首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To explore long-term impact of organic and inorganic fertilizers on soil health and grain quality, we monitored the enzyme activities and chemical properties of soil; and chemical composition of grain from eight treatments at an experimental field site established in 1996. There were eight treatments applied to both wheat and maize seasons: a control; four inorganic fertilizers, that is, nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorous and potassium (PK) and nitrogen, phosphorus and potassium (NPK); farm yard manure alone (FYM) and addition of FYM at two different doses (100 and 50% of recommendation) to NPK that is, NPK + FYM and ½ NPK + FYM. After 11 years of the experiment the NPK + FYM and ½ NPK + FYM treatments had the highest yields, about 5 Mg maize ha−1 and 2 Mg wheat ha−1 with about 2 and 0.5 Mg ha−1, respectively more than the NPK treatments. The dehydrogeanse activity of soils increased significantly in FYM and ½ NPK + FYM. Except urease all other enzymatic activities were increased in those treatments, which received manure. Urease activity was higher in mineral-N applied plots. Grain protein content of both maize and wheat was highest in mineral fertilized plots. Test weight also increased significantly on application of mineral fertilizer. Plots treated with half dose of recommended mineral fertilizer along with FYM were higher in urease, phosphomono and diesterase activities than that of NPK + FYM treated plots. Long-term application of inorganic nutrients along with FYM improved grain mineral composition and yield. Inhibition of few enzymatic activities were also observed upon application of inorganic nutrients either alone or in combination.  相似文献   

2.
Substitution of mineral fertilizers with organic soil amendments is postulated to improve productivity‐relevant soil properties such as aggregation and organic matter (OM) content. However, there is a lack of studies analyzing the effects of biochar and biogas digestate versus mineral fertilizer on soil aggregation and OM dynamics under temperate field conditions. To address this research gap, a field experiment was sampled four years after establishment on a sandy Cambisol in Germany where mineral fertilizer or liquid biogas digestate was applied with or without 3 or 40 Mg biochar ha?1 (produced at 650°C). Soil samples were analyzed for soil organic carbon (SOC) content, pH, cation exchange capacity, bulk density, water‐holding capacity, microbial biomass, aggregate size class distribution, and the SOC content associated with these size classes. 40 Mg biochar ha?1 significantly increased SOC content in all fractions, especially free particulate OM and the 2–0.25 mm fraction. The yield of small macroaggregates (2–0.25 mm) was increased by biochar, but cation exchange capacity, water‐holding capacity, and pH were not consistently improved. Thus, high‐temperature biochar applied to a sandy soil under temperate conditions is primarily recommended to increase SOC content, which could contribute to climate change mitigation if this C remains sequestered over the long‐term. Fertilizer type did not significantly affect SOC content or other measured properties of the sandy Cambisol, suggesting that replacement of mineral fertilizer with digestate has a neutral effect on soil fertility. Co‐application of biochar with digestate provided no advantages for soil properties compared to co‐application with mineral fertilizer. Thus, independent utilization of these organic amendments is equally suitable.  相似文献   

3.
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India.  相似文献   

4.
This study determined N uptake by serrano chilli pepper for two years and evaluated the effects of biochar amendment or organic N (org-N) fertilizer on N use under a Mediterranean climate. A field experiment was conducted using microplots from 2016 to 2017 in California, USA. Treatments included biochar amendment rates [0 (control), 10, 30 and 50 tons (t) ha−1] biochar, all with 100% inorganic N fertilizer (165 kg N ha−1), and org-N fertilizer applications at 50%, 75% and 100% of the total available N supply. Pepper yield, vegetative biomass, N uptake, ammonia (NH3) volatilization and changes in soil organic carbon (SOC), and nitrate were determined. Pepper yield was highest in the 50% org-N and lowest in the 50 t ha−1 biochar treatment during the first year. There were no differences in fruit yield among the organic treatments during the second year, and all were higher than that from the control. The 100% org-N treatment had less NH3 volatilization than all other treatments during the first year. The two-year results showed that chilli pepper plants sequestered 4.6‒6.1 kg N to produce one ton fresh pepper fruits. During the first year, the 50% org-N treatment resulted in the highest N productivity or yield with lowest projected N fertilizer application requirements as compared to other treatments although there were no differences among all treatments in the second year. Thus, a combination of inorganic and org-N fertilizers can be an effective strategy to improve soil N productivity in long-term management.  相似文献   

5.
The physical quality of the soil, which creates suitable environment for the availability and uptake of the plant nutrients, is generally ignored. Though the effect of organic manures on soil physical quality has been widely appreciated but that of inorganic fertilizers is studied to a lesser extent. The present study carried out during 2004–2005 aims to characterize the soil physical quality in relation to the long-term (32 years) application of farmyard manure (FYM) and inorganic fertilizers in maize (Zea mays L.) wheat (Triticum aestivum L.) cropping system. The treatments during both maize and wheat crops were (i) farm yard manure at 20 Mg ha−1 (FYM), (ii) nitrogen at 100 kg ha−1 (N100), (iii) nitrogen and phosphorus at 100 and 50 kg ha−1 (N100P50) and (iv) nitrogen, phosphorus and potassium at 100, 50 and 50 kg ha−1 (N100P50K50) in addition to (v) control treatment, i.e. without any fertilizer and/or FYM addition. The treatments were replicated four times in randomized block design in a sandy loam (Typic Ustipsament, non-saline, slightly alkaline). Bulk density, organic carbon content, structural stability of soil aggregates and water holding capacity of 0–60 cm soil layer were measured.The application of FYM to maize increased the organic carbon by 16% whereas N100P50K50 increased it by 21%. The increased organic matter with both FYM and N100P50K50 increased the total soil porosity and decreased soil bulk density from that in control plots. The mean weight diameter (MWD) was highest in FYM plots of both maize (0.160 mm) and wheat (0.172 mm) closely followed by that in N100P50K50 plots. The effect of FYM in increasing the MWD decreased with soil depth. The average water holding capacity (WHC) was higher with FYM and N100P50K50 application than that in control plots. The MWD, total porosity, OC content and WHC improved with the application of balanced application of fertilizers. The grain yield and uptake of N, P and K by both maize and wheat were higher with the application of FYM and inorganic fertilizers than in control plots. The uptake of N, P and K increased with the application of FYM and N100P50K50.  相似文献   

6.
The present work was carried out to investigate the effect of biochar and phosphorus (P) fertilizer application, on phosphorus fractions, soil microbial biomass carbon in a Vertisol during two seasons for wheat in field experiments. Phosphorus was added at 0%, 50%, 100% and 150% P of recommended P fertilizers, with or without biochar at a rate of 10 t h?1 arranged in a randomized complete block design with three replicates. Results showed that the wheat grain yield increased by 56% to 69% in plots treated with the interaction of biochar and P mineral during the 2015 and 2016 growing seasons. Co-application of biochar with inorganic P produced up to 1.5 fold more microbial biomass C than either biochar or inorganic P applied alone. Sequential extraction of the biochar-treated with P revealed that HCl-P decreased, whereas others fractions increased with increasing P rate. The inorganic and organic P fractions were increased significantly when the biochar was combined with fertilizer P as compared to the biochar or inorganic P applied alone. The results of this study reveal that the co-application of biochar with inorganic P can be a promising strategy to improve soil productivity and soil quality in alkaline soil.  相似文献   

7.
The aim of this investigation was to prepare and evaluate organic manures (vermicompost, compost and FYM) and mineral fertilizers on crop productivity and changes in soil organic carbon (SOC) and fertility under a four-year-old maize-wheat cropping system. The results demonstrated that yields and nutrient uptake by crops increased significantly in plots receiving manures and mineral fertilizers either alone or in combination than unfertilized control. Application of manures and fertilizers also enhanced SOC, mineral N, Olsen-P and ammonium acetate-extractable K (NH4OAc-K) after both the crops. Surface soil maintained greater build-up in SOC, mineral N, Olsen-P and NH4OAc-K than sub-surface soil. Plots amended with manures at 5 t ha?1 and 50% recommended dose of fertilizer (RDF) had pronounced impact on improving SOC and fertility after both the crops indicating that integrated use of manures and mineral fertilizers could be followed to improve and maintain soil fertility, increase crop productivity under intensive cropping system.  相似文献   

8.
Crop production in Sub-Saharan Africa is primarily limited by soil fertility decline. In view of this, the fertilizer value of locally available organic materials (OMs) was assessed for their nutrient release to crop growth. Crop residues and farmyard manure (FYM) were evaluated along with mineral fertilizers to grow a test crop maize variety – Gibe 2. The maize allometric parameters, nutrient ratios (NRs), nutrient recovery (NRy) and mineral fertilizer equivalency (MFE) were used to assess the mineral fertilizer value (MFV) of OMs. MFE of OMs was estimated as the available mineral N and P out of the fraction of total nitrogen and phosphorus applied relative to mineral fertilizers supply. The results revealed that maize allometry, NRy and MFE were significantly influenced by fertilizer sources. OM amendment resulted in poor maize allometry and low NRy. Interestingly, MFE of OM amended ranged from ?201% with chickpea (CHP) residue to 63% with FYM. The results demonstrate that CHP has the poorest quality, while FYM is a good-quality OM as a fertilizer source.  相似文献   

9.
Abstract

Soil quality and crop productivity can be improved by the combined soil application of organic amendments and synthetic fertilizers. We evaluated the sole and combined effects of sugarcane-bagasse biochar (SBB), farmyard manure (FYM) and nitrogen (N) fertilizer on soil properties and corn yield traits. Three N fertilizer rates (0, 50 and 100% of recommended) were used with or without the organic amendments. We observed significant increases in soil nitrate-N (at vegetative and reproductive phases), ammonical-N and microbial-biomass-N contents in responses to a co-application of 0.5% SBB, 0.5% FYM and 100% N fertilizer (p?≤?0.05). While the same co-application also resulted in the most significant soil organic carbon value, the maximum soil microbial biomass carbon was observed when 0.5% SBB and 0.5% FYM combination was applied along with 50% N fertilizer (p?≤?0.05). Plant growth indices—shoot length and, fresh and dry weights of shoot and root were also recorded to be the highest where the same organic amendments were applied in addition to a 50% or 100% mineral N fertilizer (p?≤?0.05). Combined application of the organic amendments effectively improved soil CEC compared to those in responses to individual applications of SBB and FYM (p?≤?0.05). Conclusively, for increasing the corn yield and improving the soil quality, the co-application of 0.5% SBB and 0.5% FYM was more effective than any of the individual 1% applications; Additions of 50% and 100% mineral N to the organic combination were equally useful for increasing the grain yield.  相似文献   

10.
Soil erosion is a major constraint to crop production on smallholder arable lands in Sub‐Saharan Africa (SSA). Although different agronomic and mechanical measures have been proposed to minimize soil loss in the region and elsewhere, soil management practices involving biochar‐inorganic inputs interactions under common cropping systems within the framework of climate‐smart agriculture, have been little studied. This study aimed to assess the effect of different soil and crop management practices on soil loss characteristics under selected cropping systems, typical of the sub‐region. A two‐factor field experiment was conducted on run‐off plots under different soil amendments over three consecutive cropping seasons in the semi‐deciduous forest zone of Ghana. The treatments, consisting of three soil amendments (inorganic fertilizer, biochar, inorganic fertilizer + biochar and control) and four cropping systems (maize, soyabean, cowpea, maize intercropped with soyabean) constituted the sub‐plot and main plot factors, respectively. A bare plot was included as a soil erosion check. Seasonal soil loss was greater on the bare plots, which ranged from 9.75–14.5 Mg ha?1. For individual crops grown alone, soil loss was 31%–40% less under cowpea than under maize. The soil management options, in addition to their direct role in plant nutrition, contributed to significant (p < 0.05) reductions in soil loss. The least soil loss (1.23–2.66 Mg ha?1) was observed under NPK fertilizer + biochar treatment (NPK + BC) over the three consecutive cropping seasons. Biochar in combination with NPK fertilizer improved soil moisture content under cowpea crops and produced considerably smaller bulk density values than most other treatments. The NPK + BC consistently outperformed the separate mineral fertilizer and biochar treatments in biomass yield under all cropping systems. Biochar associated with inorganic fertilizers gave economic returns with value–cost ratio (VCR) > 2 under soyabean cropping system but had VCR < 2 under all other cropping systems. The study showed that biochar/NPK interactions could be exploited in minimizing soil loss from arable lands in SSA.  相似文献   

11.
On the basis of long‐term fertilization experiments in Skierniewice, being conducted since 1923 at the Experimental Field of Warsaw Agricultural University, the fate (or balance) of nitrogen for a period of 35 years and that of phosphorus and potassium for 20 years, was studied. The balance includes N, P and K rates applied in mineral fertilizers and farmyard manure (FYM), uptake of these nutrients by the crop plants and the changes in the content of total N and total P and of slow release K in the soil during that time. The nitrogen balance shows a loss of this nutrient of 11—14 kg N ha—1 y—1, which corresponds to 15% of the applied ammonium nitrate on fields without FYM but to 23% on fields with FYM, in spite of crop yields being considerably greater on fields treated with FYM. The phosphorus balance indicated that in the 0—70 cm soil layer less than 4% of P from superphosphate was not found. In the treatment not fertilized with potassium for many years, the plants took up 49 kg K ha—1 y—1 from slow release forms because the fraction of available K did not change during that period. When calculating the potassium balance only 1.6% of K from potash salt were not found in plots without FYM but 12.3% of the applied KCl were not recovered in treatments with FYM. The comparison of the P‐ and K‐uptake from organic and mineral fertilizer in the two crop rotations indicates a higher P‐ and K‐efficiency from FYM than from inorganic fertilizer.  相似文献   

12.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

13.
Changes in land‐use and agricultural management affect soil organic C (SOC) storage and soil fertility. Grassland to cropland conversion is often accompanied by SOC losses. However, fertilization, crop rotation, and crop residue management can offset some SOC losses or even convert arable soils into C sinks. This paper presents the first assessment of changes in SOC stocks and crop yields in a 60‐year field trial, the Zurich Organic Fertilization Experiment A493 (ZOFE) in Switzerland. The experiment comprises 12 treatments with different organic, inorganic and combined fertilization regimes. Since conversion to arable land use in 1949, all treatments have lost SOC at annual rates of 0.10–0.25 t C ha?1, with estimated mean annual C inputs from organic fertilizers and aboveground and belowground plant residues of 0.6–2.4 t C ha?1. In all treatments, SOC losses are still in progress, indicating that a new equilibrium has not yet been reached. Crop yields have responded sensitively to advances in plant breeding and in fertilization. However, in ZOFE high yields can only be ensured when mineral fertilizer is applied at rates typical for modern agriculture, with yields of main crops (winter wheat, maize, potatoes, clover‐grass ley) decreasing by 25–50% when manure without additional mineral fertilizer is applied. ZOFE shows that land‐use change from non‐intensively managed grassland to cropland leads to soil C losses of 15–40%, even in rotations including legumes and intercrops, improved agricultural management and organic fertilizer application.  相似文献   

14.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

15.
Long-term effects of continuous use of chemical fertilizers and manure on soil fertility and productivity of a maize–wheat system were investigated in the ongoing long-term fertilizer experiment, during rabi (2007–2008) and kharif (2008) seasons at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University–Hill Agricultural Research and Extension Centre, Dhaulakuan. After 16 cropping cycles, bulk density decreased in plots where farmyard manure (FYM) was applied, whereas pH decreased in all the treatments. The organic carbon content of the soil increased in all the treatments except 100% nitrogen (N). Cation exchange capacity (CEC) increased in all the treatments over the initial status of the soil. Available N showed buildup over the initial status in most of the treatments. Available phosphorus (P) declined from initial status in treatments where only N was applied alone or with FYM. There was reduction in available potassium (K) status in all the treatments except 100% NPK. Continuous addition of FYM with balanced application of inorganic fertilizers improved content of exchangeable calcium (Ca) and magnesium (Mg) over initial status compared to imbalanced application of fertilizers. Continuous use of imbalanced inorganic fertilizers resulted in lesser crop yields and nutrient uptake compared to that with the application of balanced dose of inorganic fertilizers with FYM.  相似文献   

16.
  【目的】  化肥及畜禽粪便的不合理施用不仅影响作物增产,还严重威胁土壤健康和环境安全。探究不同发酵方式猪粪有机肥及有机肥替代化肥的比例对夏玉米氮素吸收及土壤碳、氮含量的影响,为规模化养猪场粪便快速处理,及制定其与化肥的适宜配比提供理论依据。  【方法】  以‘先玉335’为供试材料,在中国农业大学丰宁动物试验基地进行田间试验。设置5个处理:不施肥 (CK),100%化肥氮 (CF),100%自然堆肥猪粪氮 (PM),100%好氧发酵猪粪氮 (PC),50%好氧发酵猪粪氮 + 50%化肥氮 (FM)。分析猪粪不同发酵方式及有机氮替代比例对夏玉米氮素吸收及土壤碳氮的影响。  【结果】  在等氮条件下,与CF处理相比,FM处理产量、穗粒数、千粒重均以FM处理最高,其中FM处理显著增产13.2%,PC、PM处理与CF处理差异均不显著。FM处理玉米氮素积累量最高,两年平均为304.6 kg/hm2,较CF处理氮素累积量显著提高15.5%;PC、PM处理与CF处理氮素积累量差异不显著。与CF 处理相比,FM处理的氮素当季回收率、氮素农学利用率和偏生产力两年平均分别显著提高85.9%、59.5%和13.2% (P < 0.05),PC、PM处理与CF 处理之间无显著差异。在玉米拔节期和抽穗期,FM处理0—40 cm土壤无机氮含量均最高,与 CF 无显著差异;在成熟期,FM处理土壤无机氮含量较CF处理显著增加41.8%,而PC和PM处理与CF处理无显著差异。此外,施用有机肥可不同程度地增加土壤有机碳和全氮含量,与CF处理相比,PC和FM处理使有机碳含量分别显著提高13.3%和9.8%;FM处理土壤全氮含量显著提高33.4%。  【结论】  在等氮条件下与单施化肥相比,50%好氧发酵猪粪氮 + 50%化肥氮配施不仅显著提高了夏玉米产量和氮素累积吸收量,还提升了土壤全氮和有机碳含量以及0—40 cm土层土壤无机氮含量。单独施用自然堆肥、好氧发酵猪粪及化肥在产量和氮素积累方面没有显著差异,但可增加土壤全氮和有机碳含量,有利于土壤培肥,而施用好氧发酵猪粪的效果又优于施用自然堆肥。  相似文献   

17.
This present investigation took place on a continuing long-term fertilizer experiment, initiated in 1972 at the experimental farm of the College of Agriculture CSK HPKV, Palampur, aimed at studying nutrient dynamics of micronutrients, especially Zn, after continuous use of chemical fertilizers and amendments over the previous 36 years in an acid Alfisol under a maize–wheat system. Treatments investigated were as follows: T1: Control; 100% N; 100% NP; 100% NPK (optimal application - 120:26:33(maize)/25(wheat)); 100% NPK + FYM (10 t ha−1 to the maize crop); T6: 100% NPK + lime (900 kg ha−1); T7: 100% NPK + Zn (25 kg ha−1 as ZnSO4); T8: 100% NPK + Hand weeding; T9: 100% NPK (-S); T10: 150% NPK (super-optimal application); and T11: 50% NPK (sub-optimal application). Different forms of zinc in soil were determined through a sequential extraction method. Results revealed that previous applications of high-analysis fertilizers and amendments caused a marked depletion in the pools of Zn as compared to buffer plots. All pools of Zn as well as crop productivity and Zn uptake were noticeably greater in farmyard manure (FYM)-amended plots compared with plots not receiving fertilizer. The residual fraction was the dominant form but organically bound and exchangeable forms were found to play major role in nutrient supply, crop productivity and nutrient uptake. Correlation and regression analysis studies showed that organic forms constituted the most important pool contributing towards variation in yield and uptake by maize and wheat crops. Exchangeable and organically bound forms contributed significantly towards the availability of DTPA-extractable Zn in soil.  相似文献   

18.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

19.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

20.
Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre‐Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation‐exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号