首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we developed an individual tree height prediction model for quaking aspen (Populus tremuloides Michx.) grown in boreal mixedwood forests in Alberta using the nonlinear mixed model (NLMM) approach. We examined the impacts of density, species composition, and top height on aspen height predictions. Statistically significant stand level variables were incorporated into the base height–diameter model to increase the predictive ability and accuracy of the model at both the population and subject-specific levels. Our analyses showed that top height and density impacted height growth, but species composition did not. More importantly, we found that the inclusion of additional variables into the base model, despite improving model fitting statistics on the modelling data, did not improve the model's predictive ability and accuracy when cross-validated and when tested on an independent testing data set. Under the NLMM framework the base model performed as well as or better than the expanded models that contained other stand level variables. This has important theoretical and practical implications because, other than for biological reasons, more accurate local tree height predictions for aspen can be achieved simply by using the base height–diameter model fitted with the NLMM approach without the inclusion of other variables.  相似文献   

2.
Wind-induced mechanical perturbation is one of the mechanisms determining the height–diameter relationship of trees, but its effects have largely been neglected in past height–diameter models. In this study, we examined the effects of including wind speed as a regressor in the height–diameter model for lodgepole pine (Pinus contorta var. latifolia Engelm.). We also tested the hypothesis that the height–diameter relationship differs between trees of different crown classes (dominant and subordinate trees), and that a mixed effects height–diameter model developed at the crown class level should achieve a better prediction than that developed at the plot level. The results showed that including wind speed significantly improved the fit of the height–diameter model. The results also showed that the height–diameter relationships differ significantly between the two crown classes. The mixed effects model developed based on crown classes of individual trees had better fit with reduced residual variance and decreased Akaike's information criterion and the Schwarz's Bayesian information criterion than the plot-based mixed model. Evaluation of the developed model suggests the crown class-based height–diameter model has better prediction in terms of prediction error and precision. The developed crown class-based mixed effects model can be used to provide more accurate prediction of tree heights for lodgepole pine from their diameters.  相似文献   

3.
Using permanent sample-plot data, selected tree height and diameter functions were evaluated for their predictive abilities for major tree species in complex (multiple age, size and species cohort) stands of interior British Columbia (BC), Canada. Two sets of models were evaluated. The first set included five models for estimating height as a function of individual tree diameter, the second set also included five models for estimating height as a function of individual tree diameter and other stand-level attributes. The inclusion of the BAL index (which simultaneously indicates the relative position of a tree and stand density) into the base height–diameter models increased the accuracy of prediction for all species. On average, by including stand level attributes, root mean square values were reduced by 30.0 cm. Based on the residual plots and fit statistics, these models can be recommended for estimating tree heights for major tree species in complex stands of interior BC. The model coefficients are documented for future use.  相似文献   

4.
We derived an allometric model of the height–diameter curve for even-aged pure stands, which was a modification of the earlier model proposed by Inoue (2000a). An individual-dependent allometric equation was used as the height–diameter curve. Using the discriminant analysis method, all trees composed of a stand were stratified into upper and lower trees. It was assumed that both relationships between mean tree height H m and upper tree height H u and between mean DBH D m and mean DBH of upper trees D u could be described by the time-dependent allometric power equations. The height–diameter curve showed an average relationship between tree height and DBH of a given stand at a given time, and hence it could be assumed that the height–diameter curve contained two points (D m , H m ) and (D u , H u ). With these assumptions, we derived an allometirc model of height–diameter curve, which allowed the coefficients of the curve to be estimated from mean tree height and mean DBH. The proposed model was fitted to Japanese cedar (Cryptomeria japonica D. Don) data. The error ratio of the allometric model ranged from 2.254% to 13.412% (mean = 6.785%), which was significantly smaller than that of the earlier model. When the error of mean tree height was ±1.0 m or less, the effect of the error of mean tree height on the error ratio was comparatively small. This suggested that the error of ±1.0 m in mean tree height could be accepted in the estimation of height–diameter curve using the allometric model. These features enable us to combine the allometric model with Hirata’s vertical angle-count sampling or growth models. In conclusion, the allometric model would be one of the most practical and convenient approaches for estimating the height–diameter relationship of even-aged pure stands.  相似文献   

5.
Growth and yield models were developed for individual tress and stands based on336 temporary plots with 405 stem analysis trees of dahurian larch(Larix gmelinii(Rupr.)Rupr.)plantations throughout Daxing’anling mountains.Several equations were selected using nonlinearregression analysis.Results showed that the Richards equation was the best model for estimatingtree height,stand mean helght and stand dominant height from age; The Power equation was thebest model for prediction tree volume from DBH and tree height; The logarithmic stand volumeequation was good for predicting stand volume from age,mean height,basal area and other standvariables.These models can be used to construct the volume table, the site index table and other for-estry tables for dahurian larch plantations.  相似文献   

6.
袁金兰 《林业研究》1999,10(4):233-235
IntroductionDahurianlarch(L8risgmeliniiRupr.)isoneofthemostimportanttimberspeciesinChina.AsaresuItofovercuttingforseveraIdecades,thenaturaIDahurianIarchforestresourcesaredecliningrapidly.PIantationsofdahurianIarchhavebecomeanimportantpartofforestpreserveresourcesinDaxing'anMountains.ConsequentIystudyingthegroWthofDahurianlarchandformingtheforesttabfesareofsignrficancetofor-estproduction.ThispaperpresentsinformationongroWthandyieIdmodeIsofDahurianlarchpIantations.MethodsDataof4O5stema…  相似文献   

7.
A height–diameter mixed-effects model was developed for loblolly pine (Pinus taeda L.) plantations in the southeastern US. Data were obtained from a region-wide thinning study established by the Loblolly Pine Growth and Yield Research Cooperative at Virginia Tech. The height–diameter model was based on an allometric function, which was linearized to include both fixed- and random-effects parameters. A test of regional-specific fixed-effects parameters indicated that separate equations were needed to estimate total tree heights in the Piedmont and Coastal Plain physiographic regions. The effect of sample size on the ability to estimate random-effects parameters in a new plot was analyzed. For both regions, an increase in the number of sample trees decreased the bias when the equation was applied to independent data. This investigation showed that the use of a calibrated response using one sample tree per plot makes the inclusion of additional predictor variables (e.g., stand density) unnecessary. A numerical example demonstrates the methodology used to predict random effects parameters, and thus, to estimate plot specific height–diameter relationships.  相似文献   

8.
A generalized height–diameter model was developed for Eucalyptus globulus Labill. stands in Galicia (northwestern Spain). The study involved a variety of pure stands ranging from even-aged to uneven-aged. Data were obtained from permanent circular sample plots in which trees were sampled within different radii according to their diameter at breast height. A combination of weighted regression, to take into account the unequal selection probabilities of such an inventory design, and mixed model techniques, to accommodate local random fluctuations in the height–diameter relationship, were applied to estimate fixed and random parameters for several models reported in the relevant literature. The models that provided the best results included dominant height and dominant diameter as fixed effects. These models explained more than 83% of the observed variability, with mean errors of less than 2.5 m. Random parameters for particular plots were estimated with different tree selection options. Height–diameter relationships tailored to individual plots can be obtained by calibration of the height measurements of the three smallest trees in a plot. An independent dataset was used to test the performance of the model with data not used in the fitting process, and to demonstrate the advantages of calibrating the mixed-effects model.  相似文献   

9.
Models for predicting tree height were constructed for Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and pubescent birch (Betula pubescens). The data consisted of two separate sets of permanent sample plots forming a representative sample of drained peatland stands in the whole country. A logarithmic height-diameter curve with one nonlinear parameter specific to each tree species was applied. It was assumed that the intercept and slope of the curve would vary randomly from stand to stand. Stand characteristics were used to predict the mean intercept and slope. A nonhomogeneous variance of the residual error was modelled as a function of tree diameter. A mixed linear model technique was applied to fit the models. The diameter of the tree of the median basal area, stand basal area, geographical location of the stand, and site quality were used as fixed independent variables in explaining the variation in the intercept. The diameter of the tree of the median basal area and the stand basal area were used in explaining the variation in the slope.  相似文献   

10.
The objective of this study was to analyse the within-tree allocation of biomass and to develop biomass functions for above- and below-ground components of European beech in Denmark. Separate functions were developed for stem, branches, below-ground stump and root system, total above-ground biomass and total tree biomass. For each of these components or aggregate components, models were also developed for the average basic density of wood and bark. To enhance the versatility of the models, a function for estimating the biomass expansion factor (BEF) was also developed. The functions were based on 66 trees measured for total biomass. Model performance was evaluated based on 74 trees measured only for above-ground biomass. The trees were sampled in 18 different forest stands covering a wide range of tree sizes and stand treatments. Models were estimated using a linear mixed-effects procedure to account for within-stand correlations. The functions for biomass and BEFs included only diameter at breast height and total tree height for individual trees as predictor variables. Inclusion of additional variables reflecting site quality or stand density did not improve model performance. The functions for basic density included individual tree diameter, tree height and quadratic mean diameter as predictor variables, indicating an effect of stand density on the basic density of wood and bark.  相似文献   

11.
唐守正 《林业科学》1997,33(3):193-201
本文推导出一组联系林分平均直径生长和直径累积分布生长之间的方程式。根据这些方程建立的全林分生长模型和径阶模型或与距离无关的单木模型之间的关系,可以指导由林分断面积总生长向单木直径生长的分配。采用这一组方程,根据二个不同时间点上算术平均直径和均方平均直径回收生长模型和枯损模型中的参数,保证林分水平预测的结果和径级水平或单木水平预测的结果相容。采用一个误差函数来刻化相同直径林木在生长过程中的分化,证明了忽略这项误差函数可能导致预测的直径分布范围小于实际的范围。因此,加上一个误差函数预测直径分布在一定程度上提高了直径分布预测的精度。最后一个实例说明计算过程。  相似文献   

12.
以吉林省汪清林业局184块样地中的10 111株蒙古栎为例,首先选用线性函数、Richards函数、Logistic 函数、指数函数等7种常用函数形式,分析4个因变量(后期胸径、后期胸高断面积、直径增量和胸高断面积增量)与前期胸径的影响,确定一个用于构建混合效应模型的基础模型。然后确定同时考虑林场效应和林场与样地交互效应时基础模型中最优的形式参数构造形式,利用逐步回归方法确定模型中所包含的林分变量,并分析和比较用来消除异方差的3种常用残差方差函数(指数函数、幂函数和常数加幂函数),最后检验模型预测效果。结果表明:Wykoff模型且因变量为后期胸高断面积拟合效果较好,故作为基础模型;除前期胸高直径(D)外,当考虑坡度正切(ST),对象木胸高直径与样地算术平均直径的比(RAD),样地胸高总断面积(TBA),样地中大于对象木直径所有树木的胸高断面积和(GSBA),对象木胸高断面积与样地算术平均胸高断面积的比 (RABA)和对象木胸高断面积与样地胸高总断面积的比(RBA)等林分变量时能进一步提高模型预测精度;对于残差方差,指数函数、幂函数和常数加幂函数都能消除异方差,但幂函数效果最好;当模型同时考虑林场效应和林场与样地交互效应时预测精度最高。  相似文献   

13.

Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.  相似文献   

14.
Simulating the influence of intensive management and annual weather fluctuations on tree growth requires a shorter time step than currently employed by most regional growth models. High-quality data sets are available for several plantation species in the Pacific Northwest region of the United States, but the growth periods ranged from 2 to 12 years in length. Measurement periods of varying length complicate efforts to fit growth models because observed growth rates must be interpolated to a common length growth period or those growth periods longer or shorter than the desired model time step must be discarded. A variation of the iterative technique suggested by Cao [Cao, Q.V., 2000. Prediction of annual diameter growth and survival for individual trees from periodic measurements. Forest Sci. 46, 127–131] was applied to estimate annualized diameter and height growth equations for pure plantations of Douglas-fir, western hemlock, and red alder. Using this technique, fits were significantly improved for all three species by embedding a multi-level nonlinear mixed-effects framework (likelihood ratio test: p < 0.0001). The final models were consistent with expected biological behavior of diameter and height growth over tree, stand, and site variables. The random effects showed some correlation with key physiographic variables such as slope and aspect for Douglas-fir and red alder, but these relationships were not observed for western hemlock. Further, the random effects were more correlated with physiographic variables than actual climate or soils information. Long-term simulations (12–16 years) on an independent dataset using these annualized equations showed that the multi-level mixed effects models were more accurate and precise than those fitted without random effects as mean square error (MSE) was reduced by 13 and 21% for diameter and height growth prediction, respectively. The level of prediction error was also smaller than an existing similar growth model with a longer time step (ORGANON v8) as the annualized equations reduced MSE by 17 and 38% for diameter and height growth prediction, respectively. These models will prove to be quite useful for understanding the interaction of weather and silviculture in the Pacific Northwest and refining the precision of future growth model projections.  相似文献   

15.
辽宁省东部山区自然条件优越,雨量充足,土壤肥沃,适宜落叶松生长发育。日本落叶松在辽宁省占人工林总面积15%,蓄积量占20.9%。为提高经营水平,掌握林木生长与林分密度之间数量关系,在吸收国内外编制密度控制图理论和方法的基础上,编制了日本落叶松林分密度控制图,以期达到科学营林的目的。  相似文献   

16.
This study investigated which predictor variables with respect to crown properties, derived from small-footprint airborne light detection and ranging (LiDAR) data, together with LiDAR-derived tree height, could be useful in regression models to predict individual stem volumes. Comparisons were also made of the sum of predicted stem volumes for LiDAR-detected trees using the best regression model with field-measured total stem volumes for all trees within stands. The study area was a 48-year-old sugi (Cryptomeria japonica D. Don) plantation in mountainous forest. The topographies of the three stands with different stand characteristics analyzed in this study were steep slope (mean slope ± SD; 37.6° ± 5.8°), gentle slope (15.6° ± 3.7°), and gentle yet rough terrain (16.8° ± 7.8°). In the regression analysis, field-measured stem volumes were regressed against each of the six LiDAR-derived predictor variables with respect to crown properties, such as crown area, volume, and form, together with LiDAR-derived tree height. The model with sunny crown mantle volume (SCV) had the smallest standard error of the estimate obtained from the regression model in each stand. The standard errors (m3) were 0.144, 0.171, and 0.181, corresponding to 23.9%, 21.0%, and 20.6% of the average field-measured stem volume for detected trees in each of these stands, respectively. Furthermore, the sum of the individual stem volumes, predicted by regression models with SCV for the detected trees, occupied 83%–91% of field-measured total stem volumes within each stand, although 69%–86% of the total number of trees were correctly detected by a segmentation procedure using LiDAR data.  相似文献   

17.
An annual individual tree survival and growth model was developed for pure even-aged stands of maritime pine in Portugal, using a large data set containing irregularly time-spaced measurements and considering thinning effects. The model is distance-independent and is based on a function for diameter growth, a function for height growth and a survival function. Two approaches are compared for modeling annual tree growth. The first approach directly estimates a future diameter or height using well-known growth functions formulated in difference form. The second approach estimates diameter or height using a function in differential form estimating the increment over a year period. In both approaches, the function parameters were related to tree and stand variables reflecting the competition status of the tree as well as of a thinning response factor. Variable growth and survival rates were assumed in the modeling approaches. An iterative method was used to continuously update tree and stand attributes using a cut-off to convert the survival probability for a living or a dead tree. The individual tree diameter growth model and the survival probability model were fitted simultaneously using seemingly unrelated regression (SUR). Parameters of the height function were obtained separately as the number of observations for height was much lower than the number of observations for diameter, which may affect the statistical inference and the estimation of contemporaneous cross-equation error correlation inherent to the system of equations. PRESS residuals were used to evaluate the predictive performance of the diameter and the height growth functions. Additional statistics based in the log likelihood function and also in the survival probability were computed to evaluate the survival function. The second modeling approach, which integrates components of growth expansion and decline, performed slightly better than the first approach. A variable accounting for the thinning response that was tested proved to be significant for predicting diameter growth, even if the model already included competition-related explanatory variables, namely the basal area of trees larger than the subject tree. However, this thinning response factor was not significant for predicting height growth.  相似文献   

18.
本文以杉木人工林和落叶松天然林标准地数据为材料,应用D=aN~bP~cS~dH~e数学模型进行计算分析,并从理论上证明,当同一树种的树高一定时,疏密度和株数相同,各地位指数(级)林分平均直径一致。为森林的抚育间伐,林分直径生长的预测、预报,确定林分工艺成熟龄及森林调查设计等提供了理论依据和重要参数。  相似文献   

19.
This study attempted to explain the variation in growth of individual trees in a naturally regenerated, even-agedLarix sibirica stand using indices that represented the competitive and cooperative interactions among neighboring trees. These interaction indices and DBH were used in stepwise multiple regression procedures to model the growth of individual trees. However, when the data from all trees were used, DBH was the only factor accepted in the growth model. Since DBH can be influenced by the cumulative effect of past interaction and other environmental factors, we stratified the stand into three height strata and repeated the stepwise procedure for each stratum to remove the cumulative effect represented by DBH. Several competition and/or cooperation indices were accepted in growth models of the lower, middle and upper strata. In each stratum, the residual mean square of the growth model was smaller than that of all strata. These facts suggested that height stratification was generally successful in reducing the cumulative effect of past interaction and other factors. The cooperation indices that suggested protection from wind stress by neighboring trees was a significant variable in the growth models of all three strata. This demonstrated that cooperative interaction should be considered in the explanation of variation in tree growth in dry and windy climates such as the present study region. This study was supported with grants from The Nissan Science Foundation, and from the Heiwa Nakajima Foundation.  相似文献   

20.
A dynamic whole-stand growth model for radiata pine (Pinus radiata D. Don) stands in north-western Spain is presented. In this model, the initial stand conditions at any point in time are defined by three state variables (number of trees per hectare, stand basal area and dominant height), and are used to estimate total or merchantable stand volume for a given projection age. The model uses three transition functions derived with the generalized algebraic difference approach (GADA) to project the corresponding stand state variables at any particular time. These equations were fitted using the base-age-invariant dummy variables method. In addition, the model incorporates a function for predicting initial stand basal area, which can be used to establish the starting point for the simulation. Once the state variables are known for a specific moment, a distribution function is used to estimate the number of trees in each diameter class by recovering the parameters of the Weibull function, using the moments of first and second order of the distribution. By using a generalized height-diameter function to estimate the height of the average tree in each diameter class, combined with a taper function that uses the above predicted diameter and height, it is then possible to estimate total or merchantable stand volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号