首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本试验旨在研究用于肉鸡小麦-豆粕型饲粮的木聚糖酶、β-葡聚糖酶、纤维素酶、植酸酶复配的最佳酶谱组合。试验首先采用单因素完全随机试验设计,将木聚糖酶、β-葡聚糖酶、纤维素酶、植酸酶分别设定6个水平添加到肉鸡小麦-豆粕型饲粮中,采用模拟胃肠液体外消化试验,研究单酶的最佳剂量;然后根据各单酶最佳添加量,将4种单酶分别设定3个水平:木聚糖酶(750、800、850 U/g),β-葡聚糖酶(50、100、150 U/g),纤维素酶(700、750、800 U/g),植酸酶(1 000、1 500、2 000 U/kg),采用4因子3水平L9(34)正交设计,设置9种组合方式,以净还原糖生成量、植酸磷降解率、饲粮残渣总能为检测指标,确定4种单酶复配的最佳酶谱组合。结果表明:肉鸡小麦-豆粕型饲粮中木聚糖酶、β-葡聚糖酶、纤维素酶和植酸酶的最佳添加量,0~3周龄分别为800、130、770、1 360 U/kg;4~6周龄分别为800、130、790、1 470 U/kg;4种单酶组合的最佳酶谱均为木聚糖酶850 U/g、纤维素酶750 U/g、β-葡聚糖酶50 U/g、植酸酶2 000 U/kg。  相似文献   

2.
本试验旨在研究β-葡聚糖酶、木聚糖酶、纤维素酶和植酸酶用于肉鸡小麦型饲粮的最佳复合酶谱。采用单因素完全随机试验设计,将不同水平的β-葡聚糖酶(30、60、90、120、150和180 U/g)、木聚糖酶(200、400、600、800、1 000和1 200 U/g)、纤维素酶(200、400、600、800、1 000和1 200 U/g)和植酸酶(500、1 000、1 500、2 000、2 500和3 000 U/kg)分别添加于肉鸡小麦型饲粮中,采用模拟胃肠液体外消化试验,研究单酶的最佳添加水平;据此,采用4因子3水平L9(34)正交设计和体外法研究4种单酶复配效应,每种酶各设计3个添加水平:β-葡聚糖酶为100、150和200 U/g,木聚糖酶为900、950和1 000 U/g,纤维素酶为900、950和1 000 U/g,植酸酶为1 500、2 000和2 500 U/kg,以还原糖生成量、植酸磷降解率、饲料残渣总能为判定指标,确定4种单酶的最佳复合酶谱。结果表明:1~3周龄肉鸡小麦型饲粮中,当β-葡聚糖酶、木聚糖酶、纤维素酶添加水平分别为150、960、950 U/g时,分别获得最大还原糖生成量0.918、1.161、0.927 mg/g,当植酸酶添加水平为2 010 U/kg时,获得最大植酸磷降解率92.35%;4~6周龄肉鸡小麦型饲粮中,当β-葡聚糖酶、木聚糖酶、纤维素酶添加水平分别为150、950、960 U/g时,分别获得最大还原糖生成量0.920、1.160、0.929 mg/g,当植酸酶添加水平为1 940 U/kg时,获得最大植酸磷降解率92.23%;当4种酶的复合酶谱为β-葡聚糖酶150 U/g、木聚糖酶950 U/g、纤维素酶900 U/g、植酸酶2 500 U/kg时,还原糖生成量、植酸磷降解率、饲料残渣总能均获得较优值。综上,肉鸡小麦型饲粮中β-葡聚糖酶、木聚糖酶、纤维素酶和植酸酶的最佳添加水平,1~3周龄分别为150、960、950 U/g和2 010 U/kg,4~6周龄分别为150、950、960 U/g和1 940 U/kg,且2个阶段肉鸡小麦型饲粮中4种酶的最佳复合酶谱为β-葡聚糖酶150 U/g、木聚糖酶950 U/g、纤维素酶900 U/g、植酸酶2 500 U/kg。  相似文献   

3.
从云南安宁温泉周围土壤中筛选到一株热稳定性能较好的β-葡聚糖酶产生菌W-9,并对其发酵条件及酶学特性进行初步研究。该菌株发酵72h在pH6.0,70℃条件下酶活性为82.64U/mL。对W-9所产β-葡聚糖酶的酶学性质进行研究,结果显示,β-葡聚糖酶的最适反应pH为6.0,最适反应温度为70℃,70℃条件下保温时,酶活基本稳定。  相似文献   

4.
本试验旨在探究响应面法优化筛选6种非淀粉多糖酶(木聚糖酶、β-葡聚糖酶、纤维素酶、β-甘露聚糖酶、α-半乳糖苷酶、果胶酶)添加于肉鸡玉米-豆粕-杂粕型饲粮中最优组合酶谱。采用第3代单胃动物仿生消化系统(SDS-Ⅲ)进行模拟胃肠液体外消化试验,首先采用单因素完全随机试验设计,在肉鸡玉米-豆粕-杂粕型基础饲粮中分别添加5个水平的6种非淀粉多糖酶,每个水平设5个重复,以还原糖释放量(RS)和干物质消化率提高值(IDMD)为评价指标,确定单酶的最佳添加量;据此结果,进一步利用软件Design-Expert 8.06 Box-Behnken响应面法设计6因子3水平L_(54)(3~6)试验,对6种单酶进行复配组合,以RS和IDMD为响应值,确定6种单酶的最佳组合酶谱。结果表明:在1~3周龄肉鸡玉米-豆粕-杂粕型饲粮中优选出的6种非淀粉多糖酶酶谱为木聚糖酶11.40 U/g、β-葡聚糖酶3.76 U/g、纤维素酶8.52 U/g、β-甘露聚糖酶8.19 U/g、α-半乳糖苷酶6.24 U/g、果胶酶1.60 U/g,该酶谱催化反应的RS和IDMD分别为9.71 mg/g和2.86%;在此条件下进行3次重复试验,得到RS和IDMD分别为9.59 mg/g和2.81%,与理论最优值的误差分别为1.24%和1.75%,表明所得酶谱能反映出对RS和IDMD的较好结果。在4~6周龄肉鸡玉米-豆粕-杂粕型饲粮中优选出的6种非淀粉多糖酶酶谱为木聚糖酶11.90 U/g、β-葡聚糖酶5.26 U/g、纤维素酶8.32 U/g、β-甘露聚糖酶7.96 U/g、α-半乳糖苷酶6.29 U/g、果胶酶6.17 U/g,该酶谱催化反应的RS和IDMD分别为10.45 mg/g和2.95%;在此条件下进行3次重复试验,得到RS和IDMD分别为10.34 mg/g和2.92%,与理论最优值的误差分别为1.05%和1.02%,表明所得酶谱能反映出对RS和IDMD的较好结果。综上所述,1~3周龄肉鸡饲粮6种非淀粉多糖酶最佳酶谱是木聚糖酶11.40 U/g、β-葡聚糖酶3.76 U/g、纤维素酶8.52 U/g、β-甘露聚糖酶8.19 U/g、α-半乳糖苷酶6.24 U/g、果胶酶1.60 U/g;4~6周龄肉鸡饲粮6种非淀粉多糖酶最佳酶谱是木聚糖酶11.90 U/g、β-葡聚糖酶5.26 U/g、纤维素酶8.32 U/g、β-甘露聚糖酶7.96 U/g、α-半乳糖苷酶6.29 U/g、果胶酶6.17 U/g。  相似文献   

5.
为获得工业化生产的高产β-葡聚糖酶菌株,试验采用低能氮离子(N )注入诱变筛选的方法,对出发黑曲霉(Aspergillus niger)菌株Y2449进行改良,获得高产菌株SD16.突变株黑曲霉SD16产β-葡聚糖酶酶活由出发菌Y2449的73.00 U/mL提高到493.24 U/mL,产量提高到亲株的7倍,高产菌株SD16经连续5代培养传代,产酶性能稳定.  相似文献   

6.
选择产甘露聚糖酶枯草芽孢杆菌L-1、产植酸酶枯草芽孢杆菌L-2、产木聚糖酶YB-5、乳酸片球菌Rp作为制备多酶益生菌饲料的生产菌种。通过单因素和正交试验最终确定最佳底物干基组分为36%白酒酒糟、26%玉米粉、28%麸皮、8%豆粕,料水比10.8,装填量20 g/250 ml。结果表明:多酶益生菌饲料中益生菌活菌数为(1.97±0.09)×10~(11)cfu/g,甘露聚糖酶酶活(11.62±0.26)U/g、木聚糖酶酶活(15.30±0.36)U/g、植酸酶酶活(16.37±0.16)U/g、蛋白酶酶活(15.27±0.16)U/g以及淀粉酶酶活(19.37±0.33)U/g。  相似文献   

7.
为将瘤胃微生物纤维降解酶基因转化到乳酸菌中,从绵羊瘤胃内容物中分离到1株能够降解羧甲基纤维素钠的细菌,经过形态特征及细菌16SrDNA序列鉴定为表皮葡萄球菌。根据表皮葡萄球菌在GenBank中公示的β-葡聚糖酶基因序列设计PCR扩增引物,克隆到2个β-葡聚糖酶基因序列。将2个β-葡聚糖酶基因序列与载体pMG36e连接,构建β-葡聚糖酶基因表达载体,转化到大肠杆菌,并进一步转化到乳酸球菌MG1363,均能表达β-葡聚糖酶,表达酶活达1.47U/mL和1.54U/mL,比原表皮葡萄球菌酶活0.99U/mL高出1.49倍和1.56倍。  相似文献   

8.
为了分离、筛选产纤维素酶益生菌,确定其酶促反应适宜条件,利用羧甲基纤维素钠等作为筛选培养基,结合刚果红染色法,从玉米青贮饲料样品中筛选产纤维素酶益生菌,并通过形态学和系统进化树方法鉴定分离菌。同时对培养时间、pH和温度等酶促反应条件进行了研究。结果表明,筛选出1株可降解羧甲基纤维素,并产生清晰透明圈的菌株。经形态学观察和16SrRNA基因序列分析,鉴定该菌为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。粗酶液中滤纸酶活为1.5U/mL,外切葡聚糖酶活为1.3U/mL,内切葡聚糖酶活为6.4U/mL,β-葡萄糖苷酶活为2.3U/mL。酶促反应的适宜条件为pH 5.5,温度50℃,粗酶液为培养3d后发酵液上清。解淀粉芽孢杆菌分离株具有一定的产纤维素酶能力,在玉米秸秆生物降解与利用方面具有潜在的开发价值。  相似文献   

9.
针对饲粮非淀粉多糖(NSP)酶的海量筛选工作和动物试验间的可比性差等问题,本研究探讨使用体外模拟法优化生长猪玉米-豆粕型饲粮和玉米-杂粕型饲粮的NSP酶谱。首先采用单因素随机试验设计,研究NSP酶的添加水平与饲粮体外干物质消化率(IVDMD)的关系。在玉米-豆粕型饲粮和玉米-杂粕型饲粮中分别添加不同水平的纤维素酶、木聚糖酶、β-葡聚糖酶、β-甘露聚糖酶、α-半乳糖苷酶和果胶酶6种NSP酶,分析各NSP酶对饲粮IVDMD的作用效果。然后采用二次回归旋转正交组合试验设计,筛选2种饲粮中6种NSP酶的最佳酶谱。结果表明:1)6种NSP酶的添加水平与2种类型猪饲粮IVDMD之间存在二次曲线关系。2)α-半乳糖苷酶对玉米-豆粕型饲粮的IVDMD提升最高,达到了1.28%,木聚糖酶对玉米-杂粕型饲粮的IVDMD提升最高,达到了1.95%。3)玉米-豆粕型饲粮的最佳酶谱为:纤维素酶533.6 U/kg、木聚糖酶9 983.7 U/kg、β-葡聚糖酶1 014.4 U/kg、β-甘露聚糖酶4 080.6 U/kg、α-半乳糖苷酶251.6 U/kg和果胶酶107.3 U/kg。玉米-杂粕型饲粮的最佳酶谱为:纤维素酶960.0 U/kg、木聚糖酶17 177.6 U/kg、β-葡聚糖酶405.8 U/kg、β-甘露聚糖酶19 023.2U/kg、α-半乳糖苷酶307.2 U/kg和果胶酶96.9 U/kg。4)优化后的酶谱使玉米-豆粕型饲粮的IVDMD提升了3.26%,使玉米-杂粕型饲粮的IVDMD提升了3.75%。由此可见,6种NSP酶联合使用能够更大程度地提高生长猪玉米-豆粕型饲粮和玉米-杂粕型饲粮的IVDMD。  相似文献   

10.
本试验旨在研制一种肉羊微生物发酵饲料,并确定其固态翻料工艺。以酿酒酵母菌BC、XR4与枯草芽孢杆菌A15为协同发酵菌株;选取麦麸、米糠、枣渣等为发酵饲料原辅料,采用DPS软件对原料进行均匀混料试验设计,选取8个组方进行固态发酵试验,通过测定发酵料中的活菌数,β-葡聚糖、甘露聚糖、多肽等营养活性物质的含量来筛选最优的组方。同时,对筛选出的组方进行翻料工艺的研究,其中,对照组不翻料,试验1组翻料1次,试验2组翻料2次,通过测定发酵过程中的料温变化、发酵料活菌数及3种营养活性物质的含量来确定翻料工艺参数。结果显示,8个试验组中的活菌数均呈现先上升然后快速下降的趋势,3种营养活性物质含量随着发酵时间的延长而显著升高(P<0.05),其中组方7的综合指标最优,其活菌数最高达到了37.30×105 CFU/g,β-葡聚糖、甘露聚糖、多肽含量分别为97.41 mg/100 mg、37.66 mg/100 mg、20.17 μg/100 mg;翻料工艺试验中,发酵结束时2个试验组的活菌数和3种营养活性物质均显著高于对照组(P<0.05),试验2组显著高于试验1组(P<0.05),试验2组的活菌数最高值、β-葡聚糖、甘露聚糖、多肽含量分别比对照组提高10.1%、7.5%、7.6%、3.0%。  相似文献   

11.
为获得工业化生产的高产β-葡聚糖酶菌株,试验采用低能氮离子(N^+)注入诱变筛选的方法,对出发黑曲霉(Aspergillus niger)菌株Y2449进行改良,获得高产菌株SD16。突变株黑曲霉SD16产β-葡聚糖酶酶活由出发菌Y2449的73.00U/mL提高到493.24U/mL,产量提高到亲株的7倍,高产菌株SD16经连续5代培养传代,产酶性能稳定。  相似文献   

12.
试验旨在提高马铃薯渣的饲用价值。试验将实验室保藏酶活较高的两株菌株AAG-17和CPA-3-4进行复合菌群的构建。采用单因素结合响应曲面法对发酵条件进行优化,并对降解前后的马铃薯渣进行红外和电镜观察。结果显示,培养基初始pH值为7、发酵转速为160 r/min、接菌量为2%、接菌比例(CPA-3-4∶AAG-17)为3∶1,马铃薯渣降解率理论值为36.58%,重复试验得到降解率为36.90%。在此条件下对马铃薯渣进行降解,红外和扫描电镜结果均表明复合菌群对马铃薯渣具有降解作用。研究表明,试验确定了复合菌群发酵马铃薯渣动物饲料的最佳条件,发酵后的马铃薯渣动物饲料中营养价值得到提升。  相似文献   

13.
《畜牧与兽医》2016,(3):37-42
姜苗营养丰富,但作为饲料存在粗纤维含量高而消化吸收率低的难题。内切β-葡聚糖酶主要由真菌代谢产生,可有效降解纤维素中的葡聚糖。本研究在单因子条件的基础上,探讨应用Plackett-Burman和中心组合设计等方法得到嗜热子囊菌光孢变种(Thermoascus aurantiacus var.levisporus)固态发酵姜苗生产β-葡聚糖酶的最适发酵条件。结果表明,最佳培养基组成是姜苗70%(w/w)、豆粕30%(w/w)、初始含水量61.0%、尿素1.70%(w/w),KH2PO40.13%(w/w),Ca Cl20.1%(w/w)(固体培养基的总量)。在上述培养基中50℃培养72 h,β-葡聚糖酶活力可达682.8 U/g,与原始培养条件相比酶活提高了51.2%.  相似文献   

14.
以黑曲霉SD16为出发菌株,经紫外线和N 注入诱变处理,选育高产β-萄聚糖酶菌株.结果表明:紫外线的最佳照射时间为10min,N 最佳注入剂量为70×2.6×1012 N /cm2;突变高产菌株AN1的β-葡聚糖酶酶活由出发菌株SD16的493.2 U/mL提高到902.5 U/mL.且突变菌株AN1经传5代培养,产酶性能稳定.  相似文献   

15.
为确认经基因工程改造以酵母发酵生产的植酸酶的耐热性及其在肉猪饲粮中的应用效果,本试验结合颗粒饲料生产实际条件检测植酸酶样的耐热性,并以仔猪和生长猪为对象开展饲养试验.以玉米725.00 kg、豆粕203.24 kg、统糠11.26 kg、次粉15.00kg、大豆油15.00 kg和植酸酶30.50kg(5000 U/g)组成混合料,经调质温度为85℃和调质时间为30 s的生产线制粒,分别抽取调质前、调质后和制粒后等3个处理阶段各5个点样,测定各样的植酸酶活量,分别计算出植酸酶在调质前、调质后和制粒后的酶活回收率(%).饲养试验一:90头杜长大仔猪(9.86±0.09)kg随机分为3个处理,每个处理3个重复,每个重复10头;3组分别饲喂3种等蛋白质等能量等钙磷比的玉米-豆粕型试验饲粮(20.0%、13.39 MJ/kg和1.26),为期4周;正对照饲粮含钙0.82%和磷0.65%,负对照饲粮含钙0.62%和磷0.49%,植酸酶饲粮为在负对照饲粮基础上添加植酸酶的饲粮(500 U/kg).饲养试验二:60头杜长大生长猪(22.45±0.67)kg随机分为2个处理,每个处理3个重复,每个重复10头;2组分别饲喂2种等蛋白质等能量等钙磷比的生长猪试验饲粮(17.5%、13.00 MJ/kg和1.0),为期4周;对照饲粮含钙0.66%和磷0.67%,植酸酶饲粮含钙0.56%、磷0.56%和植酸酶(500 U/kg).试验结果表明:(1)调质前、调质后和颗粒产品样的酶活回收率分别为104.8%、73.2%和68.2%(P<0.05);(2)饲养试验一中的植酸酶组仔猪生产性能与正对照组的差异不显著(P>0.05),但负对照的增重和耗料增重比分别显著低和高于正对照的(P<0.05);(3)饲养试验二中的植酸酶组生长猪的耗料量较对照组的降低了9%,耗料增重比降低了11%(P<0.05).增重提高了2%.此酶样经颗粒料生产全程工序后仍具68.2%的存酶活,具较好的耐热性;在低磷饲粮中应用可提高饲料转化率,因而提高仔猪及生长猪的增重,并降低饲料成本.  相似文献   

16.
参照国标法测定饲用植酸酶活性,研究不同来源的底物植酸钠、底物浓度、底物pH对饲用植酸酶活性的影响。结果表明,以P8810为代表的植酸钠盐水合物作为底物,其测定出的植酸酶酶活显著高于使用以P3168为代表的植酸钠作为底物所测定的植酸酶酶活。以P8810作为底物时,其反应浓度在高于6.6 mmol/L时,会产生底物抑制效应。以P8810作为底物时,调节底物pH至国标中定义的5.5与未调节pH所测得的植酸酶酶活相比较,差异并不显著,且在低底物pH条件下,某些植酸酶同样能够释放出最大催化活性。因此现有的国标法测定饲用植酸酶活性已与实际应用有一定的差别,不能照搬国标方法测定现有饲用植酸酶产品。  相似文献   

17.
<正>饲用复合酶是一类水解酶,包括淀粉酶、蛋白酶、脂肪酶、植酸酶、纤维素酶、木聚糖酶、果胶酶、β-葡聚糖酶、甘露聚糖酶等多种酶。在单胃动物消化道内没有分  相似文献   

18.
试验采用二因素试验设计,研究不同底物类型及含水量对瘤胃真菌固态发酵产纤维素酶活的影响。发酵底物粗料类型分别为菌糠、花生蔓和玉米秸,含水量分别为30%、40%、50%和60%。试验进行10 d,每2 d取发酵样品测试,监测其中的羧甲基纤维素酶、微晶纤维素酶、β-葡萄糖苷酶和滤纸酶的酶活。试验结果表明:在菌糠、花生蔓及玉米秸3种粗料底物中,花生蔓效果最好,可显著提高羧甲基纤维素酶、微晶纤维素酶和β-葡萄糖苷酶酶活(P0.05)。含水量对纤维素酶活影响明显,含水量为40%时对羧甲基纤维素酶、微晶纤维素酶、β-葡萄糖苷酶和滤纸酶酶活均有显著影响(P0.05)。不同底物类型与含水量的互作对4种酶的酶活影响显著(P0.05)。滤纸酶发酵8 d达到峰值,羧甲基纤维素酶、微晶纤维素酶和β-葡萄糖苷酶均为发酵4~6 d时酶活最高。综合各试验因素,试验以花生蔓为底物粗料,含水量40%,培养发酵4~6 d,纤维素酶活最佳。  相似文献   

19.
本试验旨在研究β-葡聚糖替代抗生素对断奶仔猪生长性能、肠道微生物区系和微生物氨基酸脱羧酶活力的影响。试验选取30头28日龄断奶健康的(大约克×荣昌)×长白内三元杂交阉公仔猪,随机分为3组:对照组饲喂基础饲粮,杆菌肽锌组饲喂在基础饲粮中添加100 mg/kg杆菌肽锌的饲粮,β-葡聚糖组饲喂在基础饲粮中添加400 mg/kgβ-葡聚糖的饲粮。每组10个重复,每个重复1头猪,预试期4 d,正试期为28 d。试验结果表明:与对照组相比,β-葡聚糖组和杆菌肽锌组断奶仔猪的生长性能和腹泻指数显著提高(P0.05),料重比显著降低(P0.05)。β-葡聚糖组与杆菌肽锌组之间仔猪的生长性能、腹泻指数和料重比均无显著差异(P0.05)。与杆菌肽锌组相比,饲粮中添加β-葡聚糖能显著降低断奶仔猪回肠微生物色氨酸脱羧酶和赖氨酸脱羧酶活力(P0.05)。杆菌肽锌组和β-葡聚糖组结肠微生物蛋氨酸脱羧酶、鸟氨酸脱羧酶和赖氨酸脱羧酶活力显著低于对照组(P0.05),色氨酸脱羧酶活力显著高于对照组(P0.05)。饲粮中添加β-葡聚糖未改变结肠微生物优势菌群的组成,但提高了结肠乳酸杆菌、韦荣球菌、拟杆菌、厚壁菌、毛螺菌等有益菌的相对丰度,降低了有害菌梭状芽孢杆菌的相对丰度,且与添加杆菌肽锌效果相当。综上,在饲粮中添加400 mg/kg的β-葡聚糖提高了断奶仔猪的生长性能,降低了肠道中微生物氨基酸脱羧酶的活力,并提高了结肠微生物的相对丰度和降低了有害菌的相对丰度;β-葡聚糖在促进肠道有益菌生长方面优于杆菌肽锌。  相似文献   

20.
通过对本实验室保藏的12株黑曲霉菌株采用培养、选择性培养基分离,筛选出一株相对酶活较高的菌株作为出发菌株,然后通过紫外线、硫酸二乙酯等复合诱变筛选出一株β-葡聚糖酶高产菌株An08-752。以复合碳源(麸皮+花生壳粉+大麦粉)为碳源;有机氮源为豆粕粉,无机氮源为硫酸铵、硝酸钠;添加无机盐磷酸氢二钾(K+)、硫酸镁(Mg2+);料水比为1:1。固态发酵优化条件为:初始pH值6.8;装料量50 g/500 ml;发酵温度30℃;发酵时间37 h。酶活力达到了1.23×105 U/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号