首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高溶解混施水肥一体化装置的施肥均匀性,解决水肥调控时灌溉量和质量浓度的综合控制问题,设计了溶解混施水肥一体化装置的自动控制系统.采用STM 32微控制器作为控制核心,通过肥料质量浓度标定试验,确定肥液质量浓度和电导率之间的关系,由电导电极及相关检测电路对出口肥液的质量浓度实时在线检测,将肥液质量浓度信号反馈回处理器,并生成控制信号,构建闭环控制回路;采用半桥式电路驱动直流水泵调节供水流量,采用PWM脉宽调制方法实时改变固体肥料添加速度,使出口的肥液质量浓度更加均匀、稳定.试验测定了装置施肥性能,结果表明在加入控制系统实时调节后,装置出口水肥溶液的均匀系数提高了31.46%.  相似文献   

2.
【目的】为实现固体肥的水肥一体化,设计运行稳定、施肥均匀性高的水肥一体化装置并在设计的样机上进行试验,对注入式水肥一体化装置结构及加肥部分进行设计,分析装置运行过程参数。【方法】对装置的运行参数进行了试验测定,并采用控制变量法探究了装置的工作参数对肥液浓度均匀性的影响。通过试验探究了装置的施肥性能,并与压差施肥罐进行了对比。【结果】注入式水肥一体化装置能正常工作运行,样机的注肥流量为300L/h,加肥流量与步进电机转速成正比;本装置的搅拌速度越快、加肥流量越小、供水流量越大,肥液质量浓度均匀性就越高,且本装置施用5 kg复合肥时的最优搅拌速度为400 rpm;本装置在供水流量分别为1.5、1.0 m3/h和0.5 m3/h时,施完10 kg复合肥的施肥质量浓度偏差分别为51.67%、55.07%和52.75%,与压差施肥罐相比,本装置施完10 kg复合肥施肥质量浓度偏差总体小50%,出口肥液质量浓度的稳定性和均匀性远高于压差施肥罐。【结论】注入式水肥一体化装置能有效实现固体肥的水肥一体化,并将溶解的肥液持续注入到管道中;与同类型施肥设备相比本...  相似文献   

3.
为了了解溶解混施水肥一体化装置的性能,以装置出口水肥溶液浓度的均匀性作为衡量装置施肥性能的主要参数,采用控制变量法,研究滤网桶参数、进口流量及加料器对装置施肥性能的影响.结果表明:采用60目的滤网桶时,出口水肥浓度均匀系数比40目的高6.1%;采用250 mm的滤网桶时,出口水肥浓度均匀系数比150 mm的高4.3%;相比于流量为2.5,2.0 m3/h,采用1.5 m3/h时,出口水肥浓度均匀系数分别高了12.6%和17.3%;使用加料器时,装置出口水肥浓度的均匀系数比不使用加料器加肥时高了9.9%.因此滤网桶的参数、流量均对装置施肥性能有明显的影响,滤网桶网孔数越多,滤网桶直径越大,流量越小,装置出口水肥溶液浓度的均匀系数越大,装置的施肥性能越好.  相似文献   

4.
圆形喷灌机泵注式施肥装置设计与田间试验   总被引:4,自引:0,他引:4  
圆形喷灌机水肥一体化作业时对喷洒肥液均匀性有较高要求,需要采用比例施肥装置,确保注入喷灌机的肥液流量保持恒定。为此设计了基于柱塞式注肥泵的泵注式施肥装置,并以注射喷嘴的孔口直径、安装位置以及注肥泵的电源频率为变量,进行了圆形喷灌机应用泵注式施肥装置的喷灌施肥均匀性试验。结果表明,圆形喷灌机停止状态下,注肥泵电源频率50 Hz运行时,3种注射喷嘴孔口直径和3种安装位置的组合工况下喷灌施肥的均匀系数CU为99.00%~99.65%,变异系数CV为0.46%~1.37%,其中当注射喷嘴孔口直径为2.5 mm、安装在进水管水平段位置的工况时获得的喷灌施肥均匀性最佳。圆形喷灌机行走状态下,测得单列雨量筒喷灌施肥均匀系数C*UH为88.77%~90.66%,表明圆形喷灌机采用泵注式施肥装置能够获得较高的喷灌施肥均匀性。此外,通过对比注肥泵电源频率在50 Hz和46 Hz时的喷灌施肥均匀性,发现喷头喷洒肥液的电导率总平均值与电源频率之间具有显著的正相关性,表明改变注肥泵的电源频率是圆形喷灌机实现高均匀度变量喷灌施肥的一种有效途径。  相似文献   

5.
为研究不同灌水方式配施腐植酸肥对水稻干物质转运、碳含量和土壤呼吸速率以及无机氮含量的影响,在大田试验条件下设置了3种灌水方式(控制灌溉、淹灌和浅湿灌溉)和5种施肥方式(100%尿素(T1,为当地传统施肥方式,纯氮量110kg/hm2)、30%腐植酸肥+70%尿素(T2)、50%腐植酸肥+50%尿素(T3)、70%腐植酸肥+30%尿素(T4)和100%腐植酸肥(T5,1500kg/hm2)),共计15个试验处理,并对水稻的抽穗后期干物质转运、成熟期水稻各器官的碳含量以及土壤呼吸速率和无机氮含量进行观测。结果表明:水肥处理影响了水稻的干物质转运、碳含量和土壤呼吸速率以及氮素形态的积累,在CT5、WT5和FT5处理下水稻抽穗后期茎叶干物质转运相比较其他水肥处理,具有显著优势,且在成熟期各器官的碳含量也相对较大;随着腐植酸肥的增加,3种灌水方式下的土壤呼吸速率逐渐增大,控制灌溉不同施肥处理下的土壤呼吸速率大于淹灌和浅湿灌溉,而淹灌和浅湿灌溉各处理之间的差异不显著;腐植酸肥的增加,提高了土壤铵态氮和硝态氮含量,并在CT5处理下达到最大值。因此,控制灌溉下施加1500kg/hm2腐植酸肥,能够提高水稻的生长和改善土壤的呼吸和无机氮含量,综合考虑CT5处理为最佳的水肥模式。  相似文献   

6.
水肥一体化自动精准灌溉施肥设施技术的研究和实现   总被引:1,自引:0,他引:1  
水肥一体化精准灌溉施肥技术是将施肥与灌溉结合在一起的一项精准农业新技术,它借助灌溉系统,将由固体肥料或液体肥料配兑而成的肥液一起均匀、准确输入到作物根部土壤,有效控制灌溉水量和施肥量,提高水肥利用效率。本文论述了水肥一体化精准灌溉施肥基本构成以及应用成效,自动精准滴灌施肥机的工作原理、技术性能。对施肥装置、混合装置、过滤装置、EC/PH检测监控反馈装置、精准灌溉施肥模糊控制技术进行探索研究,提出了实现水肥一体化自动精准灌溉施肥主要技术途径。  相似文献   

7.
为了实现水肥一体化施肥装备流量精确且无水头损失,设计了一种基于柱塞泵与单片机的高精度可控施肥机,开展了恒流模式下6个流量梯度的喷灌系统施肥均匀性试验;以喷头总流量变化幅度为变量,设计了在1∶10的水肥配比下2种灌溉总流量变化幅度的不同工况,对比启、闭可控施肥机恒定水肥比例模式对水肥一体化支管内肥料浓度稳定性的影响效果.试验结果表明,高精度可控施肥机在流量分别为100,200,400,600,800,1 000 L/h的6种恒流模式时,喷灌均匀系数CU为99.33%~99.71%、变异系数CV为0.35%~0.75%;CU,CV与施肥机流量分别呈正相关与负相关关系,且喷头喷洒肥液的电导率总平均值EC_-与施肥机流量之间具有显著的正相关性.在恒定水肥比例模式时,试验组管道内肥液浓度在160 s时趋于稳定,且稳定后肥液电导率与目标值偏差率小于4%.高精度可控施肥机恒流模式试验表明施肥机大流量下施肥均匀性变异系数仅为小流量下的50%,且改变施肥机的流量是水肥一体化喷灌系统实现高均匀度变量施肥的一种有效途径;试验证明恒水肥配比模式可有效减小支管肥料浓度受外界的影响.  相似文献   

8.
为了实现固体水溶性肥料高效溶解与精准施肥,设计了一种温室大棚溶解混施智能施肥机,主要由肥料搅拌单元、供水单元、吸肥单元及控制单元组成,水肥配比采用模糊PID控制调节方式。首先,依据固体水溶性肥料的自身特点搭建带有肥料搅拌装置的施肥设备硬件系统;然后,根据施肥设备混肥特性,建立肥料EC值调控模型,设计PID控制器;最后,采用模糊控制方法自适应调节PID参数,提出模糊PID控制系统设计方法。试验结果表明:使用模糊PID控制策略能够显著提高系统性能,特别是在减少系统滞后时间和保持系统稳定性方面。  相似文献   

9.
针对目前果园种植管理过程中灌溉量与施肥浓度控制精度较低、不能动态调整施肥配方等问题,开发了一种多通道移动式果园灌溉施肥机。样机主要由灌溉混肥装置、吸肥装置、水肥参数检测装置、控制系统、牵引式行走装置和动力系统等6部分组成。对吸肥装置关键部件设计正交试验,分析了吸肥器布置方式、吸肥管道管径、过滤器类型、管道排列方式和过滤器目数等不同因素对吸肥性能的影响,确定了最优的吸肥装置结构。开发了精确灌溉施肥自动控制系统,并进行了样机性能测试,结果表明:施肥机可自动完成果园精准灌溉与施肥作业,动态调整施肥配方,灌溉量控制相对误差≤0.54%,EC值控制绝对误差≤0.07mS/cm,母液配比相对误差≤2.00%。  相似文献   

10.
为解决农户传统水肥一体化灌溉方式中存在的施用营养液浓度均匀性差、劳动强度大、过量施肥等问题,研究设计了一种与膜下微喷灌高灌溉流量特性相匹配的大吸肥量、低成本的轻简水肥一体机.通过自主设计的性能测试平台对其吸肥性能进行了测试,从而确定了吸肥泵的安装位置.为验证该水肥一体机应用效果,首先检测了应用水肥一体机和传统方式下灌溉营养液浓度均匀性,然后按照追肥总量比传统方式减少30%的方案进行了日光温室黄瓜栽培对比试验.结果表明,在水肥一体机出口压力分别为0.09、0.11、0.13 MPa时,吸肥泵前置吸肥效果好于后置;应用轻简水肥一体机灌溉施肥与传统方式相比,灌溉营养液浓度的空间均匀性没有显著差异,但时间均匀性差异显著,传统方式下灌溉营养液浓度随时间的推移不断下降,而应用水肥一体机的则保持稳定;在减施化肥30%情况下,与传统方式相比,应用水肥一体机灌溉仍可增产6.18%,每栋温室(670 m2)毎个生长季(7个月)可节约工时14 h,减施化肥27 kg,可提高效益2.15万元/hm2.综上,该轻简水肥一体机灌溉营养液均匀、节省人工和肥料、提高生产效益,具有较好的推广应用前景.  相似文献   

11.
为了实现变量施肥过程中多种固体肥的实时自动配比、提高施肥控制系统的排肥量控制准确率,采用增量式PID闭环控制算法设计基于测土配方的多种固体肥精确施肥控制系统及与之配套的施肥装置,实现了氮、磷、钾3种固体肥的适时快速响应和实时精量施入。施肥控制系统主要包括主-从控制器模块、处方图模块、北斗卫星定位模块、测速模块、人机交互模块、施控电机模块和施肥量监测模块等。主控制器主要完成人机交互指令接收、北斗卫星定位信息获取、处方图施肥量查询、车速和施控电机的工作状态监测、从控制器工作指令下达等任务,人机交互模块实现主控制器和手机APP的通信;从控制器主要实现主控制器指令接收和施控电机工作控制。根据播种环节普遍采用中小型播种机的实际情况,模拟播种施肥机具行进速度为3.5~6.5 km/h,进行了实验室单一肥料排肥试验,试验表明,控制系统最大响应时间1.85 s,平均响应时间1.45 s。在设定施肥量50、100、200、300 kg/hm2下,模拟行进速度为4、5、6 km/h时,控制系统的排肥量准确率达97.16%,监测准确率98.56%。进行了田间试验,制作了哈尔滨市双城区东海村测土配方施肥的处方图,在车速为4、5、6 km/h时,尿素、磷酸二铵、硫酸钾的排肥量准确率分别达97.22%、98.60%和97.73%,满足精确施肥系统的施肥精度要求。  相似文献   

12.
为提高茶园施肥精度,本文以茶树水肥需求量为基础设计了一种水肥一体化灌溉施肥装置。它由灌溉施肥系统和控制系统组成,通过确定最佳的肥液混合比例,调节吸肥腔与进水腔的体积比,实现水和肥的精确配比。试验运行表明,该装置施肥精度满足设计要求。  相似文献   

13.
为实现温室农业的精准施肥,设计了一种基于压电驱动器的施肥控制装置。该装置采用压电液压驱动和双肥料箱施肥,适用水肥一体化灌溉模式。确定了装置的工作条件、输出功率和载肥能力。当驱动介质气体含量极低时,工作条件为电压150 V,频率350 Hz,施加内压力0.04 MPa。肥料重量1~1.5 kg时,施肥装置的功率基本稳定,最高达92 mW。与驱动介质气体含量较多时对比,装置的载肥能力提升3倍,功率提升1.517倍,具备更强的稳定性和工作效率。  相似文献   

14.
为了提高玉米种植中化肥的利用率、减少资源浪费,基于玉米穴播穴施肥的理论设计了一台玉米变量穴施肥的试验台。在前人研究运用外槽轮排肥器实现变量施肥的基础上,通过控制步进电机精准的启动停止运转与排肥口的挡片设计来实现玉米穴施肥,同时配合玉米排种器监测装置实现种肥同步。玉米穴施肥装置主要由外槽轮排肥器、步进电机、排肥口挡片和光电检测装置构成,具有结构简单、体积小的优点,控制系统操作简单,易于推广。试验结果表明:总排肥变异性系数为4.39%,在开度10mm下排肥效果最佳,排肥变异性系数为0.28%,符合国家标准≤7.8%,且实际穴距与种肥距离符合相关农艺要求。  相似文献   

15.
自动调节深度式果园双行开沟施肥机设计与试验   总被引:4,自引:0,他引:4  
针对国内果园开沟施肥机施肥效率低、一致性差和有机肥与化肥混施难的问题,设计了一种开沟深度可自动调节的果园双行开沟施肥机。该机采用双行开沟施肥的工作方式,可一次完成果园开沟、有机肥与化肥混施、覆土一体化作业。通过理论分析对开沟装置、排肥装置和开沟深度自动调节装置等关键部件进行设计,搭建基于STM32F103的控制系统,实现开沟深度的自动调节。性能试验表明,各工作部件运行稳定,开沟深度一致性较好,开沟深度稳定性系数大于等于94.76%;田间试验表明,各种肥料颗粒混合均匀,有机肥分布稳定性系数大于等于91.44%,化肥分布稳定性系数大于等于92.09%,混合肥分布稳定性系数大于等于93.70%,性能指标满足果园生产要求。  相似文献   

16.
为实现变量施肥和提高施肥的均匀性、准确性,设计一种电控排肥装置。该装置可根据机组的作业速度、输入的目标施肥量和外槽轮有效工作长度自动调整外槽轮转速。搭建电控排肥装置试验平台,完成对系统参数的标定,通过试验得出外槽轮排肥器有效工作长度和平均每转排肥量的函数关系,在20~40 r/min转速区间内,排肥稳定性较好。田间试验结果表明,在25~40 r/min转速区间内,各行排肥量变异系数小于1.72%,排肥均匀性良好;在目标施肥量为150、200和250 kg/hm~2时,实际施肥量与目标施肥量的偏差均小于7.68%,可以为精准施肥技术提供参考。  相似文献   

17.
【目的】解决压差施肥罐施肥质量浓度随时间衰减的问题。【方法】采用在压力罐中设置可变形的肥袋,压力罐、肥袋与主管连接点中间设置减压阀的方法,研制了一种通过压力罐向管道注肥的渐缩式比例施肥器,实现了比例施肥。理论分析了其并联特性,在此基础上试制了样机,开展了性能试验,测试了4种管道工况下施肥质量浓度变化。【结果】可变形肥袋起到了水肥分隔、水肥等量置换作用,其水力系统为并联管道系统,当结构形式一定时,施肥比例是常数,其仅与2个支路管径以及局部损失系数有关,不受来水管道压力、流量变化影响,同一工况、不同时刻出水管道肥液质量浓度最大偏差为4.7%,来水管道工况变化时平均质量浓度最大偏差为3.5%,属于均匀施肥,施肥器的最大水头损失为0.47 m,施肥比例可在0~10%范围内调节。【结论】研制的渐缩式比例施肥具有施肥质量浓度稳定、水头损失小,适合各种管道压力的特点,可应用于设施农业喷灌、滴灌系统加药、施肥。  相似文献   

18.
水田侧深施肥装置关键部件设计与试验   总被引:1,自引:0,他引:1  
针对水田侧深施肥装置施肥均匀性低、作业性能不稳定、输肥管路堵塞等问题,结合水田侧深施肥的农艺特点,对水田侧深施肥装置关键部件排肥器和气力输送系统进行设计与分析,通过运动学和动力学的方法得出排肥轮转速越大越有利于提高施肥均匀性,计算得出排肥轮转速的最大理论值为150 r/min,并设计了适宜输送颗粒肥的气力输送系统。采用二次正交旋转组合设计试验,以排肥轮转速、插秧机前进速度、风机风速为影响因素,以施肥均匀性施肥量均值和施肥均匀性变异系数为响应指标,利用JPS-12型排种器检测试验台对施肥装置的排肥性能进行台架试验,运用Design-Expert软件对试验数据进行方差分析和响应面分析,得到影响因素与响应指标之间的数学模型,并对数学模型进行优化及验证。试验结果表明:在排肥轮转速21.96 r/min、前进速度0.93 m/s、风机风速22.93 m/s条件下,施肥装置的施肥均匀性变异系数为28.25%,且满足黑龙江省寒地稻作区侧深施肥最小施肥量150 kg/hm2的农艺要求。  相似文献   

19.
节水灌溉稻田水肥调控技术试验研究   总被引:5,自引:0,他引:5  
水和肥是制约水稻生长的重要因素,合理的灌溉和施肥有利于提高水肥利用效率和减轻农田面源污染。根据田间试验资料,分析了不同灌溉和施肥方式对水稻产量和水肥利用效率的影响。结果表明,与淹水灌溉相比,控制灌溉水稻节水45.9%,减产7.8%,水分利用效率提高了6.3%~79.8%,群体水平和产量水平下达到显著差异,氮肥利用率增加5.2%~38.4%。与农民习惯施肥相比,实地氮肥管理和控释肥水稻施氮量减少59.8%和55.4%,减产2.4%和13.7%,氮肥利用率增加40.8%~70.8%,叶片水平和群体水平下水分利用效率提高了4.8%~22.8%。水肥综合调控表明,控制灌溉和实地氮肥管理可以作为节水、控污、高效的稻田水肥管理措施。  相似文献   

20.
水肥一体化是将灌溉与施肥融为一体的一种节水农业技术,借助管道灌溉系统,将由固体肥料或液体肥料配兑而成的肥液适时、适量地输入到农作物根部土壤,保证农作物对水分和养分的需求。水肥一体化技术的实现对提高水、肥利用效率、减少环境污染具有重要的意义。针对水肥灌溉一体化技术控制实施过程中具有的非线性和不确定性,结合PLC控制系统稳定、可靠的特点,将模糊控制技术应用到水肥一体化控制设备,提高水肥一体化灌溉施肥机的水肥利用效率,实现水肥一体化自动精准灌溉施肥。仿真结果表明精准灌溉施肥模糊控制技术的应用达到了水肥一体化设备对高效施肥的要求,实现水肥的同步管理和高效利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号