首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the physiological basis of productivity differences among rooted cuttings and seedlings of eucalypt species, relationships between morphology and water relations were examined in 4-month-old seedlings of Eucalyptus grandis W. Hill ex Maiden, E. urophylla S.T. Blake and E. cloeziana F. Muell. and in 4-month-old rooted cuttings of three E. grandis cultivars. Four-month-old seedlings had greater dry weights, lower leaf area/root dry weight (LA/RDW) ratios and lower shoot/root dry weight (S/R) ratios than 4-month-old rooted cuttings. For all cultivars of E. grandis, tall rooted cuttings, as defined by height at age 4 weeks, had greater dry weights by age 4 months and lower LA/RDW and S/R ratios than short rooted cuttings. There were differences in height growth, dry matter productivity and relative shoot and root development among cuttings of different E. grandis cultivars, but these differences were not as great as the differences between short and tall grades of the same cultivar and between seedlings and cuttings. Consistent with the differences in LA/RDW and S/R ratios, seedlings had higher daytime water potentials (Psi(x)) than cuttings, and tall cuttings had higher daytime values of Psi(x) than short cuttings. Differences in Psi(x) were also related to stomatal conductance (g(wv)), which was up to 300% greater in short cuttings than in tall cuttings. Among seedlings, those of E. cloeziana, which had the smallest dry weight at age 4 months, had the highest g(wv), whereas those of E. grandis, which had the greatest dry weight at age 4 months, had the lowest g(wv). Unlike seedlings and the tall cuttings, short cuttings lost turgor when subjected to drought. The differences observed in susceptibility to water stress may account in part for the associated differences in dry matter production. Xylem pressure potential and relative water deficit at zero turgor did not differ significantly among the types of plants studied, which suggests that differences in growth rates were not the result of differences in dehydration tolerance.  相似文献   

2.
Ngugi  Michael R.  Hunt  Mark A.  Doley  David  Ryan  Paul  Dart  Peter 《New Forests》2003,26(2):187-200
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie (humid coastal) and Hungry Hills (dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely (dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.  相似文献   

3.
Myers BJ 《Tree physiology》1988,4(4):315-323
Water stress integral (S(Psi)), the cumulative integral of pre-dawn leaf water potential over any chosen period of time, was estimated from measurements of pre-dawn water potential made every two weeks in a Pinus radiata D. Don plantation near Canberra, Australia. Also measured were final length of current-season needles and annual stem basal area increment. Data were gathered over a 4-year period from a control plot, a fertilized plot, an irrigated plot, and two plots that were both fertilized and irrigated. Among years and treatments, annual basal area increment varied over a threefold range. Of this variation, 91% was accounted for by variation in S(Psi) for the entire year, during every month of which stem diameter growth occurred. Of variation in annual needle elongation, 90% was accounted for by variation in S(Psi) from late August to late February, which was the period of needle growth. In dry years, the annual value of S(Psi) in non-irrigated plots was mainly determined by soil water content, but in wet years in non-irrigated plots, and in all years in irrigated plots, it was closely correlated with tree nutrient status (r(2) = 0.81).  相似文献   

4.
We examined the interactive effects of elevated CO2 concentration ([CO2]) and water stress on growth and physiology of 1-year-old peach (Prunus persica L.) seedlings grown in 10-dm3 pots in open-top chambers with ambient (350 micromol mol-1) or elevated (700 micromol mol-1) [CO2]. Seedlings were supplied weekly with a non-limiting nutrient solution. Water was withheld from half of the plants in each treatment for a 4-week drying cycle, to simulate a sudden and severe water stress during the phase of rapid plant growth. Throughout the growing season, seedlings in elevated [CO2] had higher assimilation rates, measured at the growth [CO2], than seedlings in ambient [CO2], and this caused an increase in total dry mass of about 33%. Stomatal conductance, total water uptake, leaf area and leaf number were unaffected by elevated [CO2]. Because seedlings in the two CO2 treatments had similar transpiration despite large differences in total dry mass, water-use efficiency (WUE) of well-watered and water-stressed seedlings grown in elevated [CO2] was an average of 51 and 63% higher, respectively, than WUE of comparable seedlings grown in ambient [CO2]. Elevated [CO2] enhanced total biomass of water-stressed seedlings by 31%, and thus ameliorated the effects of water limitation. However, the percentage increases in total dry mass between well-watered and water-stressed seedlings were similar in ambient (53%) and elevated (58%) [CO2], demonstrating that there was no interaction between elevated [CO2] and water stress. This finding should be considered when predicting responses of trees to global climate change in hot and dry environments, where predicted temperature increases will raise evaporative demands and exacerbate the effects of drought on tree growth.  相似文献   

5.
We hypothesized that seedlings grown under water-limited conditions would develop denser wood than seedlings grown under well-watered conditions. Three Eucalyptus species (E. grandis Hill (ex Maiden), E. sideroxylon Cunn. (ex Woolls) and E. occidentalis Endl.) were grown in a temperature-controlled greenhouse for 19 weeks with watering treatments (well-watered and water-limited) applied at six weeks. The water-limitation treatment consisted of four drought cycles. Wood density increased by between 4 and 13% in the water-limited seedlings, but this increase was mainly due to extractive compounds embedded in the cell wall matrix. Once these compounds were removed, the increase was 0-9% and was significant for E. grandis only. Water-limitation significantly reduced mean vessel lumen area; however, this was balanced by a trend toward greater vessel frequency in water-limited plants, and consequently there was no difference in the proportion of stem area allocated to vessels. Conduit efficiency value was lowest in the water-limited plants, indicating that there was a cost in terms of stem hydraulic conductivity for decreasing vessel lumen area. Wood density was negatively correlated with vessel lumen fraction in well-watered plants, but this relationship broke down in the water-limited plants, possibly because of the significantly larger proportion of the stem taken up by pith in water-limited seedlings. Diurnal variation in leaf water potential was positively correlated with wood density in well-watered plants. This relationship did not hold in the water-limited plants owing to the collapse of the pressure gradient between soil and leaf. We conclude that drought periods of greater than 1 month are required to increase wood density in these species and that increases in wood density appear to result in diminished capacity to supply water to leaves.  相似文献   

6.
Responses of net photosynthesis (A), leaf conductance to water vapor (g(wv)) and instantaneous water use efficiency (WUE) to decreasing leaf and soil water potentials (Psi(l), Psi(s)) were studied in three-month-old white oak (Quercus alba L.), post oak (Q. stellata Wangenh.), sugar maple (Acer saccharum Marsh.), and black walnut (Juglans nigra L.) seedlings. Quercus seedlings had the highest A and g(wv) when plants were well watered. As the soil was allowed to dry, both A and g(wv) decreased; however, trace amounts of A were observed at a Psi(l) as low as -2.9 MPa in Q. stellata and -2.6 MPa in Q. alba and A. saccharum. Photosynthesis was not measurable at Psi(l) lower than -2.2 MPa in J. nigra and water stress-induced leaflet senescence was observed in this species. Within each species, g(wv) showed a similar relationship to soil and leaf Psi, but the response to Psi(l) was shifted to more negative values by 1.2 to 1.6 MPa. As Psi(s) declined below -1 MPa, the difference between soil and leaf Psi diminished because of the suppression of transpiration. There was no indication that Psi(s) had a more direct influence on g(wv) than did Psi(l). Water use efficiency showed an initial increase as the soil dried, followed by a decline under severe water stress. Water use efficiency was highest in J. nigra, intermediate in Quercus species and lowest in A. saccharum. There was an evident relationship between gas exchange characteristics and natural distribution in these species, with the more xeric species showing higher A and g(wv) under both well-watered and water-stressed conditions. There was no trend toward increased efficiency of water use in the more xeric species.  相似文献   

7.
Gas exchange, tissue water relations, and leaf/root dry weight ratios were compared among young, container-grown plants of five temperate-zone, deciduous tree species (Acer negundo L., Betula papyrifera Marsh, Malus baccata Borkh, Robinia pseudoacacia L., and Ulmus parvifolia Jacq.) under well-watered and water-stressed conditions. There was a small decrease (mean reduction of 0.22 MPa across species) in the water potential at which turgor was lost (Psi(tlp)) in response to water stress. The Psi(tlp) for water-stressed plants was -1.18, -1.34, -1.61, -1.70, and -2.12 MPa for B. papyrifera, A. negundo, U. parvifolia, R. pseudoacacia, and M. baccata, respectively. Variation in Psi(tlp) resulted primarily from differences in tissue osmotic potential and not tissue elasticity. Rates of net photosynthesis declined in response to water stress. However, despite differences in Psi(tlp), there were no differences in net photosynthesis among water-stressed plants under the conditions of water stress imposed. In A. negundo and M. baccata, water use efficiency (net photosynthesis/transpiration) increased significantly in response to water stress. Comparisons among water-stressed plants showed that water use efficiency for M. baccata was greater than for B. papyrifera or U. parvifolia. There were no significant differences in water use efficiency among B. papyrifera, U. parvifolia, A. negundo, and R. pseudoacacia. Under water-stressed conditions, leaf/root dry weight ratios (an index of transpiration to absorptive capacity) ranged from 0.77 in R. pseudoacacia to 1.05 in B. papyrifera.  相似文献   

8.
Container-grown seedlings of Acacia tortilis Forsk. Hayne and A. xanthophloea Benth. were watered either every other day (well watered) or every 7 days (water-stressed) for 1 year in a greenhouse. Total plant dry mass (T(dm)), carbon allocation and water relations were measured monthly. Differences in leaf area (LA) accounted for differences in T(dm) between the species, and between well-watered and water-stressed plants. Reduction in LA as a result of water stress was attributed to reduced leaf initiation, leaf growth rate and leaf size. When subjected to prolonged water stress, Acacia xanthophloea wilted more rapidly than A. tortilis and, unlike A. tortilis, lost both leaves and branches. These differences between species were attributed to differences in the allocation of carbon between leaves and roots and in the ability to adjust osmotically. Rapid recovery in A. xanthophloea following the prolonged water-stress treatment was attributed to high cell wall elasticity. Previous exposure to water stress contributed to water-stress resistance and improved recovery after stress.  相似文献   

9.
桉树接种固氮菌效果的研究   总被引:1,自引:0,他引:1  
试验表明接种固氮菌能显著提高桉树苗木的生长及苗木各器官的生物量和N含量,接种苗木高生长比对照(不接种)增加29.81%、叶片数增加37.31%、叶片干重增加35.01%、茎干重增加55.59%、根干重增加78.93%、总生物量干重增加55.89%。不同菌株的增产效果存在差异,接种催娩克氏菌的效果较接种阴沟肠杆菌的好。接种+施N80mg/株处理的效果优于接种+施N30mg/株处理的效果。接种与施N肥的分析结果表明接种催娩克氏菌的效果等于施N80mg/株的效果。  相似文献   

10.
Seedlings of Eucalyptus globulus Labill subsp. globulus grown in soil in pots in the greenhouse grew faster than seedlings of E. globulus subsp. bicostata, and responded better to added nutrients and water. However, water stress caused a greater reduction in the growth of shoots and roots, and in the root/shoot ratios of fertilized seedlings of subsp. globulus than in those of bicostata. More leaf surface wax was produced by seedlings grown in the presence of fertilizer and an adequate supply of water than by seedlings subjected to nutrient or water stress. Despite larger amounts of leaf surface wax, seedlings of subsp. bicostata had higher epidermal conductances than seedlings of subspecies globulus. However, epidermal conductances were reduced more by water stress and by fertilization in seedlings of subsp. bicostata than in subsp. globulus. Tissue osmotic potentials at full and zero turgor were reduced by water stress only in seedlings of subsp. bicostata and were increased by fertilizer only in seedlings of subsp. globulus. The results indicate that although seedlings of subsp. globulus have inherently higher growth rates, seedlings of subsp. bicostata are better adapted to drought.  相似文献   

11.
Field measurements were made of leaf photosynthesis (A), stomatal conductance (g) and leaf water relations for sugar maple (Acer saccharum Marsh.) seedlings growing in a forest understory, small gap or large clearing habitat in southwestern Wisconsin, USA. Predawn water status, leaf gas exchange and plasticity in field and laboratory water relations characteristics were compared among contrasting light environments in a wet year (1987) and a dry year (1988) to evaluate possible interactions between light and water availability in these habitats. Leaf water potentials (Psi(leaf)) at predawn and midday were lower for clearing than gap or understory seedlings. Acclimation of tissue osmotic potentials to light environment was observed among habitats but did not occur within any of the habitats in response to prolonged drought. During a summer drought in 1988, decreases in daily maximum g (g(max)) and maximum A (A(max)) in clearing seedlings were correlated with predawn Psi(leaf), which reached a seasonal minimum of -2.0 MPa. Under well-watered conditions, diurnal fluctuations in Psi(leaf) of up to 2.0 MPa in clearing seedlings occurred along with large midday depressions of A and g. In a wet year, strong stomatal responses to leaf-to-air vapor pressure difference (VPD) in sunny habitats were observed over nine diurnal courses of gas exchange measurements on seedlings in a gap and a clearing. Increasing stomatal limitations to photosynthesis appeared to be responsible for the reduction in A at high VPD for clearing seedlings. In understory seedlings, however, low water-use efficiency and development of leaf water deficits in sunflecks was related to reduced stomatal limitations to photosynthesis relative to seedlings in sunny habitats. Predawn Psi(leaf) and VPD appear to be important factors limiting carbon assimilation in sugar maple seedlings in light-saturating irradiances, primarily through stomatal closure. The overall results are consistent with the idea that sugar maple seedlings exhibit "conservative" water use patterns and have low drought tolerance. Leaf water relations and patterns of water use should be considered in studies of acclimation and species photosynthetic performance in contrasting light environments.  相似文献   

12.
Soil microorganisms, such as plant growth-promoting rhizobacteria (PGPR), play crucial roles in plant growth, but their influence on plant water relations remains poorly explored. We studied the effects of native soil microorganisms and inoculation with the PGPR strain Aur6 of Pseudomonas fluorescens on water stress responses of seedlings of the drought-avoiding Pinus halepensis Mill. and the drought-tolerant Quercus coccifera L. Plant growth, nutrient concentrations and physiology (maximum photochemical efficiency of photosystem II (PSII; F(v)/F(m)), electron transport rate (ETR), stomatal conductance (g(s)) and predawn shoot water potential (Psi(PD))) were measured in well-watered plants, and in plants under moderate or severe water stress. Inoculation with PGPR and native soil microorganisms improved tree growth, and their interactions had either additive or synergistic effects. Both F(v)/F(m) and ETR were significantly affected by PGPR and native soil microorganisms. Marked differences in g(s) and Psi(PD) were found between species, confirming that they differ in mechanisms of response to water stress. A complex tree species x treatment interactive response to drought was observed. In P. halepensis, F(v)/F(m) and ETR were enhanced by PGPR and native soil microorganisms under well-watered conditions, but the effects of PGPR on Psi(PD) and g(s) were negative during a period of water stress. In Q. coccifera, F(v)/F(m) and ETR were unaffected or even reduced by inoculation under well-watered conditions, whereas Psi(PD) and g(s) were increased by PGPR during a period of water stress. Our results indicate that microbial associates of roots can significantly influence the response of tree seedlings to drought, but the magnitude and sign of this effect seems to depend on the water-use strategy of the species.  相似文献   

13.
Potted cuttings of three Eucalyptus globulus Labill. clones (AR3, CN44, MP11) were either well watered or subjected to one of two soil water deficit regimes for six months in a greenhouse. Reductions in lateral branching, leaf production and leaf expansion were the leading contributors to the large differences observed in biomass production between well-watered and water-stressed plants. Although no significant differences among clones were observed in dry matter accumulation or in the magnitude of the response to soil water deficits, sensitivity of lateral branching, leaf initiation and whole-plant foliage to water stress was significantly lower in CN44 than in AR3 and MP11. When the confounding effect of differences in plant size resulting from the different watering regimes was removed, allometric analysis indicated that the genotypes differed in biomass allocation patterns. In addition to a drought-induced reduction in leaf number, water deficits also resulted in smaller leaves because leaf expansion was inhibited during dehydration events. Resumption of leaf expansion following stress relief occurred in all of the clones, but was particularly evident in severely stressed plants of Clone AR3, possibly as a result of the osmotic adjustment observed in this genotype.  相似文献   

14.
We examined tolerance to soil drying in clonally propagated apple (Malus domestica Borkh.) rootstocks used to control shoot growth of grafted scions. We measured leaf conductance to water vapor (g(L)) and leaf water potential (Psi(L)) in a range of potted, greenhouse-grown rootstocks (M9, M26, M27, MM111, AR69-7, AR295-6, AR360-19, AR486-1 and AR628-2) as the water supply was gradually reduced. Irrespective of the amount of available water, rootstocks that promoted scion shoot growth (M26 and MM111) generally had higher g(L) and more negative Psi(L) than rootstocks that restricted scion shoot growth (M27 and M9). After about 37 days of reduced water supply, there were significant decreases in g(L) and Psi(L) in all rootstocks compared with well-watered controls. In all treatments, the slope of the relationship between log (g(L)) and Psi(L) was positive, except for rootstocks AR295-6, AR628-2 and AR486-1 in the severe-drought treatment, where the drought-induced change in the relationship suggests that rapid stomatal closure occurred when leaf water potentials fell below -2.0 MPa. This drought response was associated with increased root biomass production. Rootstock M26 showed little stomatal closure even when its water potential fell below -2.0 MPa, and there was no effect of drought on root biomass production. We conclude that differences among rootstocks in the way that g(L) and Psi(L) respond to drought reflect differences in the mechanisms whereby they tolerate soil drying. We suggest that these differences are related to differences among the rootstocks in their ability to control shoot growth.  相似文献   

15.
We investigated the influence of shelterwood conditions on water relations and growth of loblolly pine (Pinus taeda L.) seedlings on two harsh sites in eastern Texas. Site I was harvested to provide four overstory density treatments (0, 2.3, 4.6 and 9.2 m(2) of residual basal area per ha). To quantify the effects of overstory competition, trenched and nontrenched subplots, each containing 25 one-year-old seedlings, were established within each overstory treatment plot, and predawn and midday water potentials (Psi(w)), seedling growth and survival were measured during the growing season. Leaf area and seedling biomass partitioning were measured at the end of the growing season. Site II was harvested to provide two overstory density treatments (0 and 6.9 m(2) ha(-1)) and planted with one-year-old loblolly pine seedlings. Seedling Psi(w), stomatal conductance (g(wv)), transpiration flux density (E), leaf area, height and survival were determined. On Site I, seedling Psi(w) increased with increasing overstory basal area, whereas trenching only substantially affected Psi(w) of seedlings in the 9.2 m(2) ha(-1) overstory treatment. Growth was not affected by overstory treatment or trenching. On Site II, Psi(w) and g(wv) were highest during the morning hours and lowest in the afternoon, whereas E peaked in the afternoon. Vapor pressure deficits and photosynthetic photon flux density were major factors in determining g(wv) differences between treatments. On individual days, the presence of an overstory increased Psi(w) and reduced both g(wv) and E. On Site II, leaf area was affected by overstory treatment throughout most of the study. We conclude that the presence of an overstory can have ameliorative effects on harsh sites at the western fringe of the loblolly pine natural range.  相似文献   

16.
Leaf growth, rate of leaf photosynthesis and tissue water relations of shoots of Eucalyptus marginata Donn ex Sm. (jarrah) seedlings were studied during a soil drying and rewatering cycle in a greenhouse experiment. Rates of leaf growth and photosynthesis were sensitive to water deficits. The rate of leaf growth decreased linearly with predawn leaf water potential to reach zero at -1.5 MPa. Rate of leaf growth did not recover completely within the first three days after rewatering. Midday photosynthetic rates declined to 40% of those of well-watered seedlings at a predawn leaf water potential of -1.0 MPa and reached zero at -2.2 MPa. Photosynthetic rate recovered rapidly following rewatering and almost fully recovered by the second day after rewatering. All tissue water relations parameters, except the bulk modulus of elasticity, changed significantly as the soil dried and recovered completely by the third day after rewatering. Changes in osmotic pressure at full turgor of 0.4 MPa indicated considerable capacity for osmotic adjustment. However, because there was little osmotic adjustment until predawn leaf water potential fell below -1.5 MPa, this capacity would not have enhanced seedling growth, although it may have increased seedling survival. The sensitivity of photosynthesis and relative water content to water deficits suggests that greenhouse-grown E. marginata seedlings behave like mesophytic plants, even though E. marginata seedlings naturally grow in a drought-prone environment.  相似文献   

17.
Concentrations of solutes, and thus leaf osmotic potential (Psi pi), often increase when plants are subject to drought or sub-zero (frost) temperatures. We measured Psi pi and concentrations of individual solutes in leaves of 3-year-old Eucalyptus camaldulensis Dehn., E. globulus Labill., E. grandis W. Hill ex Maid. and 29 hybrid clones on a site subjected to both summer drought and winter frost. We sought to characterize seasonal and genetic variations in Psi pi and to determine whether Psi pi or leaf turgor is related to bole volume increment. Leaf osmotic potential at full turgor (Psi pi(100)) was 0.7 MPa more negative in winter than in late summer, and this trend was uniform across genotypes. Soluble carbohydrates were confirmed as key contributors to Psi pi, accounting for 40-44% of total osmolality. The seasonal trend in Psi pi(100) was facilitated by changes in leaf morphology, such as reduced turgid mass:dry mass ratio and increased apoplastic water fraction in winter. Cell wall elasticity increased significantly from winter to summer. Our results suggest that elastic adjustment may be more important than osmotic adjustment in leaves exposed to drought. Although Psi pi(100) was a reasonable predictor of in situ osmotic potential and turgor, we found no relationship between any physiological trait and bole volume increment. Clone-within-family variation in Psi pi(100) was small in both summer and winter and was unrelated to bole volume increment. We conclude that, for the study species, tree improvement under water-limited conditions should concentrate on direct selection for growth rather than on indirect selection based on osmotic potential.  相似文献   

18.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

19.
Responses of the endemic leguminous shrub Bauhinia faberi var. microphylla, to various soil water supply regimes were studied in order to assess water stress tolerance of seedlings. Two-month-old seedlings were grown under water supply regimes of 100, 80, 60, 40, and 20% water field capacity (FC), respectively, in a temperature and light-controlled greenhouse. Plant height and leaf number were measured monthly over a 4-month period, while water use (WU), water-use efficiency (WUE), leaf relative water content (RWC), biomass production and its partitioning were recorded at the end of the experiment. Seedlings exhibited the greatest biomass production, height, basal diameter, branch number, leaf number, and leaf area when soil content was at 100% FC, and slightly declined at 80% FC. These parameters declined significantly under 60% FC water supply, and severely reduced under 40 and 20% FC. RWC, WU and WUE decreased, while the ratio of root mass to stem mass (R:S) increased in response to decreasing water supply. Water stress caused leaf shedding, but not plant death. The results demonstrated that B. faberi var. microphylla seedlings could tolerate drought by reducing branching and leaf area while maintaining a high R:S ratio. However, low dry mass and WUE at 40 and 20% FC suggested that the seedlings did not produce significant biomass under prolonged severe water deficit. Therefore, before introducing B. faberi var. microphylla in vegetation restoration efforts, water supply above 40% FC is recommended for seedlings to maintain growth.  相似文献   

20.
The effects of shade and soil temperature on growth of Eucalyptus marginata Donn ex Sm (jarrah) seedlings were studied in greenhouse experiments. Plant dry weight and that of all plant parts declined in response to shade, as did root/shoot ratio. Plant leaf area was less in unshaded plants than in plants grown in shade, and specific leaf area increased with shade. Unshaded seedlings had a higher light-saturated rate of photosynthesis, a higher light compensation point and a higher light saturation point than seedlings grown in 70% shade. The relationship between plant dry weight and leaf dry weight was independent of shading, whereas the relationship between plant dry weight and plant leaf area was dependent on shading. Therefore, leaf dry weight may be a better predictor of biomass production than leaf area in forest stands where shade is likely to affect growth significantly. Soil temperature had a significant effect on the growth of all plant parts except cotyledons. Total plant growth and shoot growth were maximal at a soil temperature of 30 degrees C, but root growth had a slightly lower temperature optimum such that the root/shoot ratio was highest at 20 degrees C. Roots grown at 15 degrees C were about 30% shorter per unit of dry weight than roots grown at 20 to 35 degrees C. We conclude that increases in irradiance and soil temperature as a result of overstory removal in the forest will cause significant increases in growth of E. marginata seedlings, but these increases represent a relatively small component of the growth response to overstory removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号