首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We summarized the status of wolves (Canis lupus), elk (Cervis elaphus), and woody browse conditions during the 20th century for the upper Gallatin elk winter range in southwestern Montana, USA. During this period, wolves were present until about the mid-1920s, absent for seven decades, and then returned to the basin in 1996. A chronosequence of photographs, historical reports, and studies indicated willows (Salix spp.) along streams became heavily browsed and eventually suppressed following the removal of wolves, apparently due to unimpeded browsing by elk. However, after wolf establishment in 1996, browsing intensity on willows lessened in some areas and we hypothesized that, at both a landscape and fine scale, browsing pressure reflects terrain configurations influencing predation risk (nonlethal effects), in conjunction with lower elk densities (lethal effects). We measured browsing intensity and heights of Booth willow (S. boothii) along 3000 m reaches of the Gallatin River and a tributary to examine the potential influence of wolf/elk interactions upon willow growth. Where the Gallatin Valley is relatively narrow (high predation risk), willows began releasing in 1999 and by 2002 were relatively tall (150–250 cm). In contrast, willow heights along a wider portion of the Gallatin Valley, along the open landscape of the tributary, and an upland site (all low predation risk) generally remained low (<80 cm). We identified terrain and other features that may contribute to the perceived risk of wolf predation, by elk for a given site. Although alternative mechanisms are discussed, changes in willow communities over time following wolf removal and their subsequent reintroduction were consistent with a top-down trophic cascade model involving nonlethal and possibly lethal effects. If similar top-down effects upon vegetation hold true in other regions of North America and other parts of the world where wolves have been extirpated, wolf recovery may represent a management option for helping to restore riparian plant communities and conserve biodiversity.  相似文献   

2.
Medicinal use of saw palmetto (Serenoa repens) fruits in treating benign prostatic hypertrophy has driven a recent sharp increase in fruit harvesting. At the same time, saw palmetto often is considered a keystone species, serving as habitat or a food source for several hundred mammal, bird, reptile, amphibian and insect species. Due to harvesting pressure on this ecologically important, non-cultivated species, land management practices that produce environmentally sustainable harvests are needed. As part of research focusing on use of controlled burning as a management tool, we investigated effects of burning season and frequency on saw palmetto flowering and fruiting in 32 pine flatwoods sites in central and southwest Florida from 1997 to 1999. The study was conducted as two repeated measures experiments, each involving 16 sites. Each experiment included two among-subjects factors – burning season and past burning frequency – and one within-subjects factor – year – with four replications of each treatment combination. For both experiments, growing season (i.e., April–July) burns had high flowering levels the first year after burning (mean proportion of saw palmettos flowering = 0.49, n = 16 sites), but decreased the second year after burning (mean proportion flowering = 0.15, n = 16 sites), while winter (i.e., November–February) burns had intermediate levels of flowering during both the first and second years after burning (mean proportions flowering = 0.21 and 0.28 for first and second years after burning, n = 16 sites). Although most flowering occurred during April and May, flowering occurred 2–5 months after winter burns, but did not occur until 9–12 months after growing season burns. During the 1997–1998 experiment, fruit infection by the fungus Colletotrichum gloeosporioides caused a fruiting failure in all sites. During the 1998–1999 experiment, fruit yields were higher in growing season burns only in infrequently burned (i.e., burned less often than every 5 years) sites, and only in 1998 (mean fruit yields = 325 kg/ha and 0.25 kg/ha for growing season, infrequently burned sites and winter, infrequently burned sites; n = 4 sites in each group). Frequently burned (i.e., burned every 2–3 years) sites generally had low fruit yields (mean fruit yields = 163 kg/ha and 242 kg/ha for frequently burned sites in 1998 and 1999; n = 8 sites). Although controlled burning can be an effective management tool in producing economically sustainable saw palmetto fruit harvests, land managers also must consider ecological needs of other plant and animal species when planning environmentally sustainable burning regimes.  相似文献   

3.
We evaluated ground-layer plant diversity and community composition in northern hardwood forests among uncut controls and stands managed with even-age or uneven-age silvicultural systems. Even-age treatments included diameter-limit cuttings (20-cm diameter at 30-cm stem height) in 1952 and shelterwood removals in 1964. Uneven-age treatments included three intensities of selection harvest (light, 20.6 m2/ha residual basal area after harvest; medium, 17.2 m2/ha residual basal area; and heavy, 13.8 m2/ha residual basal area) that were applied in 1952, 1962, 1972, and 1982. All treatments were winter logged over snow pack. In 1991, plant diversity and community composition were examined. Species richness for spring ephemerals ranged from 1 to 6 species/150-m2, spring ephemeral diversity (Shannon's Index of Diversity) averaged 0.57 ± 0.04 and evenness averaged 0.45 ± 0.03. Summer flowering species richness ranged from 1 to 18 species/1-m2, with an average diversity of 0.71 ± 0.07 and evenness of 0.42 ± 0.03. We found no significant differences among treatments for any of these variables, although power to detect a difference (at p = 0.05) was low in all cases (0.15–0.55) due to high variance and low replication. Community composition was not significantly different among the treatments, for either spring (p = 0.09) or summer (p = 0.79) flora. Few exotic species were found in any treatment. Lack of exotic invasions and minimal differences in plant diversity or composition among treatments may be due, in part, to the negligible amount of soil disturbance that resulted from winter logging. While other (unmeasured) ecosystem components may differ among these silvicultural treatments, our results suggest that ground-layer plant communities in northern hardwood ecosystems are either resistant to change or have recovered within the 40 years since disturbance in the even-age treatments and within 10 years since disturbance in the uneven-age treatments.  相似文献   

4.
5.
The occurrence of Scots pine (Pinus sylvestris L.) seedlings and saplings (<2.0 m in height and suppressed by grazing) and ground characteristics were recorded in a 300 ha block of natural pine forest in 1993. The density of red deer (Cervus elaphus L.) was then reduced by exclosure to approximately 3–4 deer km−2, which is below the threshold at which pine regeneration should occur. Numbers and performance of pine seedlings and saplings were further monitored 2 and 4 years after exclosure. Numbers of young pine increased over time. In the three years with observations 97–99% of pine seedlings and saplings were recorded within 20 m of a seed source. Stepwise multiple regression was used to explore the relationships of pine establishment with plot characteristics for (a) all observation plots (n = 178) and (b) plots within 20 m of a seed source (n = 154). The factors most closely related to the number of pine seedlings and saplings in 1997 were, for (a), seed–source distance, vegetation height, blaeberry cover, slope and deer pellet-group density in 1993, all but the last having negative effects. For (b), vegetation height, blaeberry cover and slope were again selected predictors, and again had negative effects. Possible mechanisms by which the selected main effects may influence pine regeneration are discussed, the positive relationship to deer density being considered to reflect the creation of gaps in the sward suitable for germination. However, the amounts of variation explained in the models were low, being 16% for (a) and 13% for (b), reflecting the patchy nature and diverse age of the regeneration.  相似文献   

6.
Pre-commercial thinning (PCT) is a silvicultural practice that can provide diverse understory and overstory vegetation conditions. We tested the hypothesis that relative habitat use by snowshoe hare (Lepus americanus), mule deer (Odocoileus hemionus), and moose (Alces alces) would increase in response to enhanced abundance of herbs and shrubs, and species diversity and structural diversity of conifers, in heavily thinned (≤1000 stems/ha) stands, at 12–15 years post-thinning. Replicate study areas were located near Penticton, Kamloops, and Prince George in south-central British Columbia, Canada. Each study area had three young pine stands thinned to densities of 500 stems/ha (low), 1000 stems/ha (medium), and 2000 stems/ha (high), with an unthinned young pine and old-growth pine stand for comparison.

Relative habitat use, based on counts of fecal pellets and pellet-groups, was similar among the five treatment stands for hares (P = 0.24), deer (P = 0.23), and moose (P = 0.16). However, low-density stands (500 stems/ha) had ca. 3–20 times as many deer pellet-groups, and ca. 2–4 times as many moose pellet-groups, than other stands. Low-density stands had significantly greater canopy openness, volume of shrubs <2 m, and horizontal hiding cover <1.6 m than other treatments. Relative habitat use by deer and moose was positively related to understory characteristics such as enhanced abundance of forage and security cover. These results support our hypothesis that deer and moose responded positively to enhanced volume of herbs and shrubs as well as to species diversity and structural diversity of conifers and overall vegetation in heavily thinned (≤1000 stems/ha) stands at 12–15 years post-thinning. Our results suggest that ungulate management would be enhanced if greater emphasis was placed on forage enhancement throughout the year, which differs from current management recommendations which tend to focus on winter range and snow-interception cover.  相似文献   


7.
In 1989, the first recorded outbreak of hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) occurred in New Brunswick, Canada. Data were collected from ten plots established in an area infested from 1992–1994, to assess impacts of hemlock looper. Ocular and branch sample assessments of current defoliation and ocular assessments of total defoliation (all age classes of foliage) were conducted for balsam fir (Abies balsamea [L.] Mill.), white spruce (Picea glauca [Moench] Voss), and black spruce (Picea mariana (Mill.) B.S.P.). Stand response was assessed and related to cumulative defoliation. Ocular assessments were found to accurately estimate defoliation, which was significantly related to tree mortality. Ninety-two percent of balsam fir trees that had cumulative defoliation >90% died. Mortality of balsam fir was significantly (p < 0.05) related to tree size, in both lightly and severely defoliated plots; trees with DBH <11 cm sustained 22–48% higher mortality than larger trees. Mortality of balsam fir, in terms of both percent stems/ha and m3/ha merchantable volume, increased exponentially in relation to three estimates of cumulative (summed) plot mean defoliation. The strongest relationships (r2 = 0.75–0.79) were between mortality and the ocular defoliation assessment for 1990–1993 foliage. Tree mortality caused by the looper outbreak ranged from 4–14% stems/ha in lightly defoliated and from 32–100% in severely defoliated plots; merchantable volume killed was 3–14 m3/ha and 51–119 m3/ha, respectively. Relationships between mortality and defoliation were similar when defoliation was assessed for 1987–1993 and 1990–1993 foliage age classes.  相似文献   

8.
The appropriate management of streamside forests and use of riparian strips is poorly resolved for many systems because of a lack of understanding of the extent to which riparian forests function as environmental buffers for aquatic species versus core (essential) habitat for semi-aquatic and terrestrial species. We studied streamside forests in western North Carolina and eastern Tennessee, USA, to help delineate their functional value for plethodontid salamanders. We established 30 m × 40 m plots at 17 sites (823–1716 m in elevation) in unmanaged forests with closed canopies. Plots contained a portion of a seep or first-order stream along one edge and typically extended 36–38 m into the adjoining forest. We examined use of stream and streamside habitats based on captures during area-constrained searches of cover objects. We observed 6423 plethodontid salamanders belonging to 7 terrestrial-breeding and 12 aquatic-breeding species. Terrestrial-breeders (primarily Plethodon spp.) comprised 37% of terrestrial specimens and were more abundant at higher elevations. Aquatic-breeders (primarily Desmognathus spp.) increased their proportionate use of terrestrial habitat, but declined in overall abundance with elevation. Catches of aquatic-breeders were greatest within 8 m of aquatic habitats (49% of total terrestrial catch of aquatic-breeders), particularly at low elevation sites. The terrestrial zone provided core habitat for one terrestrial-breeder (D. wrighti) and six semi-aquatic species (Desmognathus spp., Gyrinophilus porphyriticus and Eurycea wilderae) that were broadly distributed throughout plots, and acted as an aquatic buffer for four highly aquatic species (Desmognathus spp.). The remaining species were terrestrial-breeders (Plethodon spp.) that were evenly distributed across plots, suggesting that riparian strips would function as important source populations for recolonization following timbering on adjoining land. Because of the vulnerability of plethodontid salamanders to edge effects, effective management of southern Appalachian streamside habitats may require the addition of a terrestrial buffer to protect terrestrial core habitat that immediately adjoins streams and seeps.  相似文献   

9.
10.
The relation between invasion success of Prunus serotina and type of recipient habitat was studied in a large forest in central Belgium. The major emphasis in this study was the determination of factors controlling the abundance of P. serotina in understory strata. Environmental variables measured in 34 sample plots were slope, aspect, litter depth, soil type, pH, soil compaction, soil moisture, air humidity, soil temperature and light intensity in spring and late summer. Site conditions were also expressed indirectly for 210 sample plots using Ellenberg indicator values (soil nutrients, acidity, moisture, light conditions). Plots with P. serotina had lower mean indicator values for soil moisture, reaction (pH) and nitrogen, compared to plots without P. serotina. Twenty indicator species were identified for plots in which P. serotina occurs. The species richness of the herb layer was negatively correlated with the percentage cover of black cherry in the shrub layer. The percentage cover of P. serotina saplings in different overstory types was ranked as follows: Quercus > Pinus > Fagus > logging areas. Only three variables explained significant amounts of variation in Prunus abundance: slope, light intensity at 120 cm in April and light intensity at ground level in September. We found a positive response of black cherry seedlings to light intensity between 58 and 80% of full light (April measurements at 120 cm), while saplings showed a negative response within this range. Between 21 and 47% of full light (April measurements at 120 cm), seedlings were poorly represented whereas saplings showed a quite high cover. Between 0.3 and 1.8% light (September measurements at ground level), seedlings were almost absent while saplings maintained a high abundance. The results suggest that P. serotina shows a differential response to light intensity in relation to its development stage, i.e. the species is heliophilous at the seedling stage and becomes a shade plant at the sapling stage.  相似文献   

11.
Dense Rhododendron ponticum (L.) understories of eastern beech (Fagus orientalis Lipsky) stands in the Black Sea Region (BSR) of Turkey create challenging forest vegetation management problems relative to beech regeneration. Rhododendron traditionally is controlled in Turkish forests with grubbing and bulldozing. The effects of these practices on nutrient removal and natural beech regeneration have not been quantitatively studied. Two woody vegetation control treatments (bulldozing and hand-grubbing) were installed during late summer, 2002 in three mature beech stands with dense rhododendron understories in the Düzce Forest Management Directorate, in the Turkish western BSR. Aboveground biomass of each vegetation component, total aboveground vegetation biomass, nutrient concentrations, organic matter (OM) removal, and total amount of OM nutrients were determined for each woody vegetation control treatment. Soil bulk density and nutrient content, and beech seedling biomass, nutrient content, and natural regeneration also were studied. One year after treatment, the machine site preparation by bulldozing (MSP) that removed understory vegetation and attached roots, reduced mean forest floor OM content by about 84%, when compared to hand-grubbing. Mean soil C, N, K and Mg concentrations on the bulldozed sites were 36, 27, 50 and 55% less, respectively, than those on the grubbed sites. Total C and Mg amounts at the 5–10 cm soil depth were 24 and 47% lower, respectively, for mechanical site preparation (MSP) sites, when compared to grubbed sites. Overall, soil bulk density did not differ significantly between the grubbing and MSP treatments. Frequent passes on designated transects on MSP sites resulted in a significant (P < 0.01) one-third increase in bulk density of the first 20 cm soil depth, when compared to grubbed sites. No natural beech regeneration occurred on untreated control sites. Mineral soil exposure on the MSP sites increased beech seedling germination substantially. One year after treatment, the mean number of naturally regenerated seedlings for MSP sites was 2.5 times greater than for grubbed sites. Woody control treatments had significant effects upon beech seedling chemistry, with N, P, K, Ca and Mg concentrations averaging 35, 47, 12, 33 and 25% lower, respectively, for MSP sites, when compared to grubbed sites. However, mean seedling biomass and nutrient content were significantly greater (P < 0.05) on MSP sites. Long-term effects from windrowing on MSP site residues, associated topsoil and nutrients need to be evaluated.  相似文献   

12.
We report on the recent growth of upland aspen (Populus tremuloides Michx.) thickets in northwestern Yellowstone National Park, USA following wolf (Canis lupus L.) reintroduction in 1995. We compared aspen growth patterns in an area burned by the 1988 fires to aspen growth patterns in an adjacent unburned area. Elk (Cervus elaphus L.) are the principal ungulates that use this area to meet foraging needs. Within a 2 m × 6 m belt transect established in each aspen thicket, we measured aspen densities and recorded annual browsing and height information on the three tallest post-1988 aspen stems. We found greater densities (p < 0.01) in the burned area relative to the unburned area. A decline in the percentage of stems browsed in the burned area began in 1997, with no measured browsing occurring since 2001. In contrast, the percentage of stems browsed in the unburned area began declining in 2002, with 41% of stems still being browsed in 2004. We hypothesize that the combined effect of fire and a subsequent decrease in herbivory following wolf reintroduction facilitated aspen growth. We further propose that, in addition to any changes in elk density in recent years, a recoupling of fire with increased predation risk from wolves may create a positive feedback loop that improves aspen recruitment.  相似文献   

13.
Mixed forest, containing a eucalypt overstorey and an understorey of rainforest tree species, accounts for approximately 20% (195,000 ha) of Tasmania's wet eucalypt forest. In wood production areas it is typically clearfelled, burnt and then sown with eucalypt seed. This management removes virtually all standing seed sources within the coupe, so that recolonisation of coupes by rainforest tree species depends largely on seed sources located at the coupe edges. We quantified the influence of mature mixed forest edges on rainforest regeneration following clearfelling by modelling the change in the density of the regeneration of the four dominant rainforest tree species (Nothofagus cunninghamii, Atherosperma moschatum, Phyllocladus aspleniifolius and Eucryphia lucida) with increasing distance from forest edge. We also assessed the influence on rainforest tree regeneration of prevailing wind direction, age of regeneration, characteristics of the mature edge vegetation and of the competing regenerating vegetation within the coupe. Distance from edge and age of coupe were highly significant (p < 0.01) effects in each of the species models. We found that the abundance of regeneration declined with increasing distance from edge for all four rainforest tree species, and with the exception of A. moschatum regeneration, increased with coupe age up to the age of 15 years. The abundance of N. cunninghamii and E. lucida, which are species with restricted seed dispersal, declined most steeply with increasing distance from the edge. A. moschatum, which is a species with the potential for long distance seed dispersal by wind, was more abundant than N. cunninghamii and E. lucida at distances greater than 20 m from coupe edges. More than 500 seedlings ha−1 were present at all distances from coupe edge for P. aspleniifolius, reflecting its capacity to germinate after disturbance from soil-stored and bird-dispersed seed. There were no significant differences in seedling density upwind or downwind of coupe edges, although the potential for dense regeneration of N. cunninghamii and E. lucida and for long distance dispersal of A. moschatum appeared to be greatest downwind of edges. Other variables that significantly affected the abundance of regeneration were the height of rainforest tree species in the edge vegetation (N. cunninghamii model), the cover of rainforest tree species in the edge vegetation (A. moschatum model) and the cover of competing eucalypt regeneration within the coupe (P. aspleniifolius model). The proportion of rainforest tree species that regenerated vegetatively was small (3.1%). We concluded that management which maintains mature mixed forest edges, or patches of mature forest within coupes, is likely to result in greater levels of rainforest regeneration and a more rapid shift towards pre-harvest composition following logging. We use our results to demonstrate that variable retention harvesting systems, such as aggregated retention or stripfelling, which reduce the distance to rainforest seed source, would result in a greater abundance of rainforest regeneration over a larger proportion of the coupe than current clearfell, burn and sow silviculture.  相似文献   

14.
We compared patterns of acorn dispersal and predation by wood mice among four tree species (Quercus serrata, Quercus crispula, Castanea crenata, and Juglans mandshurica var. sieboldiana) that are abundant in cool temperate woodlands. We devised an acorn dispersal experiment using 400 magnet-inserted acorns and a magnetic locator in a 1.8-ha study plot, which spanned a cut-over area and an adjacent deciduous forest. Ten wire mesh baskets, each containing 40 acorns (10 acorns per species), were placed on the border between these two habitat types. About 13.0% (n = 52) of the total acorns remained in the baskets, while 77.3% (n = 309) were dispersed throughout the study plot and subsequently retrieved using the magnetic locator. Microhabitat, distance, and burial depth of transported acorns were significantly different among species. In the cut-over area, J. mandshurica var. sieboldiana acorns were dispersed under fallen trees or branches and near stumps, and were buried deeply in the soil. Dispersal distances of J. mandshurica var. sieboldiana acorns were significantly greater than those of Q. serrata acorns. The number and microhabitat of transported acorns significantly differed between habitat types. J. mandshurica var. sieboldiana acorns were dispersed in the cut-over area rather than in the forest. For all four species, the numbers of acorns delivered to fallen trees or branches, stumps, and crumbled soil with overhang under any vegetation type were greater in the cut-over area than in the forest.  相似文献   

15.
The rattan flora of Central Sulawesi is abundant, species rich and patchily distributed in lowland and montane forests. I recorded the abundance and distribution of rattan on five randomly established 10 m × 1000 m transects between 830 and 1330 m elevation and associated changes in forest canopy heights, photosynthetically active radiation (PAR) and soil characteristics. Rattans were observed at all sites and elevations (100% of 10 m × 10 m sample plots in the transects contained rattan), but exhibited the greatest diversity (species richness) between 1180 and 1280 m elevation. Overall (all species and elevations), there was an average of 314 mature rattan genets per hectare. The two most prominent rattans in terms of size, abundance and distribution, Calamus zollingeri and Daemonorops robusta, averaged 62 and 40 genets/ha overall, respectively. Several other rattans, including C. leiocaulis, C. leptostachys, and C. ornatus occurred on all transects and all elevations. In contrast, C. didymocarpus, C. minahassae, C. symphysipus and Korthalsia celebica were patchily distributed, and C. didymocarpus and C. sp. (‘kalaka’) were restricted to higher elevations. Resident cane collectors differentiate C. zollingeri and D. robusta into low and high elevation forms on the basis of morphological and growth characteristics, but this distinction is not discernable in sterile specimens. Based on local classification, lowland forms of C. zollingeri and D. robusta were replaced by high elevation forms over less than 200 m vertical elevation which corresponds to the transition from upper lowland to montane forests. The mean canopy height of upper lowland forest between 900 and 1000 m was significantly greater than that of montane forests between 1100 and 1300 m (30.0 and 21.2 m, respectively). Soils in upper lowland forests had significantly higher concentrations of NO3 and P, significantly lower organic matter levels and higher pH than montane soils in both O and A/E soil horizons. PAR levels did not vary significantly by forest type. Most large diameter rattans are marketed under a single trade name and cannot be distinguished by cane characteristics. These findings have significance for biodiversity conservation and management because rattan harvesting is widespread and unmanaged, and the Sulawesi rattan flora remains poorly known taxonomically and ecologically.  相似文献   

16.
Red oaks – cherrybark oak (Quercus pagoda Raf.), willow oak (Quercus phellos L.), water oak (Quercus nigra L.), and Nuttall oak (Quercus texana Buckley; aka: Quercus nuttallii Palmer) – are not regrowing in Mississippi Delta river floodplain forests in the southeastern United States in sufficient numbers to sustain the former species composition and timber and wildlife values. Even if vigorous red oak reproduction becomes established, partial harvesting that does not remove the taller trees will suppress understory red oak height growth more than it will suppress height growth of such other species as sugarberry (Celtis laevigata Willd.), American elm (Ulmus americana L.), cedar elm (Ulmus crassifolia Nutt.), swamp dogwood (Cornus foemina Mill.), green ash (Fraxinus pennsylvanica Marshall), and sweetgum (Liquidambar styraciflua L.). Consequently, the red oaks in these partially harvested stands become increasingly suppressed and probably die; and there is a shift in species composition to the other species. In addition to ensuring vigorous oak reproduction, silvicultural clearcutting or rapid removal of the residual trees following shelterwood or seed tree harvesting to provide full sunlight is needed to ensure red oaks become a dominant part of these future river floodplain stands.  相似文献   

17.
Between 1987 and 2000, a spruce beetle (Dendroctonus rufipennis) outbreak infested 1.19 million ha of spruce (Picea spp.) forests in Alaska, killing most of the large diameter trees. We evaluated whether these forests would recover to their pre-outbreak density, and determined the site conditions on which spruce germinated and survived following the spruce beetle outbreak in forests of the Anchor River watershed, Kenai Peninsula, Alaska. White spruce (Picea glauca) and Lutz's spruce (Picea × lutzii), a hybrid between white and Sitka spruce (Picea sitchensis), dominate the study area. We measured the pre- and post-outbreak density of spruce in 108 3 m × 80 m plots across the study area by recording all live trees and all dead trees >1.5 m tall in each plot. To determine the fine scale site conditions on which spruce germinated and survived, we measured ground surface and substrate characteristics within 20 cm circular plots around a subset of post-outbreak spruce seedlings. The density of post-outbreak spruce (855/ha) was adequate to restock the stands to their pre-outbreak densities (643/ha) for trees >1.5 m tall. We could not accurately estimate recovery for pre-outbreak spruce seedlings because dead seedlings may have decayed in the 5–18 years since the beetle outbreak occurred. At the fine scale, spruce that germinated post-outbreak grew on a wide variety of substrates including downed log, stump, mesic organic mat, peat, hummocks and mineral soil. They exhibited a strong preference for downed logs (53%) and stumps (4%), and most (91%) of the downed logs and stumps that spruce rooted on were heavily decayed. This preference for heavily decayed logs and stumps was especially evident given that their combined mean cover was only 2% in the 3 m × 80 m plots. Within the 3 m × 80 m plots, spruce seedling survival was negatively correlated with bluejoint (Calamagrostis canadensis) litter cover.  相似文献   

18.
For 20 years, there has been 42,000 ha estate of clonal Eucalyptus plantations around Pointe-Noire in Congo on sandy soils that have very low reserves of available nutrients. These plantations have been based on a natural hybrid (E. PF1). This hybrid is being replaced by E. urophylla × E. grandis (UG), a more productive hybrid developed by the breeding program of UR2PI. A study of biogeochemical cycles showed that nutrient removal by harvesting is the main nutrient output in the E. PF1 ecosystem. It is therefore important to quantify the nutrient content (NC) in both hybrids to compare corresponding nutrient removal values.

The work dealt with four UG clones and the most planted clone of E. PF1. Twelve trees per clone were sampled at the logging age (8 years) in a clonal test for UG clones and in a nearby stand for E. PF1. Tables were established to predict, from girth at breast height (C1.30 m), the biomass and nutrient content of stemwood, bark, dead and living branches, leaves, and were applied to the inventory of the different stands to evaluate corresponding biomass, NC and nutrient use efficiency (NUE) on a per-hectare basis.

Total biomass differed between the two hybrids and among UG clones: 109 t ha−1 for E. PF1 and 108–155 t ha−1 for UG clones. In E. PF1 trees, total NC was globally lower for N, K, and Mg, but greater for P and Ca. In stemwood, nitrogen content was similar for both hybrids. By contrast, in UG clones, NC was much lower for P (−72%) and Ca (−40% to −55%). The same trends were observed for NUE: equivalent for both hybrids for N, but higher in UG clones for P (+72%) and Ca (+43% to +59%). A marked variability among clones was observed for K and Mg. UG clones allocated proportionally more nutrients in leaves than E. PF1.

These results show that clones should not be selected only on growth traits but also on NUE and on the concentration of nutrients in tree components removed by harvesting. It will be then possible to limit the cost of fertilising needed to maintain stand growth and soil fertility.  相似文献   


19.
Salix discolor Mühl. (Sd) and Salix viminalis L. (Sv) were planted under short-rotation intensive culture (SRIC) on three unirrigated abandoned farmland sites with different drainage conditions, one well-drained (S1) and the other two poorly-drained (S2, S3). One dose of dried and granulated sludge equivalent to 150 (T1) kg of “available” N ha−1 was applied to some plots in the spring of the second season while others were left unfertilized (T0). The aims of the experiment were (i) to investigate plant response (growth and productivity) to plantation site conditions and sludge application; (ii) study nutrient status by foliar analysis. Over three seasons, growth in height and aboveground biomass were greater for S. viminalis than for S. discolor on all sites. S. viminalis planted on poorly-drained site 2 had the highest biomass yield (45.28 t ha−1). Both species showed best height and diameter growth on poorly-drained sites. For both species, best performances were obtained on wastewater sludge fertilized plots. Comparative foliar analysis suggested that unfertilized sandy soil (S1) and low foliar nitrogen concentration and content were limiting factors in the performance of the two species. Soil nitrate concentration increased as a result of sludge application. Heavy metal accumulation from sludge does not represent a risk to the environment. It was concluded that S. viminalis had the best productivity on clay sites, and that a moderate dose of dried and pelleted sludge (150 kg of “available” N ha−1) may be a good fertilizer during the establishment of willows in SRIC, and may reduce nitrate leaching.  相似文献   

20.
The effects of air flow rate and chamber position on measuring stem respiration rate (Rstem) were examined using an open flow system on six Japanese red pine (Pinus densiflora Sieb. and Zucc) trees. Rstem was more closely correlated with stem temperature observed 2–6 h earlier than with current stem temperature. Rstem was not affected by the air flow rate passing through the stem chamber. Although there were no differences in stem temperatures between azimuth angles, there were significant differences in Rstem between azimuth angles (except for only one case) of each sample stem. The distance from below the bark to the stem centre varied at each azimuth in the samples, and was significantly positively correlated with R0 (p < 0.01). The chamber type did not affect the measurement of stem respiration, because the mean Rstem of four azimuth angles measured with in a rectangular chamber was almost the same as Rstem measured with in a circular chamber. From these results, we suggest that a whole circumference estimate made by either:
(1) measuring stem respiration at each azimuth separately with a rectangular chamber, or

(2) measuring the total CO2 efflux from the whole radial circumference with a circular chamber,

must be conducted for scaling-up chamber measurements to individual or stand level.

Keywords: Chamber position; Japanese red pine; Q10; Stem respiration rate; Stem temperature; Time lag  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号