首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
循环式粮食干燥机的智能控制系统   总被引:2,自引:0,他引:2  
为了有效地控制干燥机的温度、水分等因素,提高干燥效率,针对国内干燥机控制系统存在的不足,设计出基于单片机和复杂可编程逻辑器件CPLD技术的一体化控制系统,采用了温度、水分、仓位等多个传感器来检测有关信息,进行干燥机的智能控制。该系统可完成温度传感器的设定,水分传感器的校准和修正,干燥机15项运行参数的设置,能进行水分、温度和故障的自动检测与报警,燃烧机的自动控制等。也可实时将测量的谷物水分值传送给计算机,便于多台干燥机的集中监控,及进行统计分析。该系统经实践检验,实现了干燥机正常可靠的各项操作和多种干燥作业,达到了高效干燥的智能化控制,且系统易于扩展,谷物品质好。  相似文献   

2.
基于深层干燥解析理论的粮食干燥自适应控制系统设计   总被引:5,自引:5,他引:0  
粮食干燥系统存在多种不确定因素,传统的靠检测出机粮水分,控制排粮速度或进风条件的做法,很难实现干燥过程的实时控制,为了能根据不同的进粮水分,自动调整干燥机的工作状况,从而提高干燥的效率和品质,在粮食深层干燥解析理论和高湿粮食水分在线测量技术的基础上,研究开发了一套粮食干燥设备自适应控制系统,能够使设备在工作过程中,按照实时的进粮水分自动变更工作制度,确保实时的操作条件最优.通过生产应用验证,系统能够在10%~35%wb的含水率变化范围、-30℃~ 40℃温度变化范围可靠地工作,控制的干燥机出粮含水率偏差≤±0.5%wb.形成了适宜于产业化推广应用的粮食集中干燥自适应控制系统.  相似文献   

3.
连续流动式粮食干燥机的仿人智能控制器   总被引:2,自引:1,他引:2  
基于经验模型的经典控制方法和现代控制方法不适合应用于多变量、大滞后和非线性粮食干燥过程。为提高粮食干燥的产品品质,根据连续流动式粮食干燥机的工况特点,研制了一种用于连续流动式干燥机的仿人智能控制器。该控制器包括运行控制级和参数校正级,可对出粮水分进行控制。应用MATLAB对连续干燥机的仿真试验表明,该控制器在超调量、上升时间和调节时间等指标都比常规PID控制有明显改善,对纯滞后时间的变化适应能力强,为干燥机控制系统的设计与实现提供了理论依据。  相似文献   

4.
大型5HFS-10负压自控粮食干燥机的设计与试验   总被引:5,自引:5,他引:0  
为了降低一次能源的消耗和提高玉米等粮食干燥产能,结合寒区高水分玉米干燥特性,以负压干燥原理为基础,设计了一种负压自控粮食干燥机.该机采用负压多级顺流缓苏结合的干燥方式,将并联式扩张口型风机和变径角状管相结合,协调冷风配额调控机构,应用多传感器实时采集在线工作参数,配合自适应调控系统,实现大宗粮食的智能保质干燥生产.该文详细进行了干燥参数和技术经济指标的计算,可为负压干燥机的设计和综合评价提供.生产试验表明,该机工作性能优良,节能显著,烘干品质好,单位质量成本低,自动化程度高.有效控制干燥机出粮水分偏差小于等于±0.5%w.b,与传统正压送风式干燥机相比,节省能耗20%以上,降低生产成本12%以上.该干燥机各项作业性能指标完全符合农场集约化和规模化干燥作业要求,可为开发节能粮食智能化干燥机型提供参考.  相似文献   

5.
一种智能化粮情自动检测系统   总被引:3,自引:1,他引:3  
粮食的安全储藏是关系到国计民生的战略大事,储粮参数的自动检测具有重要的社会意义和经济价值。为了自动检测储粮参数,提出了一种基于CAN总线的集温度、湿度、水分检测为一体的多传感器智能化粮情检测系统,它能够实时检测粮食温度、水分及仓内外空气温度、湿度等储粮基本参数,准确提供储粮状态信息,预报粮情变化趋势。实际运行结果表明,系统具有信号传输距离远、可靠性好、智能化程度高等特点。  相似文献   

6.
水稻混流干燥工艺的试验研究   总被引:1,自引:5,他引:1  
混流式粮食干燥机是当前中国应用最广泛的粮食干燥机机型,但由于水稻干燥的特殊性,横流循环干燥机基本上是水稻干燥的唯一机型,这造成国内粮食干燥机的利用率普遍不高。为了充分提高现有混流式干燥机的利用率,利用移动式混流粮食干燥机进行了稻谷的干燥试验,研究了不同的风温、不同的干燥缓苏比对稻谷爆腰率及降水速率的影响规律。研究结果表明:稻谷混流干燥过程中应有必要的缓苏。当干燥缓苏比一定时,烘干温度与爆腰率增值存在线性关系;当烘干温度一定时,干燥缓苏比与爆腰率增值存在线性关系;采用混流干燥机干燥稻谷时热风温度可以高于横流干燥机5~10℃,降水速率最高可达1.3%/h。  相似文献   

7.
高水分稻谷分程干燥工艺及效果   总被引:4,自引:3,他引:1  
针对中国南方地区稻谷收获季节需及时干燥高水分稻谷的市场需求较大和粮食干燥机的保有量较少、干燥机的使用效率受气候条件影响的技术现状,将收获的稻谷分为较高水分干燥过程和较低水分干燥过程。当稻谷含水率高于18%时,采用56~85℃的干燥介质,降水速率为0.90~2.94%/h;当稻谷含水率小于等于18%时,采用50~58℃的干燥介质,降水速率为0.49~0.93%/h。在2次干燥过程之间,采用通风仓暂存。现场试验表明,与恒温干燥工艺相比较,分程干燥工艺在保证稻谷烘后品质的条件下,可缩短干燥时间约12.8h,平均降水速率提高0.7%/h,一个收获期内可使干燥机处理量增加225%,提高干燥机的使用效率152%,且总干燥成本降低5%,有助于又好又快地进行高水分稻谷的干燥。  相似文献   

8.
基于分层信息融合的木材干燥过程含水率在线检测   总被引:2,自引:2,他引:0  
木材干燥过程是一个复杂的强耦合、非线性的动力系统,木材干燥的关键是木材含水率参数的检测。研究中依据多传感器信息融合技术,构建符合木材干燥过程的木材含水率在线检测分层融合体系。数据层融合实现干燥窑内各种参数传感器的小波滤波与在线估计,特征层融合实现环境参数(温度、湿度)与木材含水率之间LSSVM模型的建立,在此模型基础上实现木材含水率的预测输出。仿真试验研究表明,基于分层信息融合技术可有效实现木材含水率在线检测预测,通过在线检测融合平台可以实现根据不同树种,不同干燥工艺直观地将预测结果显示出来,为木材干燥自动控制系统的控制决策提供依据,具有良好的工业实际应用价值和前景。  相似文献   

9.
5HP-25型粮食干燥机设计与试验   总被引:2,自引:2,他引:0  
为了提高干燥系统的能量利用效率,增强干燥机的通用性、可靠性、作业效率和年利用率,该研究围绕增大干燥动力系数和工艺能力指数,基于粮食的物性特征,从干燥工艺方式、机械结构参数和运动参数间的内在关系入手,把几何因子和运动参数有机结合,揭示了粮食在干燥机内流动特性;按照引风降压,连续闪蒸降温,强化传热传质,自适应排粮的设计思想,研制了一款粮食通用的干燥机,实现了粮食在干燥机内连续流动过程中,自发地改变流态、连续回转换位,强化了传热传质,改善了干燥的均匀性。设计的升角为6°的变截面角状盒,与传统的横流方法相比,可使干燥动力系数增大2~4倍,干燥稻谷时的爆腰增率可控制在1%以内,发芽势提高76%以上,发芽率达到95%;设计往复式差速排粮机构,实现了自适应无损排粮,有效解决了粮食架桥、堵塞问题,避免了粮种的机械损伤。设计的5HP-25型粮食干燥机,实际应用效果显示,在粮食平均干燥强度为1.37~2.70%/h的条件下,干燥水分单位热耗为2 900~4 300kJ/kg,与国标7 400 kJ/kg相比,降低了单位热耗量。研究结果为实现优质、高效、节能干燥工艺及装备设计提供了参考。  相似文献   

10.
粮食水分分布对高频电感的影响研究   总被引:1,自引:0,他引:1  
该文研究了在利用高周波线圈的电磁感应检测粮食水分时,粮食颗粒内部发生水分移动和水分偏在的情况下,测定所受到的影响。与电阻或电容水分测定法等无损水分检测法一样,干燥后的非安定水分状态下,水分由粮食颗粒内部向外部移动,使测定值与恒温干燥法测得的水分存在较大的差异,需要对测定结果进行补正。而采用喷雾法增加粮食外侧的自由水会使测定值急剧增加。但是,高水分粮食在容器内的偏在对测定没有影响。  相似文献   

11.
谷物烘干机前馈加反馈智能PI控制系统   总被引:2,自引:0,他引:2       下载免费PDF全文
该文论述了智能PI控制算法,以8098单片机为核心组成前馈加反馈智能PI控制器,对烘干机出粮水分进行在线控制。通过对京411小麦的在线烘干实验证明智能PI控制算法用于烘干机出粮水分控制是可行的。  相似文献   

12.
谷物含水率中子法在线测量的可行性研究   总被引:15,自引:5,他引:10  
研究了处于冰冻和流动状态下的谷物含水率的快速测量。探讨了中子式测水仪对谷物含水率测量的一些基本规律,得出:谷物含水率的中子法在线测量是可行的;谷物的流动速度在一定范围内变化对慢中子计数比Rc的影响不大;谷物含水率的中子法在线测量可实现干燥机的自动控制  相似文献   

13.
谷物干燥实时在线智能水分测量系统   总被引:1,自引:2,他引:1       下载免费PDF全文
采用电阻法在线测量谷物干燥过程中的实时水分,针对测量信号质量差采用测频电路进行测量信号的阻-频转换,对于谷物水分强温度依赖性和测量本构非线性,应用基于单片机的智能数据融合方法和智能非线性处理算法,所构建的水分测量系统克服了传统电阻法水分测量误差大、信号抗干扰能力和传输性差、测量数据的温度影响大以及硬件非线性电路处理能力差等方面缺陷,具有测量精度高、测量适应性强、信号质量好、测量装置结构简单等优点。  相似文献   

14.
顺流式谷物烘干机的模糊控制系统   总被引:9,自引:4,他引:9  
介绍了如何把模糊控制算法应用于谷物烘干机出粮水分的自动控制系统。设计了一种以89c51单片机为核心的智能模糊控制器,给出了系统的整体结构的硬件实现电路及软件设计思路。通过对小麦的在线烘干试验证明该系统实时性好,控制精度高  相似文献   

15.
高频电容式联合收获机谷物含水量在线监测装置研制   总被引:5,自引:5,他引:0  
为实现联合收获机谷物含水率在线测量,使智能测产更加精确、收获速度更加合理,该文研制了高频电容式谷物含水率在线监测装置。利用有限元分析软件COMSOL Multiphysics,建立电容极板模型,针对电容极板的厚度、极板间距、相对面积对边缘效应的影响进行了三因素三水平正交优化仿真,根据仿真结果选择极板厚度0.15 mm、极板间距20 mm、极板间相对面积3 000 mm2的紫铜板作为电容极板。以STM32F103系列微处理芯片为核心构建了谷物含水率在线监测装置,设计了由电源模块、高频激励信号、交流小信号放大电路、电容极板、信号调理电路、均方根转换电路等组成的传感器检测电路。为了更加准确地监测出谷物含水率、简化电路结构、降低成本,分别对不同频率信号源进行了Multisim仿真和试验验证,最终选取10 MHz的高频信号为监测装置激励信号。该装置能对谷物含水率进行在线监测、实时显示以及存储。对谷物含水率在线监测装置分别进行了室内静态监测和田间在线监测试验,结果表明:室内静态监测试验的最大相对误差为1.57%,田间在线监测试验的最大相对误差为2.07%。  相似文献   

16.
基于微波反射法的谷物含水率在线检测装置研制   总被引:1,自引:1,他引:0  
针对稻麦联合收割机在收获作业时难以对小麦、水稻等谷物的含水率进行准确在线测量的问题,该文基于微波反射法研究了谷物含水率在线检测方法,建立了稻麦含水率检测模型,研发了一种稻麦联合收割机谷物含水率在线检测装置。该装置采用微波测量模块对稻麦含水率进行非接触式测量,设计了电压转换电路将微波参数转换成电压信号,采用滑动平均滤波算法进行信号滤波,最后通过标定试验所建立的含水率检测模型进行稻麦含水率计算,计算结果经CAN总线通讯在显示器上实时显示。基于上述理论研究、技术开发和结构设计对所研制的谷物含水率在线检测装置分别进行了室内静态试验和田间收割试验研究,试验结果表明:检测装置的对稻麦含水率的测量范围为14%~34%,在室内静态试验和田间收割试验中的性能标准差分别为0.458 3%和1.078 0%,相对误差分别在2.5%和5%左右,具有良好的准确性与实用性。  相似文献   

17.
换向通风横流式干燥机的研究及计算机辅助设计   总被引:2,自引:2,他引:0  
横流式谷物干燥机有许多优点,是世界上设计较早、使用时间较长的干燥机型之一,但同时也存在着较大的不足。为了克服其不足,该文介绍了新研究发明的换向通风横流式干燥工艺及其机型的结构原理,并运用CGDSP谷物干燥综合模拟程序进行了优化设计。  相似文献   

18.
研究了一种测量谷物含水率的声学方法,为实现谷物含水率的在线测量提出了新的途径。通过试验研究,分析得到了流动麦粒碰撞噪声声压与含水率在13~20kHz频率区间的数学关系。在此研究基础上设计的测量系统对京411小麦和农大60玉米进行了实测。试验数据表明,该方法测量精度高、测量重复性好,具有良好的开发应用前景。  相似文献   

19.
粮食热风干燥含水率在线模型解析   总被引:4,自引:4,他引:0  
为了揭示粮食在深床动态干燥过程中的含水率变化规律,指导干燥工艺设计,实现干燥过程实时跟踪与调控,提高干燥品质,降低能耗。基于薄层干燥水分扩散模型、深层干燥质量守恒原理、态函数和不可逆热力学分析方法,建立并求解了粮食深床干燥基础方程,获得了顺流、逆流、横流和静置层干燥方式下粮食含水率和干燥速率分布解析式,解析出了粮食在顺流层内经历持续降速干燥的过程,逆流层内存在干燥速率的极值点,在通风温度、湿度、送风量相同的干燥条件下,逆流干燥速率明显高于顺流,表明了逆流干燥能量利用效果优于顺流;粮食在横流和静置层内的干燥特性相同,进风侧和出风侧的干燥速率相差很大,在层厚度0.5 m、粮食含水率20%以上时,出风侧的干燥速率几乎为0,干燥的均匀性较差。在5HP-3.5型循环式缓苏干燥机上的试验结果显示,深层干燥解析值与实测值间的最大偏差为0.69%,极差范围为-0.27%~0.69%,从粮食干燥的惯性特征推断,产生偏差的原因主要是仪器检测误差。解析方法对实现粮食深床干燥过程动态跟踪和调控,指导干燥设计,降低干燥能耗、提高干燥效率和干燥机产能等具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号