素C保留率高的树莓干品(提高20%)。在微波泡沫干燥过程中实施包埋技术可保护干燥后果浆中的活性物质,保证浆果制品营养价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号