首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicle stimulation by follicular stimulating hormone (FSH) is known to improve developmental competence of bovine oocytes obtained by Ovum Pick‐Up (OPU); however, the exact factors in oocytes affected by this treatment have remained unclear. We compared in vitro matured (IVM) oocytes obtained at the immature stage from cows by OPU either without or with stimulation with FSH (non‐stimulated and stimulated OPU, respectively) to those obtained by superstimulation and in vivo maturation in terms of cytoskeleton morphology, mitochondrial distribution, intracellular adenosine triphosphate (ATP) content and H2O2 levels at the metaphase‐II stage and intracellular Ca2+ levels after in vitro fertilization (IVF). Confocal microscopy after immunostaining revealed reduced size of the meiotic spindle, associated with increased tendencies of microfilament degradation and insufficient mitochondrial re‐distribution in non‐stimulated OPU‐derived IVM oocytes compared with those collected by stimulated OPU, which in turn resembled in vivo matured oocytes. However, there was no difference in mitochondrial functions between oocytes obtained by stimulated or non‐stimulated OPU in terms of ATP content, cytoplasmic H2O2 levels, base Ca2+ levels and the frequencies and amplitudes of Ca2+ oscillations after IVF. Larger size of metaphase spindles in oocytes obtained by stimulated OPU may reflect and potentially contribute to their high developmental competence.  相似文献   

2.
将8头荷期坦供体奶牛随机分为4组,每组2头,分别按优势卵泡+注射促卵泡素(FSH)、优势卵泡+不注射FSH、去优势卵泡+注射FSH、去优势卵泡+不注射FSH处理供体牛,处理后第4天应用B型超声波导引活体采卵,试验重复10次。结果显示:注射FSH前去优势卵泡对其可采卵泡数、回收卵母细胞数和可用卵母细胞数均有显著提高(P0.05),但不注射FSH时去优势卵泡对提高采卵效率无显著效果;活体采卵对供体牛卵巢虽造成一定损伤,但停止采卵2~3个月后均能恢复正常发情、配种后能正常妊娠,对供体牛繁殖性能无显著影响。  相似文献   

3.
There are indications in the literature that delaying the period between ovarian superestimulation and ovum pick up (OPU) would induce follicles to a condition of initial atresia, which could be beneficial to oocyte development. In this work, we compared three protocols for OPU and in vitro production (IVP) of embryos, in Nellore cattle. Nellore cows (n = 18) were randomly allocated in three groups: Group 1 (OPU), Group 2 [Follicle stimulating hormone (FSH) and OPU] and Group 3 (FSH deprivation and OPU). Three OPUs were performed, and the animals were switched to a different group each time (crossover), in such a way that at the end of the experiment all cows received the 3 protocols. At random stage of the oestrous cycle (D‐2), all follicles ≥ 6 mm were aspirated to induce a new follicular wave 2 days afterwards (D0). In Group 1, OPU was performed on D2 and oocytes were processed to IVP. In Group 2, starting on D0, cows were superstimulated (FSH, Folltropin®, 30 mg administered daily, i.m., during three consecutive days, total dose = 180 mg), and 6 h after the last FSH dose, they received exogenous luteinizing hormone (LH) (12.5 mg, i.m., Lutropin®, D3). The OPU was performed 6 h after LH administration, i.e. 12 h after the last dose of FSH. Animals in Group 3 received the same treatment as those in Group 2, except that LH was administered 42 h after the last dose of FSH, and OPU occurred 6 h later. Therefore, in this group, follicles were deprived of FSH at 48 h. Both cleavage and blastocyst rates were similar (p > 0.05, anova ) among oocytes from Groups 1, 2 and 3, respectively: 77.4% (144/185) and 42.70% (79/185); 75.54% (105/139) and 31.65% (44/139); 63.52% (101/159) and 33.33% (53/159). However, hatched blastocyst rate was higher (p < 0.01) in Group 1 (30.27%, 56/185) when compared with Group 2 (11.51%, 16/139) or 3 (15.72%, 25/159). It is concluded that, contrary to previous work on European breeds (Bos taurus), ovarian superstimulation associated with deprivation of FSH and OPU (Group 3) did not increase IVP of Nellore embryos (Bos indicus). On the contrary, the highest hatched blastocyst rates were observed in oocytes from non‐superstimulated cows.  相似文献   

4.
Ewes heterozygous for the FecXR allele (R+) in the bone morphogenetic protein 15 (BMP15) gene display increased ovulation rate and prolificacy. Besides this phenotypic advantage, the influence of the FecXR allele on follicle number and size, oocyte competence and in vitro production (IVP) remains undefined. With these aims, 8 R+ and 8 wild‐type (++) ewes were subjected to 2 laparoscopic ovum pick‐up (LOPU) trials (four sessions per trial; two with and two without FSH) and subsequent IVP and fresh embryo transfer. All follicles >3 mm were punctured (n = 1673). Genotype did not significantly affect the number of punctured follicles per ewe and session (10.4 and 10.2 in R+ and ++ untreated ewes, 17.4 and 14.3 in R+ and ++ FSH‐treated ewes, respectively), but follicular diameter of R+ ewes was significantly reduced compared with ++ ewes (?0.2 mm in untreated and ?0.8 mm in FSH‐treated ewes; p < 0.01). R+ ewes showed higher recovery rate and increased numbers of total and suitable cumulus–oocyte complexes for in vitro maturation (IVM). Similar rates of day 8 blastocysts were observed in R+ (36.1%, 147/407) and ++ (32.6%, 100/307) ewes, but the final output of day 8 blastocysts per ewe and session was higher in R+ ewes (+0.75; p < 0.005), without differences in survival rate at birth of the transferred embryos (40.4%, 21/52 vs 36.4%, 16/44, respectively). In conclusion, a higher number of oocytes proven to be competent for in vitro development and embryo survival after transfer are recovered from R+ ewes, despite the lower mean size of their follicles at puncture.  相似文献   

5.
The objective of this study was to evaluate the efficiency of Ovum Pick Up (OPU) in cycling (n = 5) and lactating, postpartum, swamp buffaloes (n = 6) with and without gonadotropin stimulation. The OPU was performed every two weeks in all groups of animals, for a total of six sessions. Thirty collections were performed in five cycling buffaloes and 36 collections in six lactating postpartum buffaloes. Buffaloes that received hormonal stimulation were given a total of 400 mg, follicle stimulating hormone (FSH), administered twice daily over 3 days in decreasing doses, together with 100 microg of GnRH, 24 h after the last FSH injection. Following a resting period of 1 month, the two groups of buffaloes, were subjected to the same OPU regimen, but without any hormonal treatment for an additional six OPU sessions. The number of aspirated follicles recorded from the hormonal stimulated, cycling animals and lactating, postpartum buffaloes was not significantly different, 7.2 +/- 3.7 and 9.0 +/- 3.2, respectively (p > 0.05). Recovered oocytes collected from the two groups of hormonally stimulated animals were also not statistically different: 3.7 +/- 2.7 in the cycling and 5.9 +/- 3.5 in the lactating postpartum group (p > 0.05). In the two groups of buffaloes not receiving hormonal stimulation, the number of aspirated follicles was not significantly different: 2.1 +/- 1.4 and 1.4 +/- 0.7 in cycling and lactating postpartum buffaloes respectively (p > 0.05). Recovered oocytes in the non-treated groups were also similar: 1.4 +/- 1.3 vs 0.7 +/- 0.8 in cycling and lactating buffaloes (p > 0.05). Among stimulated buffaloes, most aspirated follicles were small in size (< or =5 mm), whereas they were mostly medium and large sizes in the non-treated buffaloes. The oocyte recovery rate in both the groups, cycling and lactating postpartum, were 51.6% and 69.5% in stimulated groups and 55.0% and 53.1% in non-stimulated groups (p > 0.05). The majority of recovered oocytes were single- and multi-layered, and the number was greater in the cycling than in the lactating, postpartum buffaloes. The number and quality of recovered oocytes was similar in all groups of buffaloes whether they were received or did not receive hormonal stimulation. Moreover no difference was found in multi- and single-layered oocytes between cycling and lactating, postpartum buffaloes. In conclusion, OPU can be performed successfully in swamp buffalo in different reproductive status and FSH administration was shown to increase the number of aspirated oocytes in both cycling and lactating, postpartum buffaloes.  相似文献   

6.
We investigated whether suckling would affect embryo production of cows bred by timed artificial insemination (TAI) following an ovulation synchronization protocol combined with ovum pick-up and progesterone releasing intravaginal device (OPU-PRID-TAI protocol). The number of oocytes and transferable embryos collected by repeated OPU, performed before and after TAI, were recorded. A total of 14 Japanese Black cows were divided into weaned (n=7) and suckled groups (n=7). All 14 cows were treated with OPU on day 0 (the first day of treatment) and then with a PRID for 9 days. Prostaglandin F(2alpha) analog was administered on day 7, GnRH analog was administered on day 10 (36 h after removal of the PRID) and TAI was performed 12 h later. Ovulation was confirmed by palpation per rectum the following day. After TAI, additional OPU sessions were performed on days 18, 25 and 32. The synchronized ovulation rates of the weaned and suckled groups were 100 and 85.7%, and the conception rates were 71.4 and 42.9%, respectively. Immature oocytes were fertilized and cultured in vitro. The numbers of oocytes collected and blastocysts generated were similar between the individual OPU sessions in both groups. However, the total numbers of oocytes collected, cultured oocytes, cleavage embryos and blastocysts as well as the proportions of cleavage embryos and blastocysts to cultured oocytes were all significantly (P<0.05) greater in the weaned group compared with the suckled group. These results suggest that the OPU-PRID-TAI protocol has the potential to produce a significant number of good-quality embryos in vitro after repeated OPU in early postpartum weaned Japanese Black cows. To collect more oocytes and produce more embryos, we suggest that calves be removed from cows scheduled for treatment using this protocol.  相似文献   

7.
The expression of melatonin type 1 (MT1) and FSH (FSHR) receptors in caprine ovaries and the effects of these hormones on the in vitro development of isolated pre‐antral follicles were evaluated. Follicles (≤200 μm) were cultured for 12 days in α‐MEM (control) or melatonin (100 or 1000 pg/ml) or sequential melatonin medium (100 pg/ml: from day 0 to day 6; 1000 pg/ml: from day 6 to day 12; experiment 1) and in control or sequential FSH (100 ng/ml from day 0 to day 6; 500 ng/ml from day 6 to day 12) or sequential melatonin or this latter plus sequential FSH (experiment 2). MT1 and FSHR expressions were observed in granulosa cells from secondary and antral follicles. The oocytes from primordial and primary follicles also express FSHR. Sequential melatonin increased the percentage of normal follicles and oocyte recovery compared with the control or melatonin (1000 pg/ml) at day 12. In experiment 2, all the treatments increased the normal follicles and growth compared with the control. In conclusion, this study demonstrated the presence of MT1 and FSHR in caprine ovaries. The addition of increased concentrations of melatonin (sequential medium) or FSH can be used to promote the in vitro development of caprine pre‐antral follicles.  相似文献   

8.
Ovum pick-up (OPU) was performed three times on adult ewes after synchronization with (n = 4) or without (n = 4) FSH treatment to investigate the effects of FSH treatment on the number of ovarian follicles, oocytes recovered, oocyte quality and development in vitro. FSH treatment increased the number of ovarian follicles (85 vs 162) and oocytes recovered (33 vs 91), although recovery rate was similar for ewes with and without FSH (91/162, 56.2% and 33/85, 38.8% respectively). Of the oocytes recovered, those classified as grades I and II were similar between ewes with (78/91, 85.7%) and without FSH treatment (27/33, 81.8%). The number of ovarian follicles was similar after repeated OPU for ewes treated with FSH, but for ewes not treated with FSH the number of ovarian follicles decreased with repeated OPU. The number of oocytes recovered decreased for FSH-treated ewes only, while the oocyte recovery rate and proportion of oocytes classified as grades I and II were not affected by repeated OPU. Oocyte cleavage (46/78, 58.9% and 19/24, 79.2%) and blastocyst formation (35/46, 76.1% and 12/19, 63.2% respectively) were similar for ewes with and without FSH treatment. The number of ovarian follicles varied between ewes (p < 0.05) although the number of oocytes recovered and oocyte development in vitro were similar between ewes.  相似文献   

9.
Experiments were conducted to determine the effects of lamb age, frequency of follicular aspirations, and hormone stimulation by fixed or variable FSH dose, on the number of collected oocytes and their maturational competence. In trial 1, the characteristics of follicular population (number and diameter of follicles) were studied in 40 lambs which were slaughtered at the age of 30 days (S1), 42 days (S2), 60 days (S3) and 5–6 months (S4), each n = 10. In trial 2, 27 lambs were divided into four groups. group MF lambs (n = 6) had follicular aspiration (OPU) in four monthly intervals commencing from the age of 8–9 weeks (sessions MF1, MF2, MF3 and MF4). In groups SF2, SF3 and SF4 (each n = 6), OPU was conducted once during the 12–13, 16–17 and 20–21 week of age, respectively. Ovarian stimulation was conducted with fixed FSH dose (3.52 mg/animal). In trial 3, 10 lambs (group MV) were treated as those of group MF apart from the FSH dose, which was administered according to the body weight in a dose of 0.27 mg/kg. The number and the size of follicles, the number and the quality of collected oocytes and the maturational competence of the oocytes were compared between and within groups. In trial 1, the total number and the number of small follicles were greater in groups S1 and S2 compared with those of S3 and S4 (p < 0.01). Similarly, the follicular population was greater in group MF1 than in group SF3 (p < 0.01). In sessions MF2, MF3, MV2, MV3 and MV4, more oocytes were collected in comparison with those from the respective once‐aspirated age mates (groups SF2, SF3 and SF4). In total, more (p = 0.02) oocytes per donor were collected from group MV (15.2 ± 5.5) than from group MF (9.0 ± 3.2). An absolute maturational failure was observed in oocytes collected from groups SF2 and SF3. Maturational competence varied between 16.7% and 58.3% (p = 0.017) among sessions of group MF, but it was more uniform among sessions of group MV (range 12.5–42.9%, p > 0.05). Our results indicate that firstly, the number and the quality of harvested oocytes from juvenile lambs can be much improved if follicular stimulation regime is adjusted to the body weight. Secondly, in terms of follicular population and oocyte quality, 3 and 4‐month‐old lambs are naturally bad oocyte donors, but this characteristic can be reversed by a previous follicular ablation.  相似文献   

10.
11.
To study the effect of donor age on oocyte developmental competence and steroid profiles, the crossbred cow (Murray Grey × Brahman) in Yunnan province of China were selected and divided into three groups according to its age. The three groups were young cows (n = 12; 12 months old), middle‐aged cows (n = 15; parity: ≤3 calvings; age: 7–8 years old) and old cows (n = 10; parity: ≥8 calvings; age: ≥15 years old). Cumulus–oocyte complexes (COCs) were collected by 10 consecutive ovum pick up (OPU) sessions with a 4‐day interval between each session, followed by in vitro maturation, fertilization and embryo development. Results showed that cleavage rates (CR) and blastocyst rates (BR) were higher in the young cows than those in the middle‐aged and old cows (p < 0.05). CR and BR from COCs of the first and the fourth OPU sessions were lower than those from other sessions in the young cows and the middle‐aged cows (p < 0.05), whereas the similar phenomenon was not observed in the old cows. Plasma concentrations of oestradiol were higher, and plasma concentrations of progesterone were lower before and during OPU sessions in the young cows compared with those in the same period in the middle‐aged cows or the old cows (p < 0.01). In conclusion, donor age of oocytes could affect developmental competence of oocytes recovered by OPU through the action of steroid hormonal balance on follicle development.  相似文献   

12.
This study was designed with the final goal of improving in vitro embryo production in the Thai swamp buffalo (Bubalus bubalis carabensis). Oocytes were collected by ovum pick-up (OPU) from six non-lactating multiparous swamp buffalo twice per week for 10 consecutive sessions followed by once-weekly collection for 10 consecutive sessions without hormone stimulation. In addition, oocytes were collected from slaughterhouse ovaries that were classified as follows: ovaries from non-pregnant cows with a visible corpus luteum (NPCL); pregnant cows with a corpus luteum (P); and non-pregnant cows without a corpus luteum (NP). Follicles in each group of ovaries were categorized as small (2-4 mm), medium-sized (5-8 mm) or large follicles (≥ 9 mm). The quality of the oocytes was assessed by their capacity to undergo in vitro maturation. The total number of observed follicles per session (all sizes combined) was larger in the once-weekly OPU group compared with the twice-weekly OPU group. In particular, the numbers of small and large follicles were higher in the once-weekly OPU group (5.2 ± 0.7 and 0.9 ± 0.2, respectively) than in the twice-weekly OPU group (3.9 ± 0.5 and 0.5 ± 0.1). The number of medium-sized follicles did not differ between the groups. The percentages of oocytes with an abnormal spindle morphology were not different between oocytes from the twice-weekly (30.0%) and the once-weekly (28.6%) OPU groups. A higher percentage of oocytes obtained in vitro (49.5%) exhibited nuclear abnormalities compared with those obtained in vivo (≤34.8%) after in vitro maturation. In conclusion, oocytes can be successfully collected by OPU in the swamp buffalo, without hormonal pretreatment, and per week more good-quality oocytes can be collected by twice-weekly OPU. In addition, oocytes collected from slaughterhouse ovaries can be used with the reproductive status of the cow having no influence on the maturation competence of oocytes.  相似文献   

13.
In this study, we examined the effects of superstimulation using follicle‐stimulating hormone (FSH) followed by gonadotropin‐releasing hormone (GnRH) on buffalo embryo production by ultrasound‐guided ovum pick‐up (OPU) and in vitro fertilization (IVF). Nine Murrah buffaloes were subjected to OPU‐IVF without superstimulation (control). The morphologies of the oocytes collected were evaluated, and oocytes were then submitted to in vitro maturation (IVM). Two days after OPU, same nine buffaloes were treated with twice‐daily injections of FSH for 3 days for superstimulation followed by a GnRH injection. Oocytes were collected by OPU 23–24 hr after the GnRH injection and submitted to IVM (the superstimulated group). The total number of follicles, number of follicles with a diameter > 8 mm, and number of oocytes surrounded by multi‐layered cumulus cells were higher in the superstimulated group than in the control group (p ≤ 0.05). After IVF, the percentages of cleavage and development to blastocysts were higher in the superstimulated group than in the control group (p < 0.05). In conclusion, superstimulation improved the quality of oocytes and the embryo productivity of OPU‐IVF in river buffaloes.  相似文献   

14.
The aim of this study was to verify the effect of the energy source for a short‐term diet supplementation on follicular dynamics, ovarian response and oocyte recovery in goats. Thirty Anglo Nubian crossbred does received a diet for 4 weeks to satisfy the nutritional requirements of breeding for adult non‐dairy goats. Seven days prior to oocyte recovery (OR), a group of does (n = 10) was supplemented with ground full‐fat linseed in the diet (Diet A), whereas a second group of does (n = 10) received crude glycerine in the diet (Diet B). The total mixed ration (TMR) diet was maintained as the Control Diet (n = 10). All animals were oestrous‐synchronized by the use of a progesterone insert for 12 days prior to OR. Follicles were stimulated by using pFSH (five 40‐mg/ml doses) during the supplementation time. At OR, follicles were counted and recovered oocytes were classified as viable or degenerated. Follicular dynamics was monitored by ultrasonography, and plasma glucose, cholesterol and triglyceride levels were measured during supplementation. Glucose was higher in Diet B and cholesterol in Diet A. Diet B had a lower proportion of small (<3 mm) and large follicles (≥3 mm; p = 0.01). The follicular growth rate was higher in Diet A (p < 0.01), with follicles emerging in the 5th day of supplementation. No differences were observed for follicles counted and oocytes recovered. Thus, the type of energy source supplemented for a short term was capable to alter the follicular dynamics, without affecting the proportion of morphologically viable oocytes upon recovery.  相似文献   

15.
We investigated the effect of the leukaemia inhibitory factor (LIF) alone or in association with FSH on the in vitro culture (IVC) of caprine preantral follicles. Preantral follicles >200 μm in size were isolated and cultured for 18 days in basic medium either alone (control) or supplemented with LIF (10 or 50 ng/ml) in the absence or presence of FSH. Every 6 days, follicular survival, growth and antrum formation were evaluated. At the end of the culture period, the oocytes underwent in vitro maturation (IVM), and their viability and chromatin configuration were assessed. Follicles of the control group and those cultured in 10 ng/ml LIF maintained the structural integrity (particularly the preservation of the basement membrane) when compared to the oocytes cultured in 50 ng/ml LIF, regardless the presence of FSH. In the absence of FSH, the percentage of antrum formation after 18 days of culture in the 50 ng/ml LIF group was significantly lower than in either the control group or the 10 ng/ml LIF group. However, this effect was not observed in the presence of FSH. The rate of resumption of meiosis was significantly higher in the 50 ng/ml LIF group in the absence of FSH in comparison with the control and 10 ng/ml LIF groups. Metaphase II was observed only when follicles were cultured in a combination of FSH and 50 ng/ml LIF. In conclusion, LIF alone does not interfere with antral formation and oocyte growth, but at concentration of 50 ng/ml and combined with FSH, it promotes oocyte maturation.  相似文献   

16.
The aim of this study was to determine the optimal maturation culture period of ovum pick up (OPU)‐derived cumulus oocytes complexes (COCs) in relation to their developmental capacity. Embryo production, embryo cryotolerance, post‐transfer embryonic survival and calf characteristics such as gestation length, birthweight and sex ratio were investigated. This retrospective study covers the analyses of ovum pick up –in vitro production and calving results from a commercial programme that took place between March 1994 and September 2004. Donors were both heifers (of which approximately 90% pregnant) and cows (of which approximately 10% pregnant). Embryo production analyses were based on 7800 OPU sessions conducted from January 1995 until January 1999. Analyses of calving rate were based on 13 468 embryo transfers performed during January 1995 until May 2002. Analyses on calf characteristics were based on 2162 calves born between March 1994 and September 2004. The in vitro maturation culture period ranged from 16 to 28 h. The mean production rate of transferable embryos was 16.5% (1.2 embryos per OPU session). Length of maturation culture period did not affect the production of transferable embryos. Mean calving rate was 40.9% and 38.7% for fresh and frozen/thawed embryos, respectively. Calving rate was not affected by the maturation culture period. Mean birthweight, gestation length and proportion of male calves were 46 kg, 281.9 days and 52.8%, respectively. Maturation culture period did not affect these variables. In conclusion, this study shows that the in vitro maturation culture period within the range of 16–28 h does not affect in vitro embryo production, embryo cryotolerance, post‐transfer embryonic survival and calf characteristics, suggesting that all COC batches collected by OPU on the same day, can be fertilized in one IVF session without a significant loss in the production from oocyte to calf.  相似文献   

17.
[目的] 探索不同来源卵母细胞对体细胞核移植(SCNT)重构胚的发育能力及发育潜能关键蛋白表达水平的影响。[方法] 试验分为活体采卵(OPU)和屠宰场(SLH)卵巢2组,OPU组用超声波活体采卵仪穿刺抽吸10头非泌乳期经产水牛卵巢的卵泡采卵,SLH组从屠宰场卵巢抽吸卵泡采卵。获得的卵母细胞分别进行体外成熟,体外成熟22~24 h后,吹打去除卵丘细胞,挑选具有第一极体的卵母细胞,去核后与水牛耳部成纤维细胞进行SCNT,分别统计SCNT重构胚的融合率、分裂率和囊胚率,用免疫荧光检测2种SCNT重构胚的E-钙黏蛋白(E-cadherin)和转录因子Sox2蛋白的表达水平。[结果] OPU组卵母细胞成熟率及其SCNT重构胚的囊胚率均显著高于SLH组(P<0.05),但2组SCNT重构胚的融合率和分裂率均无显著差异(P>0.05);免疫荧光结果显示,E-cadherin蛋白定位于细胞膜上,Sox2蛋白分布在细胞核膜及细胞质中,OPU组SCNT重构胚中E-cadherin和Sox2的表达水平均显著高于SLH组(P<0.05)。[结论] 活体采集的水牛卵母细胞更适合用于SCNT重构胚的构建。  相似文献   

18.
The aim of this study was to investigate whether plasma anti-Muellerian hormone (AMH) levels of Holstein-Friesian heifers could be used to predict ovum pick-up (OPU) and embryo production outcomes. Plasma samples and data were collected from 64 heifers, which underwent repeated OPU with subsequent in vitro embryo production followed by embryo flushing after superovulation. AMH levels were significantly positively correlated with the number of follicles aspirated per OPU session (r = 0.45), recovered oocytes per OPU (r =0.43) and in vitro produced embryos per OPU (r = 0.28). No significant correlations between AMH and in vivo produced embryos were ascertained. Our results suggest that correlations between AMH and outcomes of an OPU-IVF program are too low to use AMH as a precise predictive parameter for the success of a particular OPU procedure in Holstein-Friesian heifers. However, AMH can help to identify groups of very good or very poor oocyte donors.  相似文献   

19.
We tested FSHp, eCG and FSHp + eCG to establish ovum pick-up (OPU) and in vitro maturation method in spotted paca. Eight healthy adult females were subjected to each of four treatments to stimulate ovarian follicular growth. All females were subjected to a hormonal protocol using a single dose of 45 mg of injectable progesterone and single intramuscular injection of 0.075 mg d-cloprostenol on day 6. Ovarian stimulation was carried out as follows: in Group TFE (FSHp and eCG), animals were treated with a single dose of 80 mg of FSHp and 200 IU of eCG intramuscularly on day 6 after the application of progesterone; in Group TF (FSHp), they were treated with a single dose of 80 mg of FSHp intramuscularly on day 6 after application of progesterone; in Group treatment eCG, they were treated with 200 IU of eCG intramuscularly on day 6 after application of progesterone; and in Group TC (saline solution), 1 ml of saline solution was administered to control does. The OPU was performed between 22 and 26 hr after gonadotropin treatments. All recovered oocytes were placed into maturation media and incubated for 24 hr. There were no differences among the mean number of observed follicles, aspirated follicles and oocytes recovered per treatment. Oocyte maturation rates did not differ among groups, except, TF and treatment eCG oocytes had greater maturation rates than TC oocytes. In this study, gonadotropin administration failed to superovulate treated does and increase oocyte retrieval efficiency. Despite the feasibility of the procedure, further studies are needed to develop and refine hormonal protocols for oocyte recovery and in vitro maturation in this species.  相似文献   

20.
This study aimed to establish a culture system that improves the in vitro development of caprine preantral follicles. In a first experiment, follicles were encapsulated as a single unit per bead and cultured singly or in groups or with five follicles in the same alginate (ALG) bead for 18 days. In a subsequent experiment, the “five follicles per bead” design was chosen to culture in ALG, fibrin–alginate (FA) or hyaluronate (HA) for 18 days. In a third experiment, we chose the five follicles per bead in FA to culture for 30 days. The culture set‐up of five follicles per ALG bead increased antrum formation and follicle diameter compared to the other culture designs (p < .05). Moreover, under this condition, 44.44% of the oocytes from in vitro cultured preantral follicles reached meiotic resumption. A significant increase of follicle diameter occurred in attachment system and FA (p < .05), but the ALG condition reached the highest among all groups on day 18 (p < .05). Follicles encapsulated in matrix produced more estradiol and progesterone than attachment system (p < .05). The expression of MMP‐9 mRNA was higher in FA than in other groups (p < .05) and similar to antral follicles from in vivo control (p > .05). Only FA group resulted in oocytes matured. After 30 days, oocytes from preantral follicles in vitro grown in FA developed to eight‐cell parthenotes. In conclusion, a culture system using FA supported the development of caprine preantral follicles cultured in group and included in the same bead of hydrogel, improving the oocyte maturation and producing parthenotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号