首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
埋深与压力对微润灌湿润体水分运移的影响   总被引:14,自引:0,他引:14  
为探明微润灌土壤湿润体特性,设置5个不同埋深,6个不同压力水头,通过室内土箱试验研究了微润灌土壤水分运动规律。结果表明:压力水头是决定微润灌流量的重要因素;微润带埋深显著影响土壤湿润体的形状,湿润锋水平运移距离与宽深比γ均随埋深的增大而减小,垂直运移距离随埋深的增大而略微增大;土壤累计入渗量与埋深呈负相关关系;累计入渗量随灌水时间的变化过程符合Kostiakov入渗模型,建立了不同埋深累计入渗量预测模型,并用实测值进行了验证,实测值与预测值具有较高的相关性;土壤湿润均匀系数与埋深呈正相关,粘壤土微润灌最适埋深为15~20 cm。  相似文献   

2.
为了探明微润灌溉青椒最适宜的技术参数,采用熵值—TOPSIS—灰色关联度模型对青椒生长发育的各项指标进行了综合评价。进行了管带埋深为10 cm (D10)、15 cm (D15)、20 cm (D20)和压力水头为100 cm(H100)、150 cm (H150)、200 cm (H200)条件下的微润灌青椒生长试验。结果表明:不同管带埋深处理后的青椒各项单指标均表现为D20>D15>D10。不同压力水头处理后的株高、茎粗及产量表现为H150>H200>H100,株高生长速率和茎粗生长速率表现为H200>H150>H100,灌溉水生产率表现为H100>H150>H200。选择的指标不同,得出的最佳微润灌溉技术参数也不相同。采用熵值—TOPSIS—灰色关联度模型分析微润灌对青椒生长影响得出:当压力水头一定时,综合贴近度随着管带埋深的增大而升高;当管带埋深一定时,综合贴近度会随着压力水头的增大先升高后降低。青椒微润灌最适宜的技术参数为:压力水头为150 cm,管带埋深为20 cm。  相似文献   

3.
为了揭示微润灌溉管带埋深和压力水头对温室青椒生长的影响,采用微润灌条件下的温室种植试验,对不同管带埋深和压力水头条件下的青椒株高、茎粗和产量进行了监测。结果表明:不同管带埋深及压力水头处理后的青椒茎粗和株高均随时间呈S形变化趋势。管带埋深、压力水头均与茎粗、株高、茎粗生长速率和株高生长速率呈正相关;管带埋深、压力水头及其交互效应对茎粗生长速率、株高生长速率的影响达到了极显著水平;当管带埋深为20cm、压力水头为150cm时,青椒的产量最高。水分利用系数与埋深呈正相关,但与压力水头呈负相关;在埋深20cm、压力水头100cm时,水分利用系数最高。在此基础上,建立了管带埋深与压力水头双因素耦合条件下的株高生长模型DH-YZG、茎粗生长模型DH-YJC、产量模型DH-YCL和水分利用系数模型DHYXS,误差分别为4.72%、5.25%、1.76%和4.44%,取得了满意的模拟效果。  相似文献   

4.
微润灌是一种全新的低能耗节水灌溉技术,应用前景广阔。为了揭示微润管(带)埋深和压力水头交互效应对湿润锋的影响,采用室内试验,对不同管带埋深(D5、D15、D20)与压力水头(H100、H150、H200)条件下的土壤湿润锋进行了研究。结果表明:不同压力水头处理后的湿润锋沿各个方向的扩散速率表现为:H200H150H100。不同管带埋深处理后的湿润锋在竖直向上和水平方向的推移速度均表现为:D5D20D15,而竖直向下的推移速度表现为:D20D15D5。不同压力水头和埋深处理后的湿润锋半径大小表现为:H200H150H100,D5D15D20。埋深、压力水头及其耦合效应对Rmax的影响大小表现为:HDH·D,对湿润锋半径变化速率的影响大小表现为:HH·DD。  相似文献   

5.
王策  叶津阳  邢栋  许瑞  滕梓灵  陈婧莹 《农业机械学报》2023,54(11):306-318,368
为研究水头多重调控下微润管出流与土壤水分运移规律,进行了不同水头调控模式下微润灌入渗试验,设置调增(0→1 m(水头由0 m调节到1 m,以下类推)、0→2 m、1→2 m)和调减水头(1→0 m、2→0 m、2→1 m),研究微润管出流、湿润体及含水率变化规律;将微润管假定为多孔介质重黏土,利用HYDRUS 2D模型对水头多重调控下微润管出流和土壤水分运移进行了模拟,据此分析了多重变水头情景下微润灌土壤水分动态规律。结果表明,水头调节显著改变累积入渗量、入渗率与时间关系曲线,累积入渗量曲线呈折线型,曲线斜率随着调增或调减而有规律增减;水头调节导致入渗率发生骤增或骤降,稳定入渗率与水头存在线性正相关关系。调增水头时湿润锋内含水率骤升,正向反馈显著;水头调减后管周含水率微弱下降后逐渐回升。将微润管模拟为质地黏重的多孔介质,基于HYDRUS 2D模型较好地模拟了微润管出流及水分运移,优度较好(决定系数R2≥0.90,纳什效率系数(NSE)大于等于0.70,相对标准偏差(RSR)趋近于0)。构建了多重水头调控模式(0→1→2 m、0→2→1 m、1→0→2 m、1→2→...  相似文献   

6.
基于HYDRUS-2D的负压微润灌土壤水分运动模拟   总被引:2,自引:0,他引:2  
为研究负压微润灌不同技术参数组合下的土壤水分运动过程,以土箱试验实测含水率为依据,构建并验证了基于HYDRUS-2D的负压微润灌土壤水分运动反演模型,并结合反演模型对负压微润灌多种组合情景的土壤湿润体模拟结果和典型设施作物根系分布特征及需水规律,探究适宜于不同设施作物的负压微润灌技术参数组合。结果表明:采用HYDRUS-2D反演模型能够较好地模拟负压微润灌不同供水水头条件下的土壤湿润体特征,土壤湿润距离(水平距离、垂直向上距离和垂直向下距离)、含水率及累积入渗量模拟值与实测结果之间的决定系数和NSE分别达到0.98和0.77以上。试验及模拟结果均表明,负压微润灌条件下供水水头与土壤含水率、累积入渗量及不同方向的湿润距离均呈负相关关系。此外,基于反演模型对负压微润灌不同湿润体的情景模拟结果和典型设施作物根系分布特征及需水规律,拟定了不同设施作物适宜的负压微润灌技术参数范围。本研究对农业生产中负压微润灌技术参数的选择及新型节水微润灌技术的推广具有指导意义。  相似文献   

7.
微润灌管带埋深对土壤水分及青椒生长的影响   总被引:1,自引:0,他引:1  
为研究微润灌溉管带埋深对土壤水分及温室青椒生长的影响,采用在微润灌条件下的温室种植试验,对不同管带埋深下青椒根区土壤水分分布及青椒株高、产量、灌溉水生产率进行了研究。结果表明:微润管埋深越深,湿润范围内的土壤平均含水率越低,微润管湿润范围越小。管带埋深为20 cm,青椒株高、产量均为最大,最适宜青椒生长发育。管带埋深对青椒株高增长随时间变化符合Logistic模型,拟合效果良好。管带埋深为20 cm时,青椒灌溉水生产率最高。  相似文献   

8.
为了探究微润交替灌溉条件下,地埋微润管合理埋设深度,采用室内土箱模拟试验,研究了当微润管铺设间距为30 cm,压力水头为150 cm,土壤容重为1.25 g/cm3,微润管埋深分别为15和20 cm时的土壤水分累计入渗量、土壤含水率、湿润锋运移距离等指标的变化,每组试验重复3次。结果表明:累计入渗量随时间线性递增,两微润管在埋深15 cm时的累计入渗量比埋深20 cm时的累计入渗量分别高11.33%、13.57%;埋深为15 cm时土壤含水率大于埋深为20 cm的土壤含水率;微润交替灌溉条件下,埋深15 cm时湿润锋运移距离大于埋深20 cm时湿润锋运移距离约0.5~2.9 cm,埋深对湿润锋运移有影响但不显著;湿润锋运移距离与时间的拟合结果为良好的幂函数关系,两者具有显著的相关性;埋深为15 cm时形成的湿润体截面积较埋深20 cm时大,且土体表层已经湿润。  相似文献   

9.
不同水头和土壤容重下微润灌湿润体内水盐分布特性   总被引:7,自引:0,他引:7  
为探明微润灌溉施肥的湿润体内水盐分布规律,开展不同压力水头和土壤容重下室内微润灌溉入渗试验。设置3个水头(H1.0:1.0 m、H1.5:1.5 m和H2.0:2.0 m)和3个土壤容重(D1.00:1.00 g/cm~3、D1.15:1.15 g/cm~3和D1.30:1.30 g/cm~3),以质量分数0.3%的硝酸钾溶液为入渗溶液,研究微润灌湿润体内水盐空间分布规律和变异特征。结果表明:微润管入口水头和土壤容重对湿润体内含水率、NO_3~--N与K~+含量均值影响显著。同一土壤容重下,H1.5和H2.0与H1.0相比,湿润体剖面面积增大13.50%~21.61%,湿润体内含水率、NO_3~--N与K~+含量均值分别增大3.69%~10.71%、7.80%~10.95%和7.29%~17.49%,均匀系数分别增大7.65%~18.63%、5.22%~13.63%和9.34%~21.89%;同一水头下,D1.15和D1.30与D1.00相比,湿润体剖面面积减小5.76%~9.21%,含水率、NO_3~--N含量均值分别减小15.73%~21.54%、8.08%~10.97%,而K~+含量均值增大34.89%~64.79%,三者均匀系数分别减小9.02%~11.45%、4.04%~7.25%和7.09%~11.54%。K~+在微润管周围分布较集中,K~+聚集分布面积约占湿润体剖面面积的40.80%~61.41%。微润灌湿润体内含水率、NO_3~--N和K~+含量均值与至微润管的水平距离符合四参数Log-logistic模型。  相似文献   

10.
负水头条件下入渗模型对于水分入渗规律适用性研究   总被引:1,自引:0,他引:1  
通过室内土柱入渗实验,对比了不同负水头高度条件下的土壤入渗规律,并采用了三种入渗模型分析了土壤水分入渗特点。实验结果表明,累积吸渗量与时间呈良好的幂函数关系,湿润锋与时间平方根间呈良好的线性关系,并且负水头高度减小,累积入渗量逐渐减小,湿润锋的推进速度减慢。累积入渗量与湿润锋推进距离呈良好的线性关系。利用Green-Ampt模型、Philip模型和Kostiakov公式对入渗率与入渗时间的关系进行拟合,得出Kostiakov公式能更准确地描述出入渗率与时间关系。  相似文献   

11.
宽垄沟灌土壤水分累积入渗特性试验研究及模拟   总被引:1,自引:0,他引:1  
为了探究宽垄沟灌土壤水分累积入渗变化特性,在大田试验的基础上,利用HYDRUS-2D软件模拟并结合理论分析和数值模拟的方法,重点研究了单宽入沟流量为0.5 L/(s·m),灌水15 min后,宽垄沟灌不同沟宽(40,50,60 cm)与沟深(20,25,30 cm)对宽垄沟灌土壤累积入渗量随时间变化的影响.结果表明:沟深一定时,沟宽60和50 cm时累积入渗量较沟宽40 cm时分别增加了21.88%和7.88%,即沟宽越大,累积入渗量越大;沟宽一定时,沟深30和25 cm时累积入渗量较沟深20 cm时分别减少了3.80%和2.05%,即沟深越大,累积入渗量越小.在电容充电模型基础上建立了宽垄沟灌不同沟宽与沟深条件下的累积入渗量计算模型,累积入渗量与时间呈指数函数关系,并利用试验数据对计算模型进行了验证,模型的计算精度较高.研究结果可为改进宽垄沟灌灌水技术提供参考.  相似文献   

12.
压力水头对微润灌溉土壤水分运移试验研究   总被引:1,自引:0,他引:1  
为了探明微润灌溉湿润体特性,采用黏性土壤和3个水头(1.5,2.0,2.5 m)进行试验,分析微润管的入渗速率、累计入渗量、湿润体体积及湿润体含水率分布特征,同时探讨了含沙量为1.0 g/L的水质在3种水头压力下的堵塞问题.研究表明:土壤累积入渗量与压力水头呈正相关,与时间呈负相关;粒径为0.061~0.100 mm的浑水试验中,试验初期3个不同水头下的流量相差较小,24 h后流量相差逐渐增大,压力水头增大对微润带的堵塞情况有改善作用;微润灌溉湿润体形状近似圆柱状,湿润锋行进半径与压力水头呈正相关,建立了压力水头与湿润体体积的预测模型;不同压力水头下各方向的湿润锋扩散指数都约为0.42;湿润体体内含水率呈同心圆分布,随半径增大而减小,靠近微润管壁2 mm处含水率最大,土壤水分移动主要动力为压力水头和土壤势能之差.研究结果可为微润灌溉提供科学的理论依据和理论基础.  相似文献   

13.
涌泉根灌下灌水器埋深对水氮运移特性影响的研究   总被引:1,自引:0,他引:1  
在陕北米脂县西北农林科技大学试验基地进行了涌泉根灌肥液入渗试验,研究了不同灌水器埋深条件下湿润体特征值的变化规律及水氮运移特性。结果表明:涌泉根灌肥液入渗累积入渗量、入渗率及各向湿润锋运移距离均随灌水器埋深增加而减小;累积入渗量与入渗时间之间符合Kostiakov幂函数模型;水平方向和竖直方向湿润锋运移距离均随入渗时间增长而增加。随着埋深增加,土壤含水率峰值出现位置越低,湿润体上部含水率越低,这有助于减小地表蒸发损失,土壤NH_4~+-N含量峰值出现位置越低;以NH_4~+-N峰值为界限,峰值以上,灌水器埋深增加,相同位置处NH_4~+-N含量越低,峰值以下,相同位置处NH_4~+-N含量越高。不同灌水器埋深条件下,土壤剖面NH_4~+-N含量分布差异较大,随埋深增加,入渗结束后NH_4~+-N含量峰值越深,但随着时间的延长,土壤表层NH_4~+-N含量升高速度更快。  相似文献   

14.
基于黄土高原区大田耕作土壤的水分入渗试验,建立了Kostiakov二参数入渗模型参数的BP神经网络预测,实现了以土壤基本理化参数为输入变量,Kostiakov二参数模型参数为输出变量的BP预测方法,并分别对二参数模型中的入渗系数k、入渗指数α以及90min累积入渗量H进行了预测值与实测值的精度比较,结果显示对入渗系数k实现BP预测的平均相对误差为6.082 3%,入渗指数α的平均相对误差为1.045 9%,90min累积入渗量H的平均相对误差为4.973 5%,三者的平均相对误差值均在7%以下,预测精度较高,预测效果较好,表明以土壤基本理化参数为输入变量的BP神经网络预测是可行的。研究结果为获取准确的入渗参数提供技术手段,进而为提高农业灌溉水管理水平和灌水效率提供支撑。  相似文献   

15.
将微润灌溉技术应用于大棚种植试验中,设置了5种不同的处理来探究微润灌溉条件下微润管埋深与压力水头对小葱株高、产量以及土壤水分分布的影响。其中,常规浇灌作为对照,当做一组处理。结果表明:在小葱生长期内,各处理日均用水量和株高都随生育期的进行先增大后减小;微润管埋深对土壤水分分布影响较大,而压力水头对水分分布影响较小;微润管的埋深和压力水头对小葱生长、产量有较大的影响,且埋深比水头对小葱生长状况的影响更为明显;微润管埋深为4 cm的处理在长势与产量方面优于埋深为7 cm的;微润灌溉条件下,小葱的长势与产量较优于常规浇灌;微润灌溉较常规浇灌略微节水。  相似文献   

16.
微咸水微润灌溉下土壤水盐运移特性研究   总被引:7,自引:0,他引:7  
为探明土壤水分和盐分在利用微咸水进行微润灌溉条件下的运移情况,采用室内土箱模拟试验方式,设置2.0、2.5、3.0、3.5、5.0 g/L 5种不同矿化度处理,以蒸馏水处理作对照,共入渗72 h。结果表明:入渗结束时在不同方向上的最大运移距离随矿化度增大呈先增大后减小趋势,在3.0 g/L处理下达到最大值,且微咸水处理的湿润锋运移距离均大于蒸馏水处理;将累积入渗量代入Kostiakov入渗公式,入渗系数随矿化度的增大呈先增大后减小趋势,入渗指数不断减小;土壤电导率以微润带为轴心向四周不断增大,在湿润锋处达到最大值,脱盐区与湿润体形状相关,呈圆环状分布;入渗结束后土壤剖面平均含盐量与蒸馏水处理之间无显著性差异,脱盐半径随矿化度的增大呈线性递减趋势;利用微润灌进行灌溉,土壤盐分存在表聚和底聚现象,且表层积盐更为严重。  相似文献   

17.
基于使用远程智能控制系统,研究扬黄灌区土壤水分入渗试验,分析讨论了2种类型土壤,基于不同压力、埋深程度研究土壤水分入渗速度、湿润锋、时间等,并初步总结出不同外界条件下土壤入渗的变化规律,为保持水土、提高土壤水分生产力提供重要的科学依据。研究表明:压力、贴片式滴灌带的埋深程度对土壤累计入渗量和入渗速度的影响都比较明显。土壤累积入渗量随着压力水头的增加而增大,湿润运移距离位移不单单和环境有关系,压力对其的影响也很大。在越强的压力作用下,水的运送速度越快,这样土壤的入渗速度就越快。速度的增大也加快了各个方向的运移速率,从而达到在短时间内入渗大面积的土壤,增大了运移距离。实验结果显示,湿润锋能够在压力为0.2 MPa的情况下达到最大运移距离;埋深程度也同样影响着土壤累积入渗量和土壤的累计入渗速度,经试验测量埋深10 cm土壤入渗量最大,且地表不宜蒸发到。  相似文献   

18.
在陕北米脂山地微灌枣树示范基地进行了不同肥液浓度条件下涌泉根灌点源入渗试验,研究了肥液浓度对涌泉根灌湿润体特征值的影响。结果表明:涌泉根灌肥液入渗的累积入渗量可由Kostiakov模型进行拟合,入渗速率与时间符合幂函数关系。肥液入渗形成的湿润体形状近似为椭球体,在水平剖面与竖直剖面上的湿润锋运移距离与时间的关系均符合幂函数关系,拟合结果较好。相同流量条件下,肥液浓度越大,涌泉根灌入渗能力越强。入渗肥液浓度越大,湿润体的形状越宽而深。同一土层深度处,土壤含水量随肥液浓度的增加而增加,且随着水分再分布时间的增长,表现为表层低、中层高、底层低的分布特征。  相似文献   

19.
肥液浓度和生物质掺混量对微润灌溉入渗特性的影响   总被引:1,自引:0,他引:1  
为了探明肥液质量浓度和生物质掺混质量比对微润灌溉土壤水分入渗特性的影响,采用室内土箱模拟试验的方法,设置3个肥液质量浓度水平(清水F0:0 mg/L,低浓度FL:200 mg/L,高浓度FH:400 mg/L)和4个生物质掺混质量比水平(自然风干土B0:0 g/kg,低掺混量BL:15 g/kg,中掺混量BM:30 g/kg,高掺混量BH:45 g/kg),以发酵腐熟花生壳粉末为掺混生物质,研究微润灌溉的水分入渗速率、累积入渗量、湿润体体积以及湿润体质量含水率的分布特征.试验结果表明:肥液质量浓度和生物质掺混质量比对微润灌溉的初始入渗速率、稳定入渗速率、累积入渗量和湿润体质量含水率均值影响均具有统计学意义.与水平F0B0相比,增加肥液质量浓度和生物质掺混质量比可提高初始入渗速率13.02%~44.85%、稳定入渗速率13.50%~48.78%、累积入渗量5.65%~56.62%和湿润体质量含水率均值6.62%~30.09%;不同入渗时间内的累积入渗量符合Kostiakov模型;湿润体体积随肥液质量浓度和生物质掺混质量比增大而增大,且湿润体体积与入渗时间呈二次多项式关系;湿润体剖面面积和灌水均匀系数随肥液质量浓度和生物质掺混质量比增大而增大.  相似文献   

20.
不同水头压力的微润灌对土壤水盐运移的影响   总被引:2,自引:1,他引:1  
为探明微润灌对土壤水盐运移的影响,以南疆盐碱土微润灌为研究对象,采用室内模拟试验,分析了不同水头压力(1、1.5、2、2.5 m)条件下微润灌土壤水盐分布特征。结果表明,水头压力较低,水分水平扩散距离较小,土壤湿润区形状明显为椭圆形,随着水头压力的增大,水分水平扩散距离与垂直入渗距离逐渐接近,湿润区形状呈现由椭圆形向圆形转化的趋势;不同水头压力下湿润区位置均表现为在水平方向上以微润带埋设位置为中心,呈左右对称关系;垂直方向上土壤湿润区主要集中在微润带以下位置;提高水头压力,可以有效增大土壤湿润区面积及湿润体内土壤含水率;不同水头压力下均表现为以微润带为中心,形成土壤脱盐区,土壤盐分聚集在湿润锋附近;低水头处理,湿润区内土壤得不到有效淋洗,土壤脱盐区面积较小及脱盐率相对较低;高水头处理,盐分随水分运移至表层和深层土壤,扩大了土壤脱盐区面积,并且提高了土壤脱盐率,水头压力越高,该现象越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号