首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NaCl胁迫对番茄叶片光合特性及蔗糖代谢的影响   总被引:2,自引:0,他引:2  
为了从碳水化合物生产及代谢的角度分析盐胁迫影响番茄产量和果实品质的原因,以番茄品种‘辽园多丽’为试材,研究不同浓度的NaCl胁迫处理对番茄光合特性及叶片中糖代谢的影响。结果表明:盐胁迫导致番茄叶片的净光合速率下降,NaCl浓度越大降低得越多;盐胁迫降低了番茄叶片的气孔导度、胞间CO2浓度和蒸腾速率,降低了番茄叶片的叶绿素a、b和总叶绿素含量,这种降低与NaCl浓度正相关。NaCl胁迫导致番茄叶片中果糖和葡萄糖大量积累,NaCl浓度越高积累得越多;NaCl胁迫降低了番茄叶片中的蔗糖和淀粉含量;NaCl胁迫后,番茄叶片中的转化酶活性以及蔗糖合成酶活性均有所提高,而且随着盐浓度增加而增大。说明NaCl胁迫破坏了番茄叶片的光合机能,降低了光合作用效率,而且盐浓度越大降低得越多;NaCl改变了番茄叶片中的糖代谢方向,显著增加了淀粉和蔗糖的分解,提高了叶片中的果糖和葡萄糖含量,而且这种影响随着盐浓度增加而增大。  相似文献   

2.
不同施氮水平下盐胁迫对灵武长枣苗木光合特性的影响   总被引:2,自引:0,他引:2  
采用盆栽试验,研究了盐胁迫(50、150、200 mmol/L)下不同浓度氮(100、200、300mg/kg)对灵武长枣苗木植株叶片叶绿素含量、胞间二氧化碳浓度、蒸腾速率、净光合速率、水分利用效率的影响.结果表明:盐胁迫显著降低了灵武长枣苗木的叶绿素含量、净光合速率、水分利用效率,提高了胞间二氧化碳浓度、蒸腾速率,氖素浓度为200 mg/kg时,提高了叶绿素含量、净光合速率、水分利用效率,缓和了胞间二氧化碳浓度、蒸腾速率的增大趋势.氮素可以在一定程度上增强盐胁迫下灵武长枣苗木的光合能力.  相似文献   

3.
研究了在150 mmol ? L-1 NaCl胁迫下含铵态氮、硝态氮和硝酸铵(氮素浓度均为3 mmol ? L-1)的营养液培养的番茄幼苗生长、细胞超微结构、根系活力和光合作用参数的变化。结果表明:NaCl胁迫下,硝态氮处理叶片细胞出现伤害现象,而硝酸铵处理未见明显变化。铵态氮处理细胞超微结构明显发生破坏性变化,盐胁迫下,其伤害加剧。NaCl处理下,不同氮素形态处理下的植株生物量和根系活力均显著下降,其中硝酸铵处理的植株生物量和根系活力维持最高。NaCl胁迫下3种氮素形态处理的植株净光合速率(Pn)和蒸腾速率(Tr)均显著下降,其中硝酸铵处理的Pn和Tr要明显高于其他氮素处理。NaCl胁迫下,硝态氮处理和硝酸铵处理的水分利用效率(WUE)和气孔限制值(Ls)均明显上升,而铵态氮处理显著降低。综上,盐胁迫下,硝酸铵处理下番茄幼苗可维持较好的细胞超微结构、根系活力和较高的光合作用,维持较高的生物量,从而维持较高的耐盐性。  相似文献   

4.
Summary

Net photosynthesis, dark respiration and chlorophyll content were studied in plants of Codiaeum when transferred” from a glasshouse to photon flux densities 6, 18, or 66 μE m?2s?1 in growth rooms. The diurnal patterns of daily net photosynthesis and dark respiration were recorded during the first 12 days and 3, 7, 11 and 19 weeks after the transfer. Only plants transferred to 66 μE m?2s?1 reached a positive total net photosynthesis per day within the first 12 days. This was achieved only between the 12th day and 3 weeks when transferred to 6 μE m?2s?1. The rate of net photosynthesis increased until the 11th week and then declined, while dark respiration decreased until the 11th week and then increased. The diurnal patterns of net photosynthesis and dark respiration changed significantly with time of acclimatization. The rate of change in daily net photosynthesis and dark respiration was highest in the plants transferred to the lowest photon flux density. Changes in chlorophyll content of the leaves were similar to those in net photosynthesis.  相似文献   

5.
《Scientia Horticulturae》2005,106(2):147-161
Pepper plants grown in recirculating nutrient solution were exposed to NaCl-salinity (60 mM NaCl, 8 dS m−1) imposed either to the entire or to half of the root system and compared to plants supplied with a standard nutrient solution (1.9 dS m−1). The saline solution was obtained by adding NaCl to the standard nutrient solution. In the split-root treatment, the root compartment not exposed to salinity was supplied with raw water (0.38 dS m−1). Both the stem and the root dry weights were markedly restricted by salinity, irrespective of salinizing half or the entire root system. In the split-root treatment, the dry weight of the root compartment receiving raw water did not differ significantly from that exposed to salinity. The net photosynthesis and the leaf chlorophyll content were restricted by both salinity treatments, but the decrease was more marked when the entire root system was exposed to salinity. In contrast, the stomatal conductance and the transpiration rate were equally reduced, regardless of salinizing the entire or part of the root system. The leaf Na and Cl concentrations were raised by the NaCl-salinity, but only in one sampling date the increase was significantly higher when the entire root zone was exposed to salinity, as compared with salinization of half of the root system. Salinity reduced significantly the leaf K, Ca, and Mg uptake but not to levels that could cause nutrient deficiencies. These results indicate that pepper is susceptible to high salinity, predominantly due to reduced stomatal conductance. However, after long-term exposure to salinity the growth may be suppressed due also to inhibition of photosynthesis at chloroplast level. The adverse effects of high NaCl-salinity are hardly mitigated when only a part of the root system is salinized, which indicates that the response is governed by root exposure to high NaCl concentrations and not by inefficiency of the roots to take up water.  相似文献   

6.
绒毛白蜡根区局部盐胁迫对其生长的影响   总被引:1,自引:0,他引:1  
段丽君  李国元  汪殿蓓 《园艺学报》2018,45(10):1989-1998
绒毛白蜡(Fraxinus velutina)是滨海盐渍区主要的植被和园林绿化乔木,其发达的根系易受土壤盐分异质性的影响。为探索局部盐胁迫对其生长的影响,采用分根培养桶对幼苗进行局部盐胁迫处理,分析幼苗的生长特征、光合特性、根系分布和离子积累。结果表明,局部低盐胁迫处理的幼苗生长量显著高于均匀盐胁迫和局部高盐胁迫处理;虽然局部高盐胁迫对叶片的水势无影响,但是显著降低了叶片的气孔导度、光合速率和蒸腾速率。局部盐胁迫处理中,无盐胁迫区的根系生物量显著高于盐胁迫区;与均匀盐胁迫相比,局部盐胁迫能够显著降低叶片中Na+的含量,增加K+/Na+。虽然绒毛白蜡的生长在局部盐胁迫条件下受到抑制,且局部盐分越高抑制越强,但生长量与均匀盐胁迫相比显著增高。在局部盐胁迫条件下,细根在无胁迫区的补偿性生长能够提供叶片所需水分,降低叶片中Na+的积累,增加K+含量,缓解了盐胁迫的不利影响。  相似文献   

7.
A greenhouse experiment was carried out to determine the growth, photosynthetic activity, and mineral composition in two ornamental shrubs [Viburnum lucidum L. (arrow-wood) and Callistemon citrinus (Curtis) Stapf. (red bottlebrush)] that had been treated or not treated with 2.5 mM glycine betaine (GB) or 5.0 mM proline (Pro). Plants were supplied with a non-salinised or salinised nutrient solution containing 200 mM NaCl. Salinity caused reductions in plant growth parameters, shoot biomass production, and net CO2 assimilation in both species. Neither Pro nor GB were able to mitigate the adverse effects of salinity in bottlebrush, whereas GB reduced the deleterious effects of salt stress on arrow-wood, indicating a differential species-specific response to these osmolytes. The application of GB to salt-stressed arrow-wood increased apical and lateral shoot lengths, the number of leaves per plant, and shoot dry biomass by 222%, 113%, 238%, and 49%, respectively, compared to untreated or Pro-treated plants. The improved performance of salt-stressed arrow-wood plants whose roots were treated with 2.5 mM GB was attributed to partial suppression of Na uptake, higher chlorophyll concentrations, and the better nutritional status (higher K) of shoots.  相似文献   

8.
以盆栽金光杏梅幼苗为试材,研究了不同程度水分胁迫对金光杏梅叶片叶绿素含量和光合特性的影响。结果表明,随着土壤水分胁迫程度的加重,金光杏梅叶片叶绿素a、叶绿素b、叶绿素总量、净光合速率、蒸腾速率、气孔导度逐渐下降,而细胞间隙CO2浓度逐渐上升。水分胁迫下,净光合速率的下降是由气孔因素与非气孔因素双重作用造成的,轻度水分胁迫下气孔限制是光合速率下降的主要原因,而严重水分胁迫下非气孔限制是光合速率下降的主要原因。通过回归分析发现,金光杏梅叶片净光合速率、蒸腾速率、气孔导度和细胞间隙CO2浓度与土壤水分之间,均存在极显著线性关系。  相似文献   

9.
盐胁迫对甜樱桃“吉塞拉”砧木光合指标的影响   总被引:2,自引:1,他引:1  
以甜樱桃砧木“吉塞拉6号”(G6)、“吉塞拉5号”(G5)、Y1和B5的1a生盆栽实生苗为试材,探讨了不同浓度NaCl处理对其光合指标的影响.结果表明:盐胁迫影响了“吉塞拉”砧木的光合色素含量、光合参数和叶绿素荧光参数.随着NaCl处理浓度增加和处理时间延长,各试材的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)、PSⅡ潜在活性(Fv/Fo)、实际原初光能转化效率(φPSⅡ)和表观电子传递速率(ETR)显著下降,其中B5的下降趋势相对平缓.盐胁迫对“吉塞拉”砧木的效应既有处理间差异,又有品种间差异.轻中度盐胁迫(3‰ NaCl和6‰NaCl处理前中期)并未明显抑制各试材的PSⅡ活性,重度盐胁迫导致各试材PSⅡ受损,光合受到抑制.比较而言,B5的抗盐性优于其它3种试材.  相似文献   

10.
吴雯雯  安玉艳  汪良驹 《园艺学报》2017,44(6):1038-1048
为了明确外源5–氨基乙酰丙酸(5-ALA)缓解草莓盐胁迫伤害的适宜处理时间,比较了不同时间点添加外源5-ALA缓解植物盐胁迫伤害的效应,发现在100 mmol·L-1 Na Cl处理前5 d、处理同时或处理后3 d分别用10 mg·L-1 5-ALA溶液浇灌‘红颜’草莓根际,前5 d预处理的效果最佳,喻示着5-ALA的预防效应高于治疗效应。进一步于盐处理前5、10、15和20 d分别用5-ALA溶液根灌草莓苗,发现提前20 d预处理的效果最好,说明至少在20 d以内提前预处理越早,越有利于缓解盐胁迫对草莓苗的伤害。试验观察到,5-ALA缓解草莓盐胁迫伤害主要表现为:(1)缓解盐胁迫导致的草莓叶片叶绿素含量以及叶绿素b/a比值下降;(2)诱导盐胁迫下草莓叶片和根系抗氧化酶活性上升,缓解由盐胁迫导致的超氧阴离子生成速率加快;(3)有利于PSⅡ–PSⅠ之间电子传递,提高光能吸收、捕获、传递效率,减少热耗散,提高光合性能指数;(4)缓解盐胁迫对草莓植株生长的抑制作用,提高植株整体,特别是根系的生物学产量。  相似文献   

11.
盐胁迫对3种黄瓜砧木幼苗光合特性的影响   总被引:16,自引:0,他引:16  
朱进  别之龙 《园艺学报》2007,34(6):1418-1424
研究不同浓度(0、50、100、150 mmol·L-1)NaCl胁迫处理对3个黄瓜砧木(超级拳王南瓜、黑籽南瓜、超丰8848瓠瓜)幼苗生长、光合作用和叶绿素荧光参数的影响。结果表明,随着NaCl浓度增加,3个黄瓜砧木幼苗的地上部干鲜质量、株高、叶片数、叶片净光合速率、气孔导度、蒸腾速率逐渐降低。高盐(150 mmol·L-1 NaCl)胁迫下,超级拳王的初始荧光(Fo)和黑籽南瓜的光化学猝灭系数(qP)显著降低,而超丰8848瓠瓜的qP显著升高。与对照相比,盐胁迫下3个砧木幼苗叶片的PSⅡ最大光化学效率(Fv/Fm)没有降低,PSⅡ电子传递量子效率(ΦPSⅡ)无显著差异。盐胁迫下超级拳王和黑籽南瓜的叶绿素a/b比值不变,超丰8848瓠瓜的叶绿素a/b比值显著下降。  相似文献   

12.
Summary

The effects of water deficit and rewatering on ribulose-1,5-bis-phosphate carboxylase activity, chlorophyll and protein content were evaluated in plants of two cultivars of tomato. During the water deficit period, values of water potential, osmotic potential and relative water content decreased along with associated decreases in RuBPcase activity, protein content and chlorophyll content, being less marked for chlorophyll content. There was a significant correlation of RuBPcase activity and protein content with components of leaf water status from plants under water stress. The associated decrease of RuBPcase, chlorophyll and protein contents with decreased osmotic potential during the development of water deficit was evident. At the time the plants reached a water potential of –1.40 to –1.56 MPa (RI: first level of recovery after water stress), one group of plants was rewatered. The rest were kept under stress until the water potential reached values of –2.30 to –2.51 MPa (RII: second level of recovery after water stress). It was observed that all of the varieties measured at both levels (RI and RII) showed a gradual recovery, reaching or even surpassing the values of control plants.  相似文献   

13.
14.
Two eggplant cultivars, Dilnasheen and Bemisal, were selected to assess whether pure GB and sugarbeet extract could effectively ameliorate the harmful effects of salt stress on eggplant (Solanum melongena L.), under saline conditions. Salt stress markedly suppressed the growth, yield, photosynthetic capacity, internal CO2 level, transpiration, and stomatal conductance in both cultivars. Potassium (K+) and Ca2+ contents and K+/Na+ ratios of both root and leaf were also reduced, while GB and proline in leaves, and Na+ and Cl contents in roots and leaves were significantly enhanced. Exogenously applied glycinebetaine and sugarbeet extracts significantly counteracted the salt-induced adverse effects on growth, yield, various gas exchange characteristics, GB and leaf K+, Ca+, Cl and Na+. However, GB and sugarbeet extract showed differential effects on photosynthetic rate, stomatal conductance and transpiration, internal CO2 level, Ci/Ca ratio, leaf K+, Ca2+, and Cl contents, and K+/Na+ ratio. Sugarbeet extract proved better than the GB in improving growth, photosynthetic rate, transpiration, stomatal conductance, yield and GB accumulation. Since, sugarbeet extract contains a substantial amount of GB along with a variety of other important nutrients so it was found as effective as pure GB in improving growth and some key physiological processes in eggplant under salt stress. Thus, it can be used as an alternative cheaper source of GB for its use as an ameliorative agent for protecting plants against the hazardous effects of salt stress.  相似文献   

15.
Effects of arbuscular mycorrhizal fungi (AMF) alone or in combination with bacterial consortium (AMF+BC) inoculation prior to induced salinity (NaCl @ 150 or 250 mM) were studied on root growth; plant biomass; leaf area; Na+ and K+ contents; leaf water potential (Ψw); osmotic potential (Ψπ); photosynthesis rate (Pn); and contents of chlorophyll, phytohormones, and polyamines in the grape rootstock ‘Dogridge’, popular among Indian vine growers. AMF inoculation in the NaCl untreated rootstocks plants increased root growth, root and shoot biomass, and leaf area and improved leaf Ψw, Ψπ, Pn, and chlorophyll content, and also countered the stress-induced decline in the NaCl treated plants. The abscisic acid (ABA), cytokinins, and polyamine-spermidine and spermine contents in the leaves of NaCl untreated or treated were significantly increased by the AMF inoculation. Among the treatments, AMF with BC was relatively more effective than AMF alone with respect to changes in above morpho-physiological characters. The results depicted that AMF (AMF alone or AMF+BC) inoculation significantly improved salinity tolerance of grape rootstock and tolerance is induced by improvements in plant water balance, K+:Na+ ratio, and Pn, besides distinct accumulations in ABA and polyamines-spermine and spermidine. The above findings have potential in suggesting the AMF usefulness in improving the efficacy of ‘Dogridge’ rootstock in grape cultivation under salt affected soils.  相似文献   

16.
Salinity is one of the major environmental factors limiting crop productivity. The effect of increasing salinity levels (0, 50, 100 mM NaCl) on growth, photosynthetic traits, leaf water potential, oxidative stress, enzymatic and non-enzymatic antioxidants was studied in Pusa Jai Kisan and SS2 cultivars of mustard (Brassica juncea L. Czern & Coss.) differing in ATP-sulfurylase activity at 30 days after sowing (DAS). The cultivar SS2 (low ATP-sulfurylase activity) accumulated higher content of Na+ and Cl in leaf than root. SS2 also showed greater content of thiobarbituric acid reactive substances (TBARS) and H2O2 and higher decrease in growth, photosynthetic traits and leaf water potential than Pusa Jai Kisan with increasing salinity levels. Contrarily, Pusa Jai Kisan (high ATP-sulfurylase activity) exhibited higher Na+ and Cl content in root than leaf, lower TBARS and H2O2 content and higher activity of catalase, ascorbate peroxidase and glutathione reductase. However, the activity of superoxide dismutase was greater in SS2 than Pusa Jai Kisan. Higher activity of ATP-sulfurylase in Pusa Jai Kisan resulted in increased content of glutathione, a reduced form of inorganic sulfur and an essential component of cellular antioxidant defense system. The lesser decrease in growth and photosynthesis in Pusa Jai Kisan was the result of lesser Na+ and Cl in leaf, higher turgidity and increased activity of antioxidant enzymes and glutathione content.  相似文献   

17.
 以7叶龄幼苗为试材, 研究了可溶性硅( Si) 对盐(NaCl) 胁迫下库拉索芦荟(Aloe vera L. )叶绿素荧光参数和叶绿体超微结构的影响。结果表明, 随处理时间延长, 芦荟对NaCl (100 mmol/L) 胁迫的响应愈加明显, 胁迫30 d的伤害明显重于10 d, 但NaCl胁迫下加Si (2.0 mmol/L) 与不加Si相比, 叶绿素(Chl1) 总含量下降幅度小, Chl1a含量显著提高, 叶绿素初始荧光( Fo) 值的上升与可变荧光( Fv)值的下降受到抑制, 光系统Ⅱ ( PSⅡ) 潜在活性( Fv/Fo) 显著增强, 同时, 加Si有利于保持盐胁迫下芦荟叶绿体的形态, 保护类囊体的超微结构, 说明施Si缓解盐胁迫对光合细胞器的伤害, 可改善盐胁迫下芦荟的光合作用。  相似文献   

18.
李翠  冯新新  张治平  孙新娥  汪良驹 《园艺学报》2012,39(10):1937-1948
 YHem1是一个由拟南芥HemA1启动子(一种光响应型启动子)控制的酿酒酵母菌5–氨基乙酰丙酸(ALA)合酶基因(Hem1)。将该基因转化番茄植株,可以提高叶片内源ALA含量及其代谢能力,增加叶绿素含量和抗氧化酶活性,并降低产生速率和丙二醛(MDA)含量。200 mmol ·L-1 NaCl处理,降低了野生型番茄叶片ALA合成与代谢能力和叶绿素含量,同时诱导叶片产生速率、H2O2和丙二醛(MDA)含量上升,而超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)等抗氧化酶活性则逐渐降低。盐胁迫也导致转YHem1番茄ALA合成与代谢能力、叶绿素含量和抗氧化酶活性下降,但其降幅明显低于野生型。盐处理10 d后,转基因番茄植株保持着较高的生物学积累量和较低的盐胁迫抑制程度,说明转入YHem1基因可以提高番茄耐盐性。此外,转基因番茄叶片H2O2含量始终保持较高水平,暗示其可能作为一种信号分子参与细胞生理调节。  相似文献   

19.
Two pea (Pisum sativum L.) cultivars were compared: cv Lincoln and cv Douce de Provence. Seedlings grown for 14 d on standard medium were challenged for 21 d with salt using a split-root system. This protocol allowed salt-treated plants to absorb nutrients through a part of their root system maintained in control medium (C), the other part of the root system being placed in medium added with 75 mM NaCl (S). Full salt treatment (S/S) resulted in severe but non-lethal growth inhibition, high concentration of Na+ and Cl in leaves, and decrease in leaf K+ and chlorophyll contents. The two latter effects were more pronounced in Lincoln than in D. Provence. Growth inhibition was partially (Lincoln) or totally (D. Provence) alleviated in S/C configuration, and K+ content was less diminished than in full salt treatment. S/C treatment mitigated Na+ and Cl accumulation in Lincoln, but not in D. Provence. Thus, in the latter cultivar, growth inhibition by salt in S/S condition likely did not result from excessive Na+ and Cl accumulation in leaves. Increased electrolyte leakage from leaf tissues evidenced damages to leaf cell plasma membrane of both cultivars in S/S condition. However, damages to chloroplasts, as inferred from chlorophyll loss, were much pronounced in Lincoln than in D. Provence. Antioxidant enzymic activities in leaves were measured as proxies for oxidative stress. Catalase activity was stimulated by S/S treatment in both cultivars, but superoxide dismutase (Fe and Cu/Zn isoforms) and gaiacol peroxidase activities were augmented only in Lincoln. The absence of superoxide dismutase activity stimulation by salt in D. Provence could signify either that constitutive activity was sufficient to ensure protection against oxidative stress, or that intrinsic salt tolerance of this cultivar mitigated cellular oxidative stress. Thus, intraspecific variability for salt response exists between pea cultivars presenting similar growth sensitivity to salt.  相似文献   

20.
A greenhouse study was conducted to evaluate the ameliorative effects of zinc (0, 5, 10 and 20 mg Zn kg−1 soil) under saline (800, 1600, 2400 and 3200 mg NaCl kg−1 soil) conditions on pistachio (Pistacia vera L. cv. Badami) seedlings’ photosynthetic parameters, carbonic anhydrase activity, protein and chlorophyll contents, and water relations. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance. The quantum yield of photosystem II was reduced at zinc deficiency and salt stress. Zinc improved plant growth under salt-affected soil conditions. Increasing salinity in soil under Zn-deficient conditions, generally decreased carbonic anhydrase activity, protein, chlorophyll a and b contents. However, these adverse effects of salinity alleviated by increasing Zn levels up to 10 mg kg−1 soil. Under increasing salinity, chlorophyll a/b ratio significantly increased. Zinc treatment influenced the relationship between relative water content and stomatal conductance, and between leaf water potential and stomatal conductance. It concluded that Zn may act as a scavenger of ROS for mitigating the injury on biomembranes under salt stress. Adequate Zn also prevents uptake and accumulation of Na in shoot, by increasing membrane integrity of root cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号