首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

2.
Many applications have been developed for aqueous dispersions of jet‐cooked starch‐oil composites prepared by excess steam jet cooking. Previous formulations have typically contained 20–50% oil by weight based on the weight of starch. To expand the range of potential applications, new preparation methods were investigated to increase the oil content to as high as four times the weight of starch. High‐amylose corn starch was cooked in an excess‐steam jet cooker in the presence of oleic acid, and soybean oil was added to form the starch‐oil composites. Amylose is removed from solution by forming helical inclusion complexes with the oleic acid and, if the materials are cooled sufficiently quickly, the helical inclusion complexes only form small aggregates and shells around the oil droplets. Depending on the composition and preparation method, a wide range of stable, high‐oil materials from low‐viscosity liquids to smooth pastes can be formed. The flow, textural, and structural properties of these materials are shown. The materials can be used in a wide range of applications, including spray lubricants, lotions, and for fat delivery in cake mixes.  相似文献   

3.
Starch nanoparticles (SNP) from maize starches of varying amylose content (0–71%) were prepared by acid hydrolysis (3.16M H2SO4, at 40°C up to 6 days) followed by repeated water washings. During the washing cycles, nonwaxy starches (normal, Hylon V, and Hylon VII) had suspended particles in the water washings, which were not evident in waxy starch. Microscopic examination revealed the presence of SNP in the “cloudy supernatants” of nonwaxy starches and in the “final washed residue” of waxy maize. The objective of this study was to collect SNP fractions accordingly and determine whether variation in the native starch amylose content would influence the yield, morphology, and crystallinity of the SNP. In nonwaxy starches, the yield of SNP increased up to 26.6% with hydrolysis time and was proportional to the amylose content. Morphology of SNP differed with starch type: flat/elliptical (500 nm) in waxy, oval/irregular (50–200 nm) in normal, oval/round (40–50 nm) in Hylon V, and square/polygonal (50–100 nm) in Hylon VII. X‐ray diffraction confirmed the presence of A‐type crystals in SNP from all starch types and a crystalline transformation from B‐ to A‐type in Hylon starches. The relative crystallinity of SNP was higher than their native starch counterparts.  相似文献   

4.
Starch is a crucial component determining the processing quality of wheat‐based products such as Chinese steamed bread (CSB) and raw white noodles (RWN). Flour from wheat cultivar Zhongmai 175 was used for fractionation into starch, gluten, and water solubles by hand washing. The starch fraction was successfully separated into large (>10 μm diameter) and small starch granules (<10 μm diameter) by repeated sedimentation. Flour fractions were reconstituted to original levels in the flour by using constant gluten and water solubles and varying the weight ratio of large and small starch granules. As the proportion of small granules increased in the reconstituted flours, farinograph water absorption increased, and amylose content, pasting peak viscosity, trough, and final viscosity decreased. Starch granule size distribution significantly affected processing quality of CSB and RWN. Superior crumb structure score (12.0) was observed in CSB made from reconstituted flour with 35% small starch granules. CSB made from reconstituted flours with 30 and 35% small starch granules exhibited the highest total scores, with values of 85.4 and 83.3, respectively. Significant improvements in color, viscoelasticity, and smoothness of RWN were obtained with an increase in small starch granule content, and reconstituted flours with 30–40% small starch granules produced RWN with moderate firmness.  相似文献   

5.
Two‐phase polymer blends of poly(lactic acid) (PLA) and corn or wheat starches at various ratios were prepared by using a laboratory‐scale twin‐screw extruder and compression molding. The blends were characterized for thermal transitions, mechanical properties, and water absorption. Starch and PLA were immiscible polymers, and the thermal behavior of PLA was not affected by starch. Crystallinity of the blends decreased in some degree as starch content increased 20–40%. Tensile strength and elongation of the blends decreased as starch content increased, but modulus increased as starch content increased up to 70%. As starch content increased to >60%, the PLA phase became discontinuous, and water absorption of the blends increased sharply. Blends made from wheat starch gave slightly better mechanical properties than those made from corn starch, and no differences in other properties were observed.  相似文献   

6.
The poor barrier and mechanical properties of biopolymer‐based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch‐clay nanocomposites were synthesized by a melt extrusion method. Natural (MMT) and organically modified (I30E) montmorillonite clays were chosen for the nanocomposite preparation. The structures of the hybrids were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Films were made through casting using granulate produced by a twin‐screw extruder. Starch/MMT composite films showed higher tensile strength and better water vapor barrier properties than films from starch/I30E composites, as well as pristine starch, due to formation of intercalated nanostructure. To find the best combinations of raw materials, the effects of clay content (0–21 wt% MMT), starch sources (corn, wheat, and potato), and amylose content (≈0, 28, 55, 70, 100%) on barrier and mechanical properties of the nanocomposite films were investigated. With increase in clay content, significantly higher (15–92%) tensile strength (TS), and lower (22–67%) water vapor permeability (WVP) were obtained. The barrier and mechanical properties of nanocomposite films did not vary significantly with different starch sources. Nanocomposite films from regular corn starch had better barrier and mechanical properties than either high amylopectin or high‐amylose‐based nanocomposite films. WVP, TS, and elongation at break (%E) of the films did not change significantly as amylose content increased beyond 50%.  相似文献   

7.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

8.
To obtain an indication of the effect of increasing the starch amylose content above normal levels (27–74%) and increasing the percentage of B‐type starch granules (11–60%) on durum dough properties and the quality of the spaghetti derived from these doughs, the reconstitution approach was used. Reconstituted flours were prepared from a common Wollaroi gluten, solubles and tailings fraction combined with starches containing varying B‐granule contents, or with starches from maize with varying amylose content. An increased B‐granule content increased farinograph water absorption. Cooked spaghetti firmness was highest with B‐type granules at 32–44% (volume percentage basis), which is ≈10–15% higher than normally found in durum starch. Increasing the amylose content in the starch caused the dough to be more extensible, increased spaghetti firmness, and decreased water absorption with optimum quality of amylose at 32–44%. The information indicates there would be benefit in producing durum wheats with slightly elevated B‐granule and amylose contents.  相似文献   

9.
The effects of amylose content and other starch properties on concentrated starch gel properties were evaluated using 10 wheat cultivars with different amylose content. Starches were isolated from grains of two waxy and eight nonwaxy wheat lines. The amylose content of waxy wheat lines was 1.4–1.7% and that of nonwaxy lines was 18.5–28.6%. Starch gels were prepared from a concentrated starch suspension (30 and 40%). Gelatinized starch was cooled and stored at 5°C for 1, 8, 16, 24, and 48 hr. The rheological properties of starch gels were studied by measuring dynamic viscoelasticity with parallel plate geometry. The low‐amylose starch showed a significantly lower storage shear modulus (G′) than starches with higher amylose content during storage. Waxy starch gel had a higher frequency dependence of G′ and properties clearly different from nonwaxy starches. In 40% starch gels, the starch with lower amylose showed a faster increase in G′ during 48 hr of storage, and waxy starch showed an extremely steep increase in G′. The amylose content and concentration of starch suspension markedly affected starch gel properties.  相似文献   

10.
One oat cultivar grown in Idaho (three field sites) was pin-milled and separated by sieving to investigate whether starch from oat bran differs from the remainder of kernel. Ground oat particles were classified into three sieve fractions: 300–850 μm, 150–300 μm and <150 μm). β-Glucan content in sieve fractions was analyzed and starch was extracted from kernels without milling and from kernels of each sieve fraction. β-Glucan contents of 300–850, 150–300, and <150 μm sieve fractions were 4.2, 2.3, and 0.8%, respectively. Therefore, starch in bran (300–850 μm sieve fraction) and endosperm (<150 μm sieve fraction) were separated. Starch isolated from entire kernels had significantly higher apparent and absolute amylose content than starch from the 300–850 μm sieve fraction. Starch from different sieve fractions was not significantly different in the apparent amylose, absolute amylose, amylopectin molecular weight, gyration radii, starch gelatinization, and amylose-lipid complex thermal transition temperatures. Starch from the 150–300 μm sieve fraction had significantly lower peak, final, and setback viscosity compared with the starch isolated from the 300–850 μm and <150 μm sieve fractions. Starch removed from the oat bran fraction during β-glucan enrichment may have different applications compared with starch obtained from other kernel compartments. Because pin-milling decreased apparent amylose content and shortened amylopectin branch chains, its potential to alter starch structure should be considered.  相似文献   

11.
The properties of frozen and unfrozen water in two different wheat flours (hard and soft), and in their main components (gluten, starch, damaged starch, water‐soluble and water‐insoluble pentosans), were described using modulated differential scanning calorimetry (DSC). As a reference, enthalpy values of crystallization (298 J/g) and melting (335 J/g) of pure water were determined from the total heat flow curves. The separation of thermal events between the reversing and nonreversing heat flows with modulated DSC was not effective due to disturbances in the modulated temperature scan. For wheat flours and their components, linear regressions described well the changes in frozen water content calculated from enthalpies of freezing (R2 = 0.970–0.982) or melting (R2 = 0.783–0.996). The unfrozen water content (UFWC) calculated for the hard wheat flour (29–31%, db) was close to that calculated for the soft wheat flour (30–32%). The UFWC of wheat gluten (38–47%), starch (38–42%), damaged starch (37–40%), water‐soluble pentosans (51%), and water‐insoluble pentosans (40–44%) were higher than the corresponding values for the flours. The simple summation of the contributions of each component cannot be used to estimate the overall behavior of flours.  相似文献   

12.
The effect of mixing time (6 and 20 min) and starch content were studied on doughs prepared with three wheat flours differing in high molecular weight subunit composition. Rheological measurements were performed in dynamic oscillation: frequency and strain sweeps, stress relaxation, and in large deformation viscosity measurements. The flours were diluted with starch to cover flour protein contents of 10–15%. Water was added to keep the starch‐water ratio constant when doughs were prepared with different protein contents. By increasing the starch content of the doughs, the rheological properties approached those of a starch‐water mixture prepared with the same starch‐water ratio as in the dough. The effect of the starch granules was reinforced by prolonged mixing. This may explain the higher values of the storage modulus and relaxation times observed after 20 min of mixing. Qualities related to gluten properties, appeared more clearly in large deformation viscosity measurements.  相似文献   

13.
《Cereal Chemistry》2017,94(2):161-169
An improved wet method was developed to process barley into fractions concentrated in protein, (1‐3)(1‐4)‐β‐d ‐glucan (BG), starch, or other carbohydrates (CHO). Alkaline concentration, solvent to barley flour ratio (SFR), and extraction temperature were evaluated for their effects on concentration and recovery of protein, BG, starch, oil, ash, and other CHO in each fraction type. Results show that the three parameters and their interactions all had significant effects, resulting in varying nutrient concentrations and recovery rates in each type of fractions. For protein fractions, protein content varied from 37.7 to 75.2%, protein recovery from 8.5 to 75.7%, and increasing alkaline concentration and SFR improved nutrient recovery. For BG fractions, BG content ranged from 21.5 to 87.0%, BG recovery from 28.6 to 78.0%, and increasing alkaline concentration decreased BG content but increased its recovery significantly. For starch fractions, starch content varied from 76.9 to 93.9%, starch recovery from 33.6 to 63.9%, and all parameters had little effect on the nutrient concentrations, but alkaline concentration and SFR improved recovery of starch, other CHO, and mass. Overall, the improved wet method was effective in concentrating the major nutrients from barley into their respective fractions, but process optimization through manipulating the three parameters is necessary to achieve a maximum concentration or recovery rate of a nutrient of interest in a specific fraction.  相似文献   

14.
Field peas (Pisum sativum) were evaluated as a potential feedstock for ethanol production. Ground peas were dry‐milled and separated into starch, protein, and fibrous fractions by air classification. Starch‐enriched fractions prepared from whole peas and dehulled peas contained 73.7% wt and 77.8% wt starch, respectively, a nearly two‐fold enrichment compared with whole peas. The fractions were liquefied and saccharified using industrial α‐amylase and glucoamylase at recommended enzyme loadings. A final ethanol concentration of 11.0% (w/v) was obtained in 48–52 hr, with yields of 0.43–0.48 g of ethanol/g of glucose. Starch present in whole ground peas was also saccharified and fermented, with 97% of the starch fermented when an autoclaving step was included in the liquefaction stage.  相似文献   

15.
Flours of two soft wheat cultivars were fractionated into native, prime, tailing, A‐, and B‐type starch fractions. Starch fractions of each cultivar were characterized with respect to A/B‐type granule ratio, amylose content, phosphorus level (lysophospholipid), and pasting properties to investigate factors related to wheat starch pasting behavior. While both cultivars exhibited similar starch characteristics, a range of A‐type (5.7– 97.9%, db) and B‐type granule (2.1–94.3%, db) contents were observed across the five starch fractions. Though starch fractions displayed only subtle mean differences (<1%) in total amylose, they exhibited a range of mean phosphorus (446–540 μg/g), apparent amylose (18.7–23%), and lipid‐complexed amylose (2.8–7.5%) values, which were significantly correlated with their respective A‐ and B‐type granule contents. A‐type (compared with B‐type) granules exhibited lower levels of phosphorus, lipid‐complexed amylose, and apparent amylose, though variability for the latter was primarily attributed to starch lipid content. While starch phosphorus and lipid‐complexed amylose contents exhibited negative correlation with fraction pasting attributes, they did not adequately account for starch fraction pasting behavior, which was best explained by the A/B‐type granule ratio. Fraction A‐type granule content was positively correlated with starch pasting attributes, which might suggest that granule size itself could contribute to wheat starch pasting behavior.  相似文献   

16.
Nixtamal, masa, and tortilla samples were stored for 24–96 hr and their chemical composition, retrogradation, and in vitro starch digestibility features were evaluated. Ash and fat contents in the three products were smaller than in the original corn sample, but protein levels were higher, all in accordance with previous studies. In general, a minor decrease in available starch (AS) content was observed with storage time. Masa showed the greatest AS values, followed by tortilla and nixtamal. Tortilla presented slightly higher retrograded resistant starch (RS3) values (1.1–1.8%, dmb) than masa (0.7–0.9%) and nixtamal (0.7–0.8%) and only minor increases were observed after 24 hr of storage, suggesting that retrogradation phenomenon in these samples takes place very rapidly and is more pronounced in the final product (tortilla). The development of RS3 explains the observed decrease in AS. Higher total resistant starch values were found in all samples at a range of 2.1–2.6% for nixtamal and masa, and a range of 3.1–3.9% in tortilla. This indicates that, apart from retrograded resistant starch, some ungelatinized fractions appear to contibute to the indigestible content of these products. The α‐amylolysis rate of the three materials decreased with storage. Tortilla showed the greatest hydrolysis indices. Differential scanning calorimetry (DSC) analysis showed that the nixtamal, masa, and tortilla did not show differences in amylopectin crystal melting temperature with storage time, but tortilla exhibited higher enthalpy values after 72 hr of storage, in accordance with the greater total RS contents recorded after prolonged storage.  相似文献   

17.
We evaluated the effect and magnitude of flour particle size on sponge cake (SC) baking quality. Two different sets of wheat flours, including flours of reduced particle size obtained by regrinding and flour fractions of different particle size separated by sieving, were tested for batter properties and SC baking quality. The proportion of small particles (<55 μm) of flour was increased by 11.6–26.9% by regrinding. Despite the increased sodium carbonate solvent retention capacity, which was probably a result of the increased starch damage and particle size reduction, reground flour exhibited little change in density and viscosity of flour‐water batter and produced SC of improved volume by 0.8–15.0%. The volume of SC baked from flour fractions of small (<55 μm), intermediate (55–88 μm), and large (>88 μm) particles of soft and club wheat was in the range of 1,353–1,450, 1,040–1,195, and 955–1,130 mL, respectively. Even with comparable or higher protein content, flour fractions of intermediate particle size produced larger volume of SC than flour fractions of large particle size. The flour fractions of small particle size in soft white and club wheat exhibited lower flour‐water batter density (102.6–105.9 g/100 mL) than did those of large and intermediate particle fractions (105.2–108.2 g/100 mL). The viscosity of flour‐water batter was lowest in flour fractions of small particle size, higher in intermediate particles, and highest in large particles. Flour particle size exerted a considerable influence on batter density and viscosity and subsequently on SC volume and crumb structure. Fine particle size of flour overpowered the negative effects of elevated starch damage, water absorption, and protein content in SC baking.  相似文献   

18.
Resistant starches (RS) were prepared from wheat starch and lintnerized wheat starch by autoclaving and cooling and by cross‐linking. Heat‐moisture treatment also was used on one sample to increase RS. The experimental resistant starches made from wheat starch contained 10–73% RS measured as Prosky dietary fiber, whereas two commercial resistant starches, Novelose 240 and 330, produced from high‐amylose maize starch, contained 58 and 40%, respectively. At 25°C in excess water, the experimental RS starches, except for the cross‐linked wheat starch, gained 3–6 times more water than the commercial RS starches, and at 95°C gained 2–4 times more. Cross‐linked RS4 wheat starch and Novelose 240 showed 95°C swelling powers and solubilities of 2 g/g and 1%, and 3 g/g and 2%, respectively. All starches showed similar water vapor sorption and desorption isotherms at 25°C and water activities (aw) < 0.8. At aw 0.84–0.97, the resistant starches made from wheat starch, except the cross‐linked wheat starch, showed ≈10% higher water sorption than the commercial resistant starches.  相似文献   

19.
Dimethyl sulfoxide (DMSO), with either 50 mM LiBr, 10% water, or both, was used as solvent for multi-angle laser-light scattering (MALLS) batch mode analysis of rice starch, and amylopectin and amylose weight-average molecular weight (Mw). DMSO/50 mM LiBr was a better solvent for these measurements than was DMSO/10% water, based on this solvent's ability to dissolve starch and to reduce the size of starch aggregates. Starch concentration decreased and amylose:amylopectin ratio increased when starch suspended in DMSO was centrifuged or filtered prior to size-exclusion chromatography (SEC)-MALLS analysis. A higher amylose:amylopectin ratio made starch more soluble, and the higher this ratio, the lower the Mw of eluted amylopectin. For SEC analysis of Mw, fractions of starch amylopectin and amylose dispersed in DMSO-based solvents yielded better results than starch dispersed directly into the solvents, because dispersion of these fractions decreased starch aggregation. When these two starch components were fractionated and then dissolved separately in DMSO/50 mM LiBr, the Mw of dispersed amylopectin ranged from 40 to 50 million, and that of amylose was ca. 3 million, whereas starch from three rice varieties of varying amylose content ranged from 60 to 130 million. We recommend that SEC evaluation of amylopectin and amylose be accomplished with fractionated samples as in this study; such evaluations were superior to evaluations of natural mixtures of amylopectin and amylose.  相似文献   

20.
Z. Pan  S. Zhang  J. Jane 《Cereal Chemistry》1998,75(4):541-546
The effects of extrusion variables (moisture, screw speed, and temperature) and chemicals (urea and sodium bicarbonate) on the properties of starch-based binders (water absorption, bulk density, binder yield, expansion ratio, solubility, pH) and processing conditions (die temperature and pressure, feed rate, and specific mechanical energy) were studied using a central composite design. All quadratic regression models, except the models for bulk density and pH, were significant at the P ≤ 0.06 level. These models can predict the binder properties and processing conditions when extrusion variables and the chemical concentrations are known. Optimum combinations of the chemical concentrations (g/100 g of starch) and extrusion variables to achieve high water absorption in the binders were 15–20 g of urea /100 g of starch, 0–4 g of sodium bicarbonate/100 g of starch, 35–40 g of moisture/100 g of starch, 100–120 rpm screw speed, and 185–215°C barrel temperature. The molecular degradation of the starch occurred during extrusion, especially when the moisture content of starch was <30 g/100 g of starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号