首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pearl millet, teff, cowpea, and peanut used in the formulation of experimental weaning foods were evaluated for changes in physicochemical properties resulting from roasting and malting. The particle size index (PSI) value for cowpea was significantly higher, indicating a finer flour than that obtained from pearl millet. Pearl millet and teff flours did not have significantly different PSI values, water absorption index values, or gruel viscosities. Viscosities for control and roasted cowpea gruels (15%, w/v) were significantly higher than those obtained from peanut gruels. Malting had the greatest impact on physicochemical properties for all grains, whereas roasting produced no significant differences from control flours. Malting yielded apparent increases in grain protein content, and malted seeds yielded finer flours with reduced water absorption and pasting qualities.  相似文献   

2.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

3.
A response surface analysis using a second-order central composite design was used to study the effect of extrusion process parameters on the extrudate quality of three blends containing buckwheat flour. The extrudates were prepared as three blends. Blend 1 was a 55:40:5 (w/w) mix of light buckwheat flour, wheat flour, and nonfat dry milk (NFDM). Blend 2 was a 40:55:5 mix of light buckwheat flour, corn meal, and NFDM. Blend 3 was a 30:60:10 mix of light buckwheat flour, corn meal, and NFDM. The blends were processed in a twin-screw extruder with factorial combinations of the parameters including: process temperatures of 95–150°C, dough moisture of 15–22%, and screw speeds of 260–390 rpm. The linear components alone significantly explained most of the variation of expansion index, bulk density, water absorption, and breaking strength. The greatest amount of variability was explained by process temperature for blend 1. Dough moisture accounted for the greatest amount of variation for blends 2 and 3. Maximum predicted expansion index values and high water absorption percentages were obtained at low dough moisture levels. Dough moisture and process temperatures were the most important factors predicting bulk density. Sensory evaluation of texture, color, flavor, and general acceptability scores of selected samples ranked blend 3 > blend 2 > blend 1. The in vitro protein digestibility values ranked blend 1 > blend 2 > blend 3. An increase of up to 9.5% units in the protein digestibility values was observed when compared to the nonextruded raw blends.  相似文献   

4.
Different concentrations of sorghum diastatic malt (SDM) were added to pregelatinized pastes from regular maize flour with the aim of hydrolyzing the starch to produce liquefied foods with 15% solids. Viscosities of the blends decreased as the concentration of SDM increased. Addition of 6.66% SDM based on total amount of solids reduced viscosity by ≈50% when compared with a food that did not contain any SDM. Addition of 33.3 or 46.6% SDM reduced viscosity by ≈70 or 75%, respectively. Most of the reduction in viscosity occurred within 1–3 min of incubation with warm water. Weanling rats were fed a combination 33.3% SDM and 66.6% of either quality protein maize (QPM), regular maize (RMZ) or decorticated pearl millet (DPM) to estimate protein efficiency ratios (PER), protein digestibility, biological value (BV), and net protein utilization (NPU). Rat growth was positively correlated with dietary lysine content and essential amino acid (EAA) scores; therefore, animals fed QPM weanling food had significantly higher (P < 0.05) protein digestibility corrected EAA scores, PER, BV, and NPU than counterparts fed diets based on RMZ or DPM. This demonstrates that it is feasible to produce nutritious liquefied weaning foods blending 33.3% SDM with 66.6% QPM using simple processing techniques.  相似文献   

5.
Corn masa by‐product streams are high in fiber and are amenable for utilization in livestock feed rations. This approach is a potentially viable alternative to landfilling, the traditional disposal method for these processing residues. Suspended solids were separated from a masa processing waste stream, blended with soybean meal at four levels (0, 10, 20, and 30% wb), and extruded in a laboratory‐scale extruder at speeds of 50 rpm (5.24 rad/sec) and 100 rpm (10.47 rad/sec) with temperature profiles of 80‐90‐100°C and 100‐110‐120°C. Processing conditions, including dough and die temperatures, drive torque, specific mechanical energy consumption, product and feed material throughput rates, dough apparent viscosity, and dough density, were monitored during extrusion. The resulting products were subjected to physical and nutritional characterization to determine the effects of processing conditions for these blends. Extrudate analysis included moisture content, water activity, crude protein, in vitro protein digestibility, crude fat, ash, product diameter, expansion ratios, unit and true density, color, water absorption and solubility, and durability. All blends were suitable for extrusion at the processing conditions used. Blend ratio had little effect on either processing parameters or extrudate properties; extrusion temperature and screw speed, on the other hand, significantly affected both processing and product properties.  相似文献   

6.
The purpose of this study was to improve the micronutrient quality of indigenous African infant flour using traditional techniques available in the region. Response surface methodology was used to study the effect of duration of soaking, germination, and fermentation on phytate and phenolic compounds (PC), pH, viscosity, and the in vitro solubility (IVS) of iron and zinc in infant sorghum flour. The phytate and the PC concentrations of the flour were significantly modified as a result of the duration of germination and fermentation and their mutual interaction. These modifications were accompanied by a significant increase in % IVS Zn after 24 h of sprouting. Except for the interaction of soaking and fermentation, none of the processing parameters exerted a significant effect on the % IVS Fe. The viscosity of the porridge prepared with the flour decreased significantly with the duration of germination, making it possible to produce a porridge with high energy and nutrient density. The use of germination in combination with fermentation is recommended in the processing of cereals for infant feeding in developing countries.  相似文献   

7.
Nine grain sorghum cultivars with a broad range of ethanol fermentation efficiencies were selected to characterize the changes in sorghum protein in digestibility, solubility, and microstructure during mashing and to relate those changes to ethanol fermentation quality of sorghum. Mashing reduced in vitro protein digestibility considerably, and a large amount of polymers cross-linked by disulfide bonds were developed during mashing. As a marker of cross-linking, protein digestibility of the original samples was highly related to conversion efficiency. gamma-Kafirin (%) neither correlated to ethanol yield nor conversion efficiency significantly. Solubility of proteins in an alkaline borate buffer in conjunction with SDS decreased substantially after mashing. Solubility and the SE-HPLC area of proteins extracted from mashed samples were highly correlated with ethanol fermentation. Ethanol yield increased and conversion efficiency improved notably with the increase of extracted proteins from mashed samples. SE-HPLC total area could be used as an indicator to predict ethanol fermentation. CFLSM images proved that sorghum proteins tended to form highly extended, strong web-like microstructures during mashing. The degree of protein cross-linking differed among samples, and more open microstructures were observed in samples with higher conversion efficiencies. The web-like protein matrix was found to hold not only starch granules but also some oligosaccharides or polysaccharides inside. The formation of web-like microstructures because of cross-linking reduced conversion efficiency.  相似文献   

8.
Fermentation of pure teff (Eragrostis teff), pure grass-pea (Lathyrus sativus), and their mixtures, 9:1 and 8:2 (teff/grass-pea) has been done at two temperatures (room temperature and 35 degrees C) in duplicate using the strains of Lactobacillus plantarum, for bacterial fermentation, and Aspergillus oryzae and Rhizopus oligosporus in succession for solid-state fungal fermentation as inocula. In addition, the natural or spontaneous and back-slopping methods of bacterial fermentation have been done on the above four substrate groups. The pH and essential amino acid profiles of the different fermentation processes were compared. The back-slopping in teff at a temperature of 35 degrees C gave the sharpest pH drop. All fermentations done at 35 degrees C showed a steeper slope in their pH versus time plot compared to their room temperature counterpart. Fungal fermentation gave an improved amino acid profile for the essential ones in all of the substrate groups, except in pure grass-pea. Fermented teff/grass-pea (8:2) in this fungal fermentation has been found to be quite comparable in essential amino acid profile to an ideal reference protein recommended for children of 2-5 years of age. None of the bacterial fermentations produced a net change in their essential amino acid profile in any of the substrate groups investigated. Solid state fungal fermentation on pure grass-pea using the fungal strains R. oligosporous and A. oryzae in succession has shown that the neurotoxin beta-N-oxalyl-alpha,beta-diaminopropionic acid (beta-ODAP) in grass-pea has been removed by 80% on average for the high-toxin variety and by up to 97% for the low-toxin variety as determined by an improved chromatographic method with bioelectrochemical detection coupled on-line with refractive index detection.  相似文献   

9.
Tristearin (TS), a stearic acid-rich hard fat, and soybean oil (SO) were blended in different ratios to produce four functional shortenings (blends) for use in foods. Groups of hamsters were then fed diets containing TS, SO, and the four blends for four weeks. After four weeks, serum total cholesterol (CH) levels were measured: the group fed SO had 219 ± 19 mg/dL, and the groups fed four blends had a range of 214 ± 14 to 222 ± 15 mg/dL. Thus, TS in the blends exerted no hypercholesterolemic effect; it even lowered serum triglycerides (SO vs. blends). Liver CH levels were significantly lower only in the group fed the blend containing the highest level (60%) of TS. While SO was nearly completely digested (97.7%), digestibility of TS in the blends was low with a range of 10.2–26.3%, which was inversely related to the level of TS in the blend. Thus, functional shortenings produced by blending TS with edible oils may not only not raise blood CH levels, but they would be free of trans fatty acids and may be classified as reduced-calorie fats.  相似文献   

10.
The aim of this work was to study the effects of extrusion barrel temperature (70–180°C), feed moisture (18–30%), pH (3–8), different proportions of corn starch (75–95%), and whey protein concentrate (WPC, 80% protein concentration) (25–5%) on the preparation of functional blends. Expansion index (EI), bulk density (BD), compression force (CF), color, water absorption index (WAI), water solubility index (WSI), gel strength (GS), syneresis of the gel, and in vitro digestibility were evaluated. Barrel temperature and the proportion of WPC had significant effects on BD; at higher temperatures, BD was lower. Feed moisture and pH had significant effects on EI; with lower moisture and higher pH, the EI increased. An interaction of barrel temperature and feed moisture had an effect on WAI; at lower moisture content, the temperature effect was nonexistent, whereas at higher temperatures and feed moisture content, the WAI increased. The pH level had a significant effect on WSI, showing high WSI when lower pH levels were used. Color analysis showed that higher protein content and pH generated higher δE values; low feed moisture and low pH resulted in gel syneresis. Higher in vitro digestibility was obtained when a higher WPC proportion and pH were used. Extruded WPC-CS blends under alkaline and acidic conditions were affected by the preparation of diverse formulations that potentially can be used in foods to improve some functional and protein content.  相似文献   

11.
Two varieties of finger millet (Eleusine coracana)-a tannin-containing red variety, CO13, and nontannin white variety, CO9-processed by treatment with enzymes (cellulase and hemicellulase) and fermentation with starters (from previously fermented finger millet batter), achieved the desirable goals of reduced fermentation time (12 h), increased acidity (2.2 to 2.4%), enhanced in vitro protein digestibility (IVPD) (14 to 26%), and mineral availability compared to 48 h uncontrolled natural fermentation (Usha Antony and Chandra, 1998). Fermentation with starters alone increased titratable acidity (1.02 to 1.88%), IVPD (5. 5 to 22%) and mineral availability, and decreased phytate (23 to 26%) and tannin (10.8 to 40.5%) in the millets. Enzymatic treatment (3 h, 50 degrees C) did not significantly alter the pH, phytate, tannins, IVPD, or HCl-mineral extractability but enhanced fermentative changes. Overall, the changes were marked when the 48 h starter was used and the improvements in nutrient availability was greater in the CO13 variety.  相似文献   

12.
The physiochemical characteristics of β‐glucan in oat and barley foods can affect human physiological response. A method for continuous measurement of β‐glucan viscosity with a Rapid Visco Analyzer (RVA) was developed to overcome the complexity of the common protocols based on in vitro digestion methods. The effects of several parameters on viscosity and solubility were considered. Oat cereal foods showed different RVA viscosity profiles depending on their physiochemical characteristics. Products high in starch exhibited a high initial viscosity that was reduced by α‐amylase action, whereas products with low amounts of starch exhibited a slow increase in viscosity. The viscosity of all samples reached a plateau in the viscosity curve after 1–2 hr, which is the key for obtaining reproducible results. Optimum digestion condition was achieved using sodium phosphate buffer (pH 6.9) and 1% β‐glucan dispersion at 37°C and 160 rpm. A particle size of <0.6 mm gave more consistent viscosities than did larger particles without affecting the solubility of β‐glucan. Pancreatin and α‐amylase concentrations affected the viscosity profile by influencing the digestion rate of protein and starch in the samples, but pepsin had limited influence at pH 6.9. Highly significant Pearson correlation between the in vitro digestibility protocol and RVA methods was achieved, indicting that the developed method could be used as an effective alternative for measurement of β‐glucan viscosity.  相似文献   

13.
In various Latin American countries, large volumes of potato are classified as unsuitable for use as food and destined for use as feed. This raw material has a high starch and fiber content that could be used in the production of different kinds of food. The objective of this research was the preparation and characterization of extruded whole potato pellets expanded by microwave heating. A 33 central composite routable experimental design and response surface methodology were used. The barrel temperature (BT, 93–127°C), feed moisture (FM, 19–29%), and corn starch concentration (CS, 3–37%) in the blends were evaluated. CS was the most important variable affecting the functional properties of the expanded pellets. Adding CS to the blends increased the expansion index and viscosity and improved luminosity, decreasing the apparent density and breaking force of the products. Low BT and especially high FM increased the luminosity of the expanded pellets. Increasing FM content increased the viscosity of the expanded pellets. The best functional characteristics for the expanded pellets were obtained using a blend of 63% potato flour and 37% CS, extruded at 110°C BT with 24% FM content. Nonfood-grade whole potato flour showed good potential for use in the production of expanded pellets with acceptable functional properties.  相似文献   

14.
Vegetable proteins are an integral part of infant weaning diets in Latin America. Protein quality in plant-based products, however, is constrained by amino acid composition and intrinsically present antinutritional factors. The goal of this study was to improve bean protein quality by utilizing fermentation and germination processing. The objectives were to determine if protein quality, as measured by Food and Agricultural Organization (FAO) approved True Protein Digestibility (TPD) and Protein Digestibility-Corrected Amino Acid Scores (PDCAAS), of formulated bean-based weaning products could be improved upon fermentation and germination and if protein quality could be further improved when processed beans were combined with cooked rice. Results showed that the highest TPD and PDCAAS values were obtained for cooked germinated beans combined with rice. The TPD values for products ranged from 80 to 91%, and the PDCAAS values were 0.38-0.51. There was no significant increase (P < 0.05) of either TPD or PDCAAS values upon fermentation. Germination increased TPD of cooked bean products; this increase was not, however, accompanied by an increase in PDCAAS. When combined with rice, the PDCAAS values for all bean products improved significantly, thus supporting the concept of cereal-legume complementation. In conclusion, this study showed the range of PDCAAS in processed black bean and bean-rice infant weaning food products. The potential for incorporation of these products into the diets of weaning age Latin American children would, however, be confirmed only after validation with growth or metabolic balance studies in human infants.  相似文献   

15.
True ileal total lysine digestibility was determined and compared with true ileal reactive lysine digestibility when applied to 20 cereal-based breakfast foods. Semisynthetic diets each containing a breakfast cereal as the sole protein source were formulated and fed to growing rats. Titanium dioxide was included as an indigestible marker. Digesta were collected from the rats and total (conventional amino acid analysis) and reactive (guanidination) lysine were determined in both diets and digesta. The true ileal reactive lysine digestibility ranged from 53 to 108% and was significantly higher than the true ileal total lysine digestibility for most of the breakfast cereals. Available lysine content (digestible reactive lysine content) ranged from 0.21 to 3.5 g/kg across the breakfast cereals. The conventional measure of digestible total lysine content significantly overestimated (on average 37%) available lysine for the majority of the cereals. Breakfast cereals undergo a significant degree of lysine modification probably as a result of processing during manufacture.  相似文献   

16.
Seeds of finger millet (Eleucine coracan (L.) Gaertner) and kidney beans (Phaseolus vulgaris L.) were sprouted, autoclaved, and fermented during the processing of a weaning (complementary) food for children. Relative changes in individual amino acids with processing were evaluated. Finger millet and kidney beans both showed a good percentage of essential to total amino acids, with 44. 2-44.9% in finger millet and 44.2-45.1% in kidney beans, when compared to 33.9% for the FAO/WHO reference protein for 2-5 year old children. Sprouting resulted in a significant decrease in lysine in kidney beans. Autoclaving caused significant decreases in histidine, while fermentation significantly decreased phenylalanine and increased tryptophan in finger millet. The leucine-to-lysine ratio, which is an indicator of the pellagragenic character of a protein, was significantly improved in finger millet by both sprouting and fermentation.  相似文献   

17.
A phosphorylated cross‐linked type 4 resistant wheat starch (RS4) containing 85.5% total dietary fiber (TDF) replaced 5–20% of the whole corn flour in an extruded ring‐shaped ready‐to‐eat breakfast cereal formulation. TDF content of the dry ingredient blend increased by roughly 3.6% for every 5% of added RS4. TDF loss during extrusion processing increased as RS4 level increased; however, a high percentage (78–89%) of the TDF content was retained in the final product. Product density increased as level of RS4 increased, but no effect on the specific mechanical energy was observed. X‐ray microtomography showed that RS4 addition did not affect internal air‐cell wall thickness, air‐cell size, or porosity. Moreover, addition of 5 or 10% RS4 did not affect expansion, physical appearance, initial crispness, or bowl life of the cereal rings. High levels of RS4 (15 and 20%) decreased cereal ring diameter but increased initial (dry) product crispness and extended bowl life. In general, RS4 addition level did not affect moisture content or moisture uptake of cereal rings during soaking in milk. Furthermore, moisture content and moisture uptake did not appear to influence the crispness of milk‐soaked cereal rings.  相似文献   

18.
Plantago ovata F. are small tan‐colored seeds with ≈30% weight husk. Plantago's husk high content of soluble fiber makes it a good lubricant of the intestinal track with demonstrated effects in lowering plasma cholesterol levels in humans and experimental animals. Plantago seeds grown in Northern Mexico were analyzed for proximate composition, combustion heat, soluble and insoluble dietary fiber, fatty acids, amino acids, and protein fractionation. In vitro digestibility and digestibility of dry matter, apparent and true digestibility, and net protein ratio (in vivo) were also analyzed. Plantago seeds had 17.4% protein, 6.7% fat, 24.6% total dietary fiber, 19.6% insoluble fiber, 5.0% soluble fiber, and a combustion heat of 4.75 kcal/g. Osborne fractionation (based on solubility) yielded albumin 35.8%, globulin 23.9%, and prolamin 11.7%. The oil from plantago seeds had a high percentage of linoleic acid (40.6%) and oleic acid (39.1%) and a minor proportion of linolenic acid (6.9%). In vitro protein digestibility of the plantago seed was 77.5%, suggesting a highly digestible protein. Lysine content was 6.82 g/100 g of protein, higher than wheat and oats (2.46 and 4.20 g/100 g of protein, respectively). Rat bioassays showed values of 89.6% digestibility of dry matter, 86.0% apparent digestibility, 88.1% true digestibility, and 4.40 net protein ratio corrected (NPRc). The importance of these findings is that plantago whole grain shows favorable nutritional quality when compared with cereals and legumes.  相似文献   

19.
Flours from advanced lines or cultivars of six triticales and two prime hard wheats, along with triticale‐wheat blends, were investigated for mixing, extension (excluding blends), and baking properties using microscale testing. Percentage total polymeric protein (PPP) and percentage unextractable polymeric protein (UPP) of flours and doughs, including blends, mixed to optimal dough development were estimated using size‐exclusion HPLC to determine the changes in protein solubility and association with blend composition (BC), mixing properties, and loaf height. Each triticale was blended with flours of each of the two wheat cultivars (Hartog and Sunco) at 0, 30, 40, 50, 60, 70, and 100% of wheat flour. Nonlinear relationships between BC and mixograph parameters (mixing time [MT], bandwidth at peak resistance [BWPR], and resistance breakdown [RBD]) were observed. A linear relationship between BC and peak resistance (PR) was predominant. PPP of triticale flours was mostly higher than PPP of wheat cultivars. UPP of all triticales was significantly lower than wheat cultivars. PPP of freeze‐dried doughs was mostly nonsignificant across the blends and showed a curvilinear relationship with BC. The deviations from linearity of MT and PPP were higher in triticale‐Sunco blends than in triticale‐Hartog blends. UPP of blends was closer to or lower than the lower component in the blend. The deviations from linearity for MT and UPP were greater in triticale‐Hartog blends than triticale‐Sunco blends. A highly significant correlation (P < 0.001) was observed between BWPR and loaf height. This suggested that BWPR in triticale‐wheat flour blends could be successfully used for the prediction of loaf height. Triticale flour could be substituted for wheat flour up to 50% in the blend without drastically affecting bread quality. Dough properties of triticale‐wheat flour blends were highly cultivar specific and dependent on blend composition. This strongly suggested that any flour blend must be tested at the desired blend composition.  相似文献   

20.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号