首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The aim of this study was to quantify the release of the hydrophobic contaminant emamectin (EMA) from marine sediments in response to inputs of organic material (OM) and/or oil, in the presence or absence of two different bioturbating species. Specifically, it was designed to test whether oil would decrease the release of EMA and whether OM and/or the presence of bioturbating macrofauna would increase the release of EMA from sediment.

Materials and methods

Experimental sediments were spiked with EMA (5 μg kg?1 wet sediment). The different treatments were prepared by the addition of OM (310 g algae m?2) and/or an aliphatic oil (29.6 g oil m?2). In addition, two bioturbating species, Brissopsis lyrifera or Ennucula tenuis, were added in some aquaria, resulting in a total of 12 treatments with four replicates each. Water samples for analyses of silicate and EMA and sediment samples for analyses of total organic carbon (TOC) were taken at the start and end of the experimental exposure. In addition, oxygen was measured during the experimental period of 8 days. Fluxes were calculated and compared between treatments using generalised linear models (GLMs).

Results and discussion

The EMA release flux was significantly increased in treatments with added OM, possibly reflecting the presence of soluble complexes formed between EMA and dissolved OM. The presence of B. lyrifera caused a small, but statistically significant, increase in EMA release from sediment. This species would be expected to have a stronger effect on bioirrigation and particle mixing than E. tenuis, particularly when the population density of the latter species is low (as in the present experiment). There were no consistent effects of oil in this experiment, but the presence of oil decreased the EMA release flux when co-occurring with added OM and/or B. lyrifera. Increased retention of hydrophobic contaminants in the presence of oil is consistent with the existing literature on contaminant fate.

Conclusions

The results from this study highlight the need to consider both the infauna present in polluted areas and the level of organic enrichment of the sediment when modelling the environmental fate of hydrophobic contaminants. It also highlights that labile OM and refractory oil appear to differ in their effects on the remobilisation of hydrophobic organic contaminants, by reducing and increasing release, respectively.  相似文献   

2.

Purpose  

Sediments serve as integral and dynamic parts of our aquatic systems. Within the last 15 to 20 years, however, the scientific community has begun noticing deterioration of sediment quality at an alarming rate worldwide. Sediments are now harboring hazardous pollutants that can directly influence water quality, thereby creating very stressful conditions for aquatic life. As a consequence, global efforts were initiated in the early 1970s, to find ways to assess sediment quality. Because of their obvious ecological and economic significance, fish have remained a major taxonomic group for appraising the general quality of aquatic systems. However, for sediment risk assessment, fish have lagged behind invertebrates due to their mobility and generally, pelagic lifestyle. To our knowledge, this is the first paper that comprehensively presents and reviews the versatile role of fish in assessing the state of health of aquatic sediments.  相似文献   

3.
He  Jing  Ma  Pu  Diao  Zhaoyan  Su  Derong 《Journal of Soils and Sediments》2022,22(10):2802-2814
Journal of Soils and Sediments - The objectives of this study were to (i) determine the ecological stoichiometry of sediment resources, sediment microbial biomass, and sediment enzyme following...  相似文献   

4.
5.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are unintentional products that are classified as persistent toxic substances. The goal of the present study was to generate data on the presence of 15 priority PAHs that are found in surface sediment and core sediment in the region of the Turvo/Grande watershed, São Paulo State, Brazil, which is an area of expanding sugarcane cultivation, and to correlate these data with the sources of these PAHs and the guiding values for sediment quality analysis.

Materials and methods

Surface sediments and sediment cores were sampled during the rainy and dry seasons in February and July 2010. The extraction of PAHs from sediments was performed using a Soxhlet extractor, and then the extract was cleaned according to the methods of the US EPA 3630C (US EPA 1996) using a silica gel column. Quantification was performed using high performance liquid chromatography with fluorescence detection.

Results and discussion

The concentrations of all 15 PAHs decreased as the depth of the sediment core increased. Overall, the concentrations decreased along the sediment core; however, the RTURARG (region predominantly used for planting sugarcane and livestock) during the rainy season and the CAPRP sampling site (located at part of the Preto River dam) during the dry season showed increased concentrations in the first few sediment fractions, and then the concentrations decreased. Higher concentrations were observed in urban locations, and the concentration of naphthalene was higher than the probable effect level (PEL) determined by the Canadian environmental agency. The obtained diagnostic ratios indicate that the sediment from areas with an abundance of sugarcane was a pyrolytic source of PAHs, which indicates a contribution from burning straw to the PAH concentrations in those areas.

Conclusions

For all sampling sites and all PAHs, we found a decreasing trend in PAH concentrations with increasing sediment core depth, and the locations, such as CAPRP, that experienced a higher level of human activity had the highest total concentrations of PAHs. These locations were the only areas in which the PAH naphthalene was found in higher concentrations than the PEL. The diagnostic ratios reveal that regions with sugarcane plantations had predominantly pyrolytic sources of PAHs, indicating the contribution of PAHs from sugarcane straw burning.
  相似文献   

6.
The antifoulant agents, bis-(tributyltin) oxide (TBTO), tributyltin acetate (TBTOAc) and tributyltin chloride (TBTCI) were mixed with various media. These media included distilled water, seawater, aerobic and anaerobic sediments. The Mossbauer spectra of the chloroform extracts of the distilled water and seawater mixed with these compounds were examined. The componds were mixed with aerobic and anaerobic sediments, and the Mossbauer spectra of the sediments were also examined. TBTO was converted to the hydroxide compound in all media except in anaerobic sediment where it was converted to an unidentified compound. TBTOAc and TBTCI were not changed by mixing with distilled water and aerobic sediment but were converted to the hydroxide compound in seawater and in anaerobic sediment.  相似文献   

7.
Background, aims and scope  One issue that remains particularly problematic for integrated and sustainable sediment management is that sediment plays differing roles in various sectoral, regulatory and statutory objectives. This means that across Europe, the level of consideration afforded to sediment management has thus far been primarily left to the discretion of individual countries and agencies. One of the consequences of the complex way in which sediments are regulated in Europe, and a possible over-reliance on the precautionary principle, is that there appears to be less regulatory acceptance of risk-based (rather than mass-based or chemical threshold-based) sediment remedial decisions, and thus resistance to some of the risk-based and in situ remedial technologies currently favoured in North America; “presumptive remedies” are being pushed by a number of agencies, and in-place and risk-based management are meeting great resistance. This summary discusses some of the current and emerging European regulations and strategies and their implications for risk-based sediment management. Conclusions, recommendations and perspectives  There are numerous examples of ex situ remedial strategies in Europe, where sediments are either treated or contained (and increasingly, considered for beneficial use), but very few examples of in situ management. However, the risk-based evaluation of ALL remedial options is entirely consistent with European environmental policy. In fact, in some cases, presumptive removal of sediments can result in greater risks to human health and the environment than management in place, and thus a failure to meet Europe’s ambitious environmental objectives. Decisions that only address a single, sectoral regulatory driver (such as a desire to remove contaminants from a waterbody) may result in a net detriment to the environment. The European Commission has stated that decisions and policies should be continuously evaluated in the light of emerging science and experience, and, where possible, rigorous science-based risk evaluation should take the place of the application of conservative safety factors. Whilst not specifically addressing sediment management, various European Directives and initiatives set out principles for the selection of land-based remedial options that are consistent with a number of international consensus guidance documents on the site-specific, risk-based selection of contaminated sediment remedial options. Although there are numerous technical differences, the fundamental risk- and cost-based principles being applied to land management should be transferable to sediment management decision frameworks. However, whilst the use of risk-based decision criteria is now well-established (either in principle or in practice) in Europe for soil remedial decisions, these principles have not yet been translated to generally applied decision frameworks or guidance for contaminated sediment management in Europe. There is no reason, however, why they should not be.  相似文献   

8.
《CATENA》1999,35(1):41-63
Within a few decades of European settlement, channel incision transformed discontinuous river courses throughout Wolumla catchment, on the south coast of New South Wales, Australia. The development of continuous channels greatly increased sediment delivery from the catchment. This paper documents the character, timing and proportion of sediment sourced from upland valley fills, channel expansion sites, and gully networks. Volumes of material transferred from these sources are compared with estimates of sediment eroded from hillslopes, and the movement of sediment off the slopes to the valley floor is assessed. Although disturbance of slopes resulted in significant movement of materials, most of this material has been stored on-slope, in trapped tributary fills and along lower order drainage lines. The slopes are effectively decoupled from the channel. Sediment accumulation in farm dams over the past few decades has been negligible. Around 75% of the total volume of material released from creeks in Wolumla catchment since 1865, i.e., 5500×103 m3, has been derived from channel incision into valley fills at the base of the escarpment. Sediment flushing occurred within a few decades of catchment disturbance. Bedrock confinement in the middle and lower catchment resulted in very efficient downstream transfer of materials. Although gully networks and channel expansion sites have released a relatively small volume of material, these sources are the greatest contemporary source of sediment in Wolumla catchment.  相似文献   

9.
Hu  Beibei  Wang  Dongqi  Meng  Weiqing  Zhou  Jun  Sun  Zongbin  Liu  Xiaolong 《Journal of Soils and Sediments》2020,20(8):3243-3253
Purpose

The purposes of this study were to analyse the spatiotemporal variations in greenhouse gas diffusive fluxes at the sediment–water interface of sewage-draining rivers and natural rivers, and investigate the factors responsible for the changes in greenhouse gas diffusive fluxes.

Materials and methods

Greenhouse gas diffusive fluxes at the sediment–water interface of rivers in Tianjin city (Haihe watershed) were investigated during July and October 2014, and January and April 2015 by laboratory incubation experiments. The influence of environmental variables on greenhouse gas diffusive fluxes was evaluated by Spearman’s correlation analysis and a multiple stepwise regression analysis.

Results and discussion

Sewage-draining rivers were more seriously polluted by human sewage discharge than natural rivers. The greenhouse gas diffusive fluxes at the sediment–water interface exhibited obvious spatiotemporal variations. The mean absolute value of the CO2 diffusive fluxes was seasonally variable with spring>winter>fall>summer, while the mean absolute values of the CH4 and N2O diffusive fluxes were both higher in summer and winter, and lower in fall and spring. The annual mean values of the CO2, CH4 and N2O diffusive fluxes at the sewage-draining river sediment–water interface were ??123.26?±?233.78 μmol m?2 h?1, 1.88?±?6.89 μmol m?2 h?1 and 1505.03?±?2388.46 nmol m?2 h?1, respectively, which were 1.22, 4.37 and 134.50 times those at the natural river sediment–water interface, respectively. The spatial variation of the N2O diffusive fluxes in the sewage-draining rivers and the natural rivers was the most significant. As a general rule, the more serious the river pollution was, the greater the diffusive fluxes of the greenhouse gases were. On average for the whole year, the river sediment was the sink of CO2 and the source of CH4 and N2O. There were positive correlations among the CO2, CH4 and N2O diffusive fluxes. The main influencing factor for CO2 and N2O diffusive fluxes was the water temperature of the overlying water; however, the key factors for CH4 diffusive fluxes were the Eh of the sediment and the NH4+-N of the overlying water.

Conclusions

River sediment can be either a sink or a source of greenhouse gases, which varies in different levels of pollution and different seasons. Human sewage discharge has greatly affected the carbon and nitrogen cycling of urban rivers.

  相似文献   

10.

Purpose

The study was carried out in a wetland of the Middle Paraná River system, Argentina, in order to evaluate the processes associated with the decomposition of manure, which includes changes in chemical composition, nutrient release of manure, and colonization of invertebrates. We also compared the invertebrate assemblage that colonized manure with that present in the benthos of the wetland.

Materials and methods

Nylon bags were filled with fresh cattle manure and anchored to the littoral zone of the wetland. Six bags were collected after 1, 2, 6, 14, 21, 28, 33, 55, and 79 days: three for invertebrate determination and the other three bags for determination of dry mass and chemical analyses. The nutrient content, cellulose, lignin, and total phenolic compounds of manure were determined. In addition, the leachate of manure was collected for nutrient analyses. Samples of the wetland benthic sediment were collected for benthic invertebrate determination and particle size analyses. Spearman rank correlation was used to evaluate the relationship between chemical compounds of manure and breakdown rate. Principal component analysis was used to explore invertebrate assemblage composition of manure and sediment during the experiment.

Results and discussion

Limnodrilus, Dero, and Chironomus were dominant in the manure. Gatherer-collector was the dominant group in the manure, comprising almost 95 % of the total density of invertebrates. Breakdown rate was significantly related with nutrients, cellulose and total phenolics of manure. An ordination plot showed changes in invertebrate assemblages of manure and sediment samples over time.

Conclusions

This study provides new insight on the importance of manure as a substrate for macroinvertebrate colonization. Cattle manure needs to be considered as a potential source of nutrients for aquatic systems and a substrate for invertebrate assemblages.
  相似文献   

11.

Purpose

This article aims to investigate the use and benefits of using comprehensive two-dimensional gas chromatography (GC?×?GC) and structure?Cactivity relationship modeling for screening and prioritization of organic contaminants in complex matrices. The benefit of applying comprehensive screening techniques to samples with high organic contaminant content is primarily that compounds with diverse physicochemical properties can be analyzed simultaneously. Here, a heavily contaminated industrial area was surveyed for organic pollutants by analyzing soil, sediment, and surface water samples. The hazard of the pollutants were ranked using SARs.

Material and methods

The water samples were liquid?Cliquid extracted using dichloromethane and directly analyzed by GC?× GC?Ctime-of-flight mass spectrometry (GC?×?GC?CTofMS). Soil and sediment samples were extracted with dichloromethane in an ultrasonic bath and subjected to gel permeation chromatography to eliminate lipids and humic matter. The low molecular weight fraction was then analyzed with GC?×?GC?CTofMS.

Results and discussion

More than 10,000 components were found in each sample, of which ca. 300 individual compounds were unambiguously identified using the National Institute of Standards and Technology mass spectra library and authentic reference standards. Alkanes, polycyclic aromatic hydrocarbons, and phthalates were generally the most abundant and were found in all matrices. In contrast, chlorinated compounds such as chlorophenols, biphenyls, and chlorinated pesticides were only detected in samples from a few hotspot regions. The toxicities of the most frequently detected compounds and of the compounds detected at the highest concentrations in samples from hotspot regions were estimated by ecological structure?Cactivity relationships. The ratio of the measured concentration to the predicted toxicity level was then calculated for each compound and used for an initial risk assessment in order to prioritize compounds for further transport and fate modeling, complementary measurements, and more advanced risk assessments.

Conclusions

The advantage of using of GC?×?GC?CTofMS for preliminary screenings of contaminated areas was evaluated at a polluted area in northern Sweden. The area was found to carry organic pollutants such as polyaromatic hydrocarbons, aliphatic hydrocarbons, polychlorinated biphenyls, phthalic compounds, and many chlorinated pesticides. Preliminary risk assessments indicate which compounds to use for subsequent remediation experiments based on their availability on the site or toxicity.  相似文献   

12.
Background, aim, and scope  It is well known that contaminated sediments represent a potential long-term source of pollutants to the aquatic environment. To protect human and ecosystem health, it is becoming common to remediate contaminated sites. However, the great cost associated with, e.g., dredging in combination with the large numbers of contaminated sites makes it crucial to pinpoint those sites that are in greatest need of remediation. In most European countries, this prioritization process has almost exclusively been based on chemical analyses of known substances; only seldom toxicity data has been considered. The main objective of the current study was therefore to develop a tool for hazard identification of sediment by ranking potential toxicity of organic sediment extracts in a crustacean and a fish. A secondary objective was to investigate the difference in potential toxicity between compounds with different polarities. Materials and methods  Early life stages of the crustacean Nitocra spinipes and the fish Oncorhynchus mykiss, which represent organisms from different trophic levels (primary and secondary consumer) and with different routes of exposure (i.e., ingestion through food, diffusive uptake, and maternal transfer), were exposed to hexane and acetone fractions (semi-polar compounds) of sediment from five locations, ranging from heavily to low contaminated. Preliminary tests showed that the extracts were non-bioavailable to the crustacean when exposed via water, and the extracts were therefore loaded on silica gel. Rainbow trout embryos were exposed using nano-injection technique. Results and discussion  Clear concentration–response relationships of both mortality and larval development were observed in all tests with N. spinipes. Also for rainbow trout, the observed effects (e.g., abnormality, hemorrhage, asymmetric yolk sac) followed a dose-related pattern. Interestingly, our results indicate that some of the locations contained toxic semi-polar compounds, which are normally not considered in risk assessment of sediment since they are focused on compounds isolated in the hexane fraction. Conclusions  The ranking of the five sediments followed the expected pattern of potential toxicity in both organisms, i.e., sediments with known pollution history caused major effects while reference sediments caused minor effects in the two test systems. Silica gel turned out to be an excellent carrier for exposure of N. spinipes to very hydrophobic and otherwise non-bioavailable sediment extracts. Recommendations and perspectives  Since both test systems demonstrated that a substantial part of the potential toxicity was caused by semi-polar compounds in the acetone fractions, this study enlightens our poor understanding of which compounds are causing adverse effects in environmental samples. Therefore, by investigating potential toxicity (i.e., hazard identification) as a first screening step in prioritizing processes, these implications could be avoided. For proper sediment risk assessment, we however recommend whole sediment toxicity tests to be used for selected sites at following tiers.  相似文献   

13.

Purpose

Quantifying suspended sediment fluxes and dynamics across mountains, and identifying the origin of sediment in severely eroded areas, are of primary importance for the management of water resources. This contribution aims to generalise previous results from suspended sediment fingerprinting obtained during 2007?C2009 in a mesoscale Alpine catchment (the Bléone River; 905?km2) in France, and to assess variability in sediment sources throughout the second half of the twentieth century.

Materials and methods

Sediment fingerprinting, based on elemental geochemistry and radionuclide measurements, was conducted on a sediment core collected in an alluvial floodplain at the basin outlet. This technique was combined with hydro-sedimentary time-series to reconstruct the origin of suspended sediment deposited at this location over the last 50?years.

Results and discussion

Interpretation of sedimentation based on historical hydrological databases corroborates core dating obtained with 137Cs and 210Pbxs activity measurements. Black marls and (marly) limestone sources provided the main fraction of sediment throughout the sequence (40 and 22?%, respectively). However, we also found evidence for the occurrence of major floods carrying large quantities of sediment originating from Quaternary deposits and conglomerates (25 and 16?%, respectively). The variability of sediment sources throughout the sequence may reflect the spatial variability of rainfall within the catchment, which in turn reflects its origin. However, the relatively homogeneous sediment composition throughout the sequence confirms that core-derived information is representative of widespread flood events.

Conclusions

These results are consistent with those obtained in previous studies. They also outline the need to take into account the entire grain size range of fine sediment in order to provide an overall picture of sediment sources and transfers within highly erosive catchments. This study also emphasizes the importance of using archival data to validate the results of sediment fingerprinting studies conducted during short contemporary monitoring programmes, and to extend fingerprinting of sediment sources over longer time-scales which include large and widespread floods.  相似文献   

14.

Purpose

In-channel sediment storage is a fundamental component of a river basin’s sediment budget. Sediment remains stored until a competent flow re-suspends and transfers it downstream. The objectives of this paper are: (1) to quantify in-channel sediment storage and its spatial and temporal dynamics in the River Isábena, a mesoscale mountainous catchment draining highly erodible areas (badlands) in the south central Pyrenees (Ebro basin) and (2) to analyse changes in storage in the mainstem channel in relation to sediment yield from the main tributaries.

Materials and methods

In-channel sediment storage was measured seasonally (from winter 2011 to winter 2012) at 14 mainstem cross-sections using a re-suspension cylinder. A minimum of three locations were sampled at each section, and two levels of agitation were applied. Samples allowed determination of the amount of sediment accumulated per unit surface area at a given point in the river; estimates of the total storage in the bed of the mainstem Isábena were derived from these data. In addition, main five tributaries were monitored for discharge and suspended sediment transport.

Results and discussion

Results show an annual sedimentary cycle, with the sediment being produced in badlands during winter, transferred to the main channel during spring, stored in the river during summer and, finally, exported out of the basin by the autumn floods. Marked spatial variability was observed; sections located immediately downstream from the main tributaries (i.e. mainly Villacarli) generally held larger amounts of sediment in the bed. Runoff and sediment inputs from the tributaries were the most important factors determining sediment storage and its spatial and temporal dynamics. The overall sediment yield of the Isábena was much higher than the in-channel sediment storage, despite the large amounts stored in the channel.

Conclusions

This finding corroborates a previous published hypothesis that fine sediment in the drainage network has a mean residence time of the order of 1 year and that the basin’s delivery ratio exceeds 90 %; both of these characteristics can be related to the high connectivity between production areas (badlands) and the river network, and to the role of baseflows allowing continuous export of sediment from the catchment.  相似文献   

15.

Purpose  

Although it is well-known that catchment suspended sediment yields (SY; tons per square kilometre per year) can vary significantly from year to year, little information exists on the magnitude and factors controlling this variability. This is crucial to assess the reliability of average SY values for a given measuring period (MP) and is of great geomorphic significance. This paper aims to bridge this research gap.  相似文献   

16.

Background, aim, and scope  

The cause for this position paper is the impression that risk assessors consider primarily the concentration of free metal ions dissolved in solution controlling metal bioavailability in aquatic systems. Aiming at a more realistic risk assessment of metals, bioavailability has to be discussed under the scope of main uptake routes of metals to organisms.  相似文献   

17.

Purpose  

At the land–ocean interface, large river deltas are major sinks of sediments and associated matter. Over the past decennia, many studies have been conducted on the palaeogeographic development of the Rhine delta and overbank deposition on the Rhine floodplains. This paper aims to synthesise these research results with special focus on the amounts and changes of overbank fines trapped in the Rhine delta and their controls at different time scales in the past, present and future.  相似文献   

18.
19.

Purpose  

The objective of this research was to study heavy metal mobility and availability in sediment samples. A rapid diagnosis about metal behaviour was performed using the combination of several single-step extraction procedures and multi-way chemometric tools.  相似文献   

20.
Background, aim and scope  Although many recent studies have focused on sediment potential toxicity, few of them were performed in tropical shallow aquatic environments. Those places can suffer short-time variations, especially due to water column circulations generated by changes in temperature and wind. Rio Grande reservoir is such an example; aside from that, it suffers various anthropogenic impacts, despite its multiple uses. Materials and methods  This work presents the first screening step for understanding sediment quality from Rio Grande reservoir by comparing metal content using three different sediment quality guidelines. We also aimed at verifying any possible spatial heterogeneity. Results and discussion  We found spatial heterogeneity varying according to the specific metal. Results showed a tendency for metals to remain as insoluble as metal sulfide (potentially not bioavailable), since sulfide was in excess and sediment physical–chemical characteristics contribute to sulfide maintenance (low redox potential, neutral pH, low dissolved oxygen, and high organic matter content). On the other hand, metal concentrations were much higher than suggested by Canadian guidelines and regional background values, especially Cu, which raises the risk of metal remobilization in cases of water circulation. Further study steps include the temporal evaluation of AVS/SEM, a battery of bioassays and the characterization of organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号