首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
大豆贮藏蛋白主要成分是7S和11S球蛋白,大豆贮藏蛋白组分及其亚基组成决定了蛋白质的品质和加工特性。本研究选用134对细胞核SSR标记,对166份栽培大豆微核心种质进行基因分型,运用一般线性回归(general linear model, GLM)和复合线性回归(mixed linear model, MLM)方法进行标记与性状的关联分析,定位大豆蛋白亚基的相关基因。结果表明,2年均检测到的且与蛋白亚基相关联的SSR位点有14个,以MLM方法检测到5个SSR位点(Sat_062、Satt583、Satt291、Satt234和Satt595)与蛋白亚基相关联;7S组分各亚基变异程度较大,是引起11S/7S变异的主要原因;表型变异较大的亚基可能因为相关基因进化中发生重组较多,LD衰减距离较小,导致检测到较少的相关位点。本研究结果对蛋白亚基相关性状的标记辅助选择育种有重要的利用价值。  相似文献   

2.
通过对204份大豆种质进行聚丙烯酰胺凝胶电泳(SDS-PAGE)分析,筛选出5份球蛋白含量11S/7S比值高于3的种质,以之为亲本进行有性杂交,从F2代分离群体中,筛选出了3份球蛋白11S/7S比值高于3.4的种质,大大拓宽了我国蛋白质组分改良育种的种质基础。  相似文献   

3.
大豆蛋白质有关性状的QTL定位   总被引:2,自引:1,他引:1  
以科丰1号×南农1138-2组合衍生的184个重组自交家系(简称RIKY)和(Essex×ZDD2315)×ZDD2315衍生的114个BC1F2家系(简称BIEX)为材料,对蛋白质含量、蛋油总量与油脂含量,11S、7S、11S/7S,11S-1~11S-4, 7S-1~7S-6等4组16个性状利用WinQTL Cartographer Ver.2.5的复合区间作图法(CIM)、多区间作图法(MIM)和IciMapping Ver.2.0的完备区间作图法(ICIM)进行QTL分析, 结果表明:(1) 在RIKY和BIEX群体分别定位到17+个和21+个QTL,合计38+个QTL;在RIKY有蛋白、油脂、蛋油总量QTL11个,在11S和7S亚基组上分别只有1+和3+个;在BIEX有前性状QTL2+个,有后性状QTL分别9+和6+个;(2) 两群体16个性状上均没有检测到共享的QTL,说明两群体的蛋白质有关性状具有完全不同的遗传基础;RIKY的两个亲本间蛋白、油脂和蛋油总量有明显遗传差异,但在亚基组上遗传差异不大,而BIEX则反之;(3) 4组总、分性状中,两群体一致表现出蛋白、油脂和蛋油总量和11S、7S和11S/7S比值两组在总、分性状间共享QTL(共同遗传基础), 而11S亚基组和7S亚基组两组性状在总、分性状间无共享的QTL;(4) 蛋白质有关性状QTL定位结果和分离分析结果共同表明这类性状主效基因和微效基因均占较大比重,要考虑两者兼用的育种方法。  相似文献   

4.
大豆籽粒蛋白质含量是复杂数量性状,目前对中国夏播大豆籽粒蛋白质含量等品质性状遗传基础的了解相对较少。本研究对以江淮地区夏大豆蒙8108与骨干亲本南农1138-2杂交育成的NJMN重组自交系群体进行了5个环境田间试验获得表型数据,利用含2 062个SLAF标记的遗传图谱对大豆籽粒蛋白质含量进行加性、上位性QTL定位。结果发现NJMN群体籽粒蛋白质含量存在超亲分离,不同种植环境、家系与环境间互作均存在显著差异。在6号、7号、11号、17号染色体上定位到4个控制籽粒蛋白质含量的加性QTL,其中qProt-17-1未见前人报道,其与环境间存在显著互作效应。还发现3对加性×加性上位QTL,其总的效应值和表型贡献率均高于加性QTL,表明非加性效应在NJMN群体蛋白质含量遗传体系中起了重要作用。  相似文献   

5.
大豆是食用植物蛋白质和油脂的主要来源,提高大豆蛋白质和油分含量是主要的育种目标,与传统育种相比,利用分子标记定位QTL辅助育种,在实用价值和理论意义上都对大豆育种具有十分重要的价值。利用蛋白质与油分含量差异较大的大豆亲本东农L13和合农60、黑河36,分别构建了以东农L13为共同亲本的2个重组自交系群体RIL3613(东农L13×黑河36)和RIL6013(东农L13×合农60),分别包含134,156个株系;利用3个生态环境下数据对大豆蛋白含量和油分含量进行了表型数据分析,分别利用150,137个SSR标记构建遗传图谱,采用完备区间作图法(ICIM),对3个环境下的油分和蛋白质含量进行了QTL定位。通过对表型数据的分析,2个RIL群体的蛋白质与油分含量在基因型间或不同环境条件下的差异均达极显著水平,且基因型与环境间存在极显著的互作效应。2个群体中,共检测到8个蛋白质含量QTL,分布于7个连锁群上;共检测出5个控制油分含量的QTL,分布于5个连锁群上,有1个油分含量的QTL在2个种植环境下重复检测到。在定位的QTL中,7个蛋白质含量相关的QTL和3个油分含量相关的QTL与前人研究一致,另外3个QTL(qPro-G-1、qOil-C1-1、qOil-H-1)是本研究新发现的,是本研究遗传背景特有的QTL。研究结果对大豆品质性状的分子设计育种具有重要意义。  相似文献   

6.
本研究以大豆优良品种中品661的298份甲基磺酸乙酯(EMS)诱变株系和610份大豆品种(系)为试验材料,利用聚丙烯酰胺凝胶电泳(SDS-PAGE)技术,分离大豆种子蛋白并计算各蛋白亚基的相对含量及11S/7S值。研究结果表明,突变群体与自然群体中不同亚基的变异系数差异极显著,但均以β亚基变异范围最大。另外,突变群体的α、β和酸性蛋白亚基的变异范围均大于自然群体。相关性分析显示:11S球蛋白与7S球蛋白含量呈极显著负相关;11S/7S值与蛋白含量相关性不显著,11S/7S值与11S和7S球蛋白各组成亚基均呈显著相关。此外,本研究还筛选出亚基明显变异材料6份,其中Ax亚基突变体尚未见报道,11S/7S值大于3的材料10份,蛋白含量大于48%的材料7份。本研究鉴定和筛选的种子蛋白变异种质为大豆品质相关基因发掘和品种改良提供了材料基础。  相似文献   

7.
小麦是全球重要的粮食作物之一,其中,蛋白质组分在小麦品质优劣中占重要作用。但是从分子水平研究小麦面粉蛋白质组分对小麦品质的影响较少,其中可用于分子标记辅助育种的标记更少。因此,本研究以糯麦1号(母本)和藁城8901(父本)构建的RIL群体为材料,在两年两点环境下进行了面粉蛋白质含量及其组分的QTL分析。结果表明,共检测到11个QTL加性效应位点,可解释表型变异率的4.23%~26.34%;共定位到上位性基因位点有22对,最大可解释表型变异的28.79%。其中,定位到影响醇溶蛋白含量的加性QTL位点1个,贡献率为25.6%。检测出3个控制谷蛋白含量的QTL加性效应位点,可解释谷蛋白变异的4.75%~26.34%。2对控制球蛋白含量的上位性QTL被检测到,分别可解释球蛋白变异的12.19%和14.63%。共7对影响醇溶蛋白含量的上位性QTL被检测到,可解释醇溶蛋白含量变异最大达25.64%。检测到影响谷蛋白含量的上位性QTL 8对,可解释谷蛋白含量变异最大达28.79%。检测到的主效QTL位点可用于分子标记辅助育种,为小麦品质性状方面的分子育种提供了参考。  相似文献   

8.
水稻糙米蛋白质含量的QTL定位   总被引:1,自引:0,他引:1  
蛋白质含量是评价稻米品质的一项重要指标,控制水稻糙米蛋白质含量的基因位点是数量性状,检测水稻糙米蛋白质含量的QTL并进行遗传效应分析对于水稻品质遗传育种具有重要的意义.本研究以中优早/丰锦重组自交系群体作为定位群体,结合构建的遗传连锁图谱利用Windows QTL Cartogtapher2.0软件,采用复合区间作图法对水稻糙米蛋白质含量进行QTL定位和效应分析.检测到控制糙米蛋白质含量的QTL 6个(qPc-3、qPc-6、qPc-7、qPc-8-1、qPc-8-2和qPc-11),分别位于第3、6、7、8和11连锁群上.单个QTL对群体表型变异的贡献率为3.79%~19.41%,联合贡献率为61.07%.在这些QTL的区间中,第8染色体的口Pc-8-1基因区域对糙米蛋白质含量具有主效作用.进一步分析和比较了相关研究结果,讨论了研究结果对开展稻米品质遗传育种的意义.  相似文献   

9.
7S球蛋白α''与α亚基是大豆种子贮藏蛋白的重要组分,是影响大豆营养价值与加工品质的重要因子,同时还是主要的大豆致敏原,降低它们的含量是大豆品质改良育种的最新研究热点之一。以日本育种材料7S球蛋白(α''+α)-亚基双缺失型日B为供体亲本,黑龙江省主栽大豆品种东农47为受体亲本,采用回交转育方法,将α''与(α''+α)-亚基缺失特性导入东农47。结果表明,α''-缺失型(Cc)和(α''+α)-双缺失型(Cd)品系均能正常生长、结实,并能稳定遗传;Cc、Cd产量组分性状的平均值均远高于轮回亲本,蛋白质含量平均值均高于双亲,部分Cd株系籽粒蛋白质总量高达46.7%,脂肪含量平均值介于双亲之间,略高于日B;导入α''-缺失和(α''+α)双缺失性状后,绝大多数氨基酸组分含量和氨基酸总量提高,其中精氨酸和天门冬氨酸平均含量变幅最大。Cd株系籽粒含硫氨基酸含量(蛋氨酸与胱氨酸之和)及氨基酸总量分别比东农47高出0.11和5.56个百分点。说明通过常规育种重组α¢-缺失或(α''+α)-双缺失性状即可提高大豆含硫氨基酸含量,并提高其他氨基酸组分含量及氨基酸总量,在Cc、Cd的BC2F3后代群体中有望筛选到α''-缺失或α''与α同时缺失的高产、高含硫氨基酸、优质大豆新品种。  相似文献   

10.
庄炳昌  徐豹 《作物学报》1988,14(3):232-235
采用 SDS 聚丙烯酰胺凝胶电泳方法,分析了萌发过程中大豆种子蛋白组分的变化。结果表明:(1)萌发过程中大豆种子贮藏蛋白各种组分的降解时间不同,其中7S 的付大豆球蛋白的降解早于11S 的大豆球蛋白;(2)萌发过程中大豆种子贮藏蛋白的性质发生了变化,在萌发初期以大分子蛋白为主,随着萌发天数的增加,以小分子蛋白为主;(3)7S 付大  相似文献   

11.
为筛选出高产、优质、豆腐加工专用的大豆品种,本研究从西南地区收集144份高蛋白地方大豆品种,种植于四川农业大学雅安校区农场试验田,采用大田管理模式,调查其生育期。成熟后风干考种,调查产量,百粒重,生育期等主要的农艺性状,测定大豆蛋白质,脂肪,可溶性糖含量等品质性状。用SDS-PAGE法测7 s球蛋白,11 s球蛋白相对含量和11 s/7 s比值,并对不同品种的大豆的主要农艺性状,产量,品质,7 s球蛋白含量,11 s球蛋白含量以及11 s/7 s之间进行相关性分析。结果表明,大豆产量与生育期成极显著负相关,和株高成显著性负相关,与有效分枝成极显著正相关。蛋白质含量与油脂含量和可溶性糖含量成极显著负相关,可溶性糖含量与油脂含量成极显著正相关,蛋白质含量与7 s球蛋白含量呈极显著性正相关,与11 s球蛋白含量和11 s/7 s之间有着不显著正相关或无明显相关关系。通过聚类分析筛选出高产优质品种高产高质有C79,C68,E312,A59,A22-2共5份大豆品种,这些品种平均单株产量为20.96 g,蛋白含量51.62%,脂肪16.00%,可溶性糖含量6.89%,11 s/7 s为1.50,吸水率123.0%,百粒重14.55 g,可将其作为适合生产豆腐的大豆品种。  相似文献   

12.
利用相同来源F2:3和BC2S1群体定位玉米生育期QTL   总被引:1,自引:0,他引:1  
以普通玉米自交系丹232和爆裂玉米自交系N04为亲本构建259个F2:3和220个BC2S1家系群体,利用SSR标记构建分子标记遗传图谱,利用复合区间作图方法对4个生育期性状进行QTL定位和效应分析。利用F2:3群体共检测到4个抽雄期QTL、6个吐丝期QTL和3个散粉期QTL。单个QTL可解释的表型变异为6.7%~18.4%,可解释的表型总变异为28.9%~50.3%,11个QTL的增效基因来自生育期较长的亲本丹232,其余2个QTL的增效基因来自生育期较短的亲本N04;BC2S1群体检测到8个与4个生育期性状相关的QTL,单个QTL可解释的表型变异为4.5%~11.6%,可解释的表型总变异为13.2%~18.5%,增效基因来自两个亲本的QTL为3个和5个。两类群体检测出QTL的数目、位置、效应和贡献率均存在较大差异,主要原因在于BC2S1群体抽样选择所引起的群体结构差异,F2:3群体显示出较高的QTL检测能力,但回交育种过程中应慎重依据F2:3群体QTL定位结果进行标记辅助选择(MAS)。  相似文献   

13.
为解决中国大豆产业供给不平衡,培育大豆高产品种,提高玉米-大豆套作模式中大豆的产量,明确荫蔽条件下大豆的遗传机制,本研究利用QTL Ici Mapping软件构建了一个含有126个SSR标记的连锁图谱,覆盖大豆17条染色体,并采用完备区间作图法在净套作条件下对贡选1号和南032-4构建的F2:3群体中的8个产量相关性状进行QTL检测和效应估算。以LOD=3.0为阈值,在净作和套作条件下分别检测到42个和19个与大豆产量性状相关的QTL,分布于A1、C2、D2、I、L等15个连锁群,可解释0.47%~23.13%的表型变异。在同一标记区间内同时检测到控制多个性状的QTL,表现出一因多效;且在净作和套作条件下检测到的QTL差异显著,说明产量QTL与环境之间存在互作。  相似文献   

14.
大豆种子活力与贮藏蛋白关系的研究   总被引:3,自引:0,他引:3  
选用不同基因型的6个大豆品种(系)为材料,通过研究种子萌发过程中贮藏蛋白(主要是球蛋白)的含量变化及降解规律,探讨大豆种子活力的生化机理。结果表明,不同基因型的大豆种子大小和贮藏蛋白含量与种子活力相关均不显著。而不同基因型的不同活力水平大豆种子萌发过程中,高活力种子的贮藏蛋白利用效率远高于低活力种子,且随着萌发天数的增加,高活力种子贮藏蛋白7S组分的降解远快于低活力种子。  相似文献   

15.
籽粒蛋白质含量是大豆品质性状改良的主要目标之一。笔者介绍了大豆遗传图谱的构建与基因组测序发展历程,从基于分离群体的连锁分析和基于自然群体的关联分析两方面阐述了大豆籽粒蛋白质含量QTL定位研究进展,进而讨论了大豆蛋白质含量MAS育种存在的问题,最后展望了大豆蛋白质含量分子遗传改良的研究趋势。以期为大豆高蛋白育种提供参考。  相似文献   

16.
大豆是一种重要的蛋白质和油分资源。以前将控制种子蛋白质含量的QTL绘制在大豆连锁群Ⅰ上。本文旨在对该QTL进行精细作图,并弄清是否有另外的重组体能减少种子蛋白质含量和产量和含油量问负向表型相关。采用两组回交群体构建精细图谱。这些群体是将野生大豆(G.soja)P1468916的高蛋白质等位基因导人A81—356022育种品系的遗传背景构建而成。第一组群体包含BC5品系的3个群体,第二组群体包含BC,品系的4个群体。这些群体QTL图谱基因组区域的不同片断有分离。两组群体的测试结果将控制蛋白质和含油量的QTL定位在SSR标记Satt239和AFLP标记ACG9b之间的3cM间隔处。农艺性状评价试验结果的不一致性使我们很难确切地推断蛋白质QTL是否通过多效性控制了其它性状。  相似文献   

17.
大豆籽粒维生素E含量的QTL分析   总被引:3,自引:0,他引:3  
维生素E(VE)具有提高人体免疫力、抗癌、预防心血管疾病等保健作用,从大豆中提取的VE安全性更高。本研究采用高效液相色谱技术(HPLC)检测大豆BIEX群体(Essex×ZDD2315)维生素E的α-生育酚、γ-生育酚和δ-生育酚含量。应用QTLNetwork 2.1软件分别检测到8个和12对控制大豆维生素E及组分含量的加性和互作QTL。α-生育酚含量加性和互作QTL累计贡献值分别为8.68%(2个)和15.57%(4对),γ-生育酚含量加性和互作QTL累计贡献值分别为8.59%(2个)和11.57%(2对),δ-生育酚含量加性和互作QTL累计贡献值分别为5.44%(1个)和17.61%(3对),维生素E总含量的加性和互作QTL累计贡献值分别为11.39%(3个)和9.48%(3对)。未检测到维生素E及组分含量和环境互作的QTL。未定位到的微效QTL累计贡献值为66.16%~75.32%,说明未定位到的微效基因的变异占2/3以上。各性状的遗传构成中,未检测出的微效QTL份额最大,加性QTL和互作QTL贡献相差不大。在育种中应考虑常规方法聚合微效QTL与标记辅助方法聚合主要QTL相结合。  相似文献   

18.
大豆是重要的植物蛋白质和植物油脂来源,干旱是影响大豆产量的重要环境因子之一。为解析大豆耐旱性的遗传基础,本研究在PEG水压胁迫条件下,对由409个家系组成的巢式关联作图群体(具有1个共同亲本的2个重组自交系群体组成)进行叶片脯氨酸含量测定,通过限制性二阶段多位点全基因组关联分析(restrictivetwo-stagemultilocus genome-wide association study,RTM-GWAS),解析了大豆根部水压胁迫耐逆指数(root hydraulic stress tolerance index,RHSTI)的遗传体系。结果表明,在春季和夏季环境下,3个亲本蒙8260(共同亲本)、通山薄皮黄豆甲和正阳白毛平顶在RHSTI上均存在显著差异,其衍生群体RHSTI表型变异丰富,变幅分别为0.11~2.94和0.03~1.93,遗传力分别为97.7%和97.9%;2个环境联合分析发现,家系遗传力和家系与环境互作遗传力分别为37.9%和60.1%,说明群体RHSTI的变异受遗传和环境共同控制。通过RTM-GWAS方法,共检测到45个与RHSTI相关的QTL,分布在大豆18条染色体上,可以解释37.58%的表型变异,其中7个QTL的表型贡献率超过1%,为大贡献位点;这些QTL中,有34个位点与环境存在显著互作,可以解释12.50%的表型变异。结合PEG胁迫下大豆转录组数据,在定位区间500kb范围内共筛选到38个差异表达基因,可归为ABA响应因子、逆境响应因子、转录因子、发育因子、蛋白代谢因子、未知功能和其他等7类,其中逆境响应因子、转录因子和发育因子是最大的3类;其中位于主效位点的6个基因,与ABA响应因子、逆境响应因子、转录因子相关,应为主要候选基因。上述结果表明,大豆耐旱性是一个由多位点、多基因控制的复杂数量性状,且与环境存在互作,遗传基础复杂。研究结果为大豆耐旱性分子育种提供了依据。  相似文献   

19.
以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜P174为亲本,通过单粒法连续自交8代构建重组自交系群体,应用SSR标记绘制31个连锁群(LGs)的遗传连锁图谱,图谱总长1437.1 cM,相邻标记间的平均距离为3.89 cM。对4个不同环境下RIL8群体中每个株系籽粒含油量、蛋白质、纤维素和半纤维素含量进行了近红外分析,性状相关性表明含油量与其他3个性状均表现负相关,蛋白质含量与纤维素和半纤维素分别表现负相关和正相关。结合构建的遗传图谱采用复合区间作图法分析4个性状QTL,共检测到26个QTL,分布在N2、N3、N8、N9、N11、N13、N16和N17连锁群上,其中8个含油量QTL可解释表型变异的4.96%~21.83%;6个蛋白含量QTL,可解释表型变异的3.12%~14.28%;4个纤维素含量QTL,可解释表型变异的4.60%~17.29%;8个半纤维素含量QTL,可解释表型变异率的6.66%~16.68%。在N8上,发现有含油量QTL与半纤维素含量QTL重叠的区段。在N9上,发现有纤维素含量QTL与半纤维素含量QTL重叠的区段,上述2个区段重叠QTL加性效应方向相反。本研究认为油菜种子含油量、蛋白质、纤维素和半纤维素属于典型的数量性状,受环境影响较大,与这些QTL紧密相关的分子标记可为下一步分子标记辅助育种提供一定技术支撑。  相似文献   

20.
大豆是重要的粮食作物和经济作物,其籽粒蛋白约为40%,是优质植物蛋白主要来源之一。挖掘控制大豆高蛋白数量性状位点(Quantitativetraitloci,QTL)以及分子标记育种对高蛋白大豆培育具有重要的意义。本研究利用蛋白含量存在明显差异的中黄35 (Zhonghuang 35, ZH35)和中黄13 (Zhonghuang 13, ZH13)杂交构建的包含192个株系的重组自交系群体为供试材料,通过对两亲本及RIL群体重测序,构建了包含4879个bin标记的高密度遗传图谱,总遗传距离为3760.71 cM,相邻标记间的遗传距离为0.77 cM。RIL群体及亲本分别于北京顺义和河南濮阳种植, 2个环境共检测到15个蛋白含量相关QTL位点,分布于5号、12号、15号、17号、18号、19号和20号染色体,贡献率为4.36%~11.39%。其中,北京顺义和河南濮阳检测到qPro-20-1和qPro-20-3, 2个QTL贡献率分别为7.65%和7.58%,重叠区域包括33个基因。本研究有助于精细定位和图位克隆大豆蛋白含量相关基因,并为进一步培育高蛋白大豆品种提供基因资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号