首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

2.
Temporal and spatial variability of soil respiration (Rs) was measured and analyzed in a 74-year-old, mixedwood, boreal forest in Ontario, Canada, over a period of 2 years (August 2003–July 2005). The ranges of Rs measured during the two study years were 0.5–6.9 μmol CO2 m−2 s−1 for 2003–2004 (Year 1) and 0.4–6.8 μmol CO2 m−2 s−1 for 2004–2005 (Year 2). Mean annual Rs for the stand was the same for both years, 2.7 μmol CO2 m−2 s−1. Temporal variability of Rs was controlled mainly by soil temperature (Ts), but soil moisture had a confounding effect on Ts. Annual estimates of total soil CO2 emissions at the site, calculated using a simple empirical RsTs relationship, showed that Rs can account for about 88 ± 27% of total annual ecosystem respiration at the site. The majority of soil CO2 emissions came from the upper 12 to 20 cm organic LFH (litter–fibric–humic) soil layer. The degree of spatial variability in Rs, along the measured transect, was seasonal and followed the seasonal trend of mean Rs: increasing through the growing season and converging to a minimum in winter (coefficient of variation (CV) ranged from 4 to 74% in Year 1 and 4 to 62% in Year 2). Spatial variability in Rs was found to be negatively related to spatial variability in the C:N ratio of the LHF layer at the site. Spatial variability in Rs was also found to depend on forest tree species composition within the stand. Rs was about 15% higher in a broadleaf deciduous tree patch compared to evergreen coniferous area. However, the difference was not always significant (at 95% CI). In general, Rs in the mixedwood patch, having both deciduous and coniferous species, was dominated by broadleaf trees, reflecting changing physiological controls on Rs with seasons. Our results highlight the importance of discerning soil CO2 emissions at a variety of spatial and temporal scales. They also suggest including the LFH soil layer and allowing for seasonal variability in CO2 production within that layer, when modeling soil respiration in forest ecosystems.  相似文献   

3.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

4.
Global change scenarios predict an increasing frequency and duration of summer drought periods in Central Europe especially for higher elevation areas. Our current knowledge about the effects of soil drought on nitrogen trace gas fluxes from temperate forest soils is scarce. In this study, the effects of experimentally induced drought on soil N2O and NO emissions were investigated in a mature Norway spruce forest in the Fichtelgebirge (northeastern Bavaria, Germany) in two consecutive years. Drought was induced by roof constructions over a period of 46 days. The experiment was run in three replicates and three non-manipulated plots served as controls. Additionally to the N2O and NO flux measurements in weekly to monthly intervals, soil gas samples from six different soil depths were analysed in time series for N2O concentration as well as isotope abundances to investigate N2O dynamics within the soil. N2O fluxes from soil to the atmosphere at the experimental plots decreased gradually during the drought period from 0.2 to −0.0 μmol m−2 h−1, respectively, and mean cumulative N2O emissions from the manipulated plots were reduced by 43% during experimental drought compared to the controls in 2007. N2O concentration as well as isotope abundance analysis along the soil profiles revealed that a major part of the soil acted as a net sink for N2O, even during drought. This N2O sink, together with diminished N2O production in the organic layers, resulted in successively decreased N2O fluxes during drought, and may even turn this forest soil into a net sink of atmospheric N2O as observed in the first year of the experiment. Enhanced N2O fluxes observed after rewetting up to 0.1 μmol m−2 h−1 were not able to compensate for the preceding drought effect. During the experiment in 2006, with soil matric potentials in 20 cm depth down to −630 hPa, cumulative NO emissions from the throughfall exclusion plots were reduced by 69% compared to the controls, whereas cumulative NO emissions from the experimental plots in 2007, with minimum soil matric potentials of −210 hPa, were 180% of those of the controls. Following wetting, the soil of the throughfall exclusion plots showed significantly larger NO fluxes compared to the controls (up to 9 μmol m−2 h−1 versus 2 μmol m−2 h−1). These fluxes were responsible for 44% of the total emission of NO throughout the whole course of the experiment. NO emissions from this forest soil usually exceeded N2O emissions by one order of magnitude or more except during wintertime.  相似文献   

5.
Relationship between soil CO2 concentrations and forest-floor CO2 effluxes   总被引:3,自引:2,他引:3  
To better understand the biotic and abiotic factors that control soil CO2 efflux, we compared seasonal and diurnal variations in simultaneously measured forest-floor CO2 effluxes and soil CO2 concentration profiles in a 54-year-old Douglas fir forest on the east coast of Vancouver Island. We used small solid-state infrared CO2 sensors for long-term continuous real-time measurement of CO2 concentrations at different depths, and measured half-hourly soil CO2 effluxes with an automated non-steady-state chamber. We describe a simple steady-state method to measure CO2 diffusivity in undisturbed soil cores. The method accounts for the CO2 production in the soil and uses an analytical solution to the diffusion equation. The diffusivity was related to air-filled porosity by a power law function, which was independent of soil depth. CO2 concentration at all depths increased with increase in soil temperature, likely due to a rise in CO2 production, and with increase in soil water content due to decreased diffusivity or increased CO2 production or both. It also increased with soil depth reaching almost 10 mmol mol−1 at the 50-cm depth. Annually, soil CO2 efflux was best described by an exponential function of soil temperature at the 5-cm depth, with the reference efflux at 10 °C (F10) of 2.6 μmol m−2 s−1 and the Q10 of 3.7. No evidence of displacement of CO2-rich soil air with rain was observed.Effluxes calculated from soil CO2 concentration gradients near the surface closely agreed with the measured effluxes. Calculations indicated that more than 75% of the soil CO2 efflux originated in the top 20 cm soil. Calculated CO2 production varied with soil temperature, soil water content and season, and when scaled to 10 °C also showed some diurnal variation. Soil CO2 efflux and concentrations as well as soil temperature at the 5-cm depth varied in phase. Changes in CO2 storage in the 0–50 cm soil layer were an order of magnitude smaller than measured effluxes. Soil CO2 efflux was proportional to CO2 concentration at the 50-cm depth with the slope determined by soil water content, which was consistent with a simple steady-state analytical model of diffusive transport of CO2 in the soil. The latter proved successful in calculating effluxes during 2004.  相似文献   

6.
To study the feasibility of using magnetic techniques for monitoring soil pollution in Shanghai, magnetic properties and heavy metals in the topsoils in an urban site (Songnan Town) and a less-urbanized agricultural site (Luojing Town) in Baoshan District, Shanghai, were studied. Compared with the background, magnetic signals of the urban topsoils are extremely enhanced with magnetic susceptibility (χlf) from 127.3–1959 × 10− 8 m3 kg− 1; while those of the agricultural topsoils are only slightly increased. However, both the urban and agricultural topsoils contain few pedogenic SP grains, as indicated by their low χfd% (< 3.6%). Ratios of χarm/SIRM, χarm/χlf and SIRM/χlf indicate that the grain size of magnetic minerals in the urban topsoils is significantly coarser than that in the background and the agricultural topsoils. Furthermore, the urban topsoils show low coercivity and magnetic soft behaviors, as indicated by higher SOFT%, lower HARD%, higher IRM300 mT/SIRM (close to 1) and lower IRM− 200 mT/SIRM (close to − 1). It suggests that the urban topsoils have received some coarse ferrimagnetic particles. Heavy metals are highly enriched in the magnetic fractions of the topsoils. Geochemical properties of the magnetic fraction of the urban topsoils are significantly different from those of the agricultural topsoils, further indicating that the extra magnetic minerals accumulated in the urban topsoils are neither inherited from soil parent materials nor from pedogenic processes, but originate from anthropogenic activities. The significant correlations between heavy metals and χlf, χarm, SIRM, SOFT and HIRM of the topsoils in the district indicate that the magnetic techniques can be used for monitoring soil pollution in Shanghai. The soils with χlf from 39–50 × 10− 8 m3 kg− 1 in the district are tentatively defined as “slightly polluted soils”; those with χlf > 50 × 10− 8 m3 kg− 1 are defined as “polluted soils”.  相似文献   

7.
Peatlands cover about 21% of the landscape and contain about 80% of the soil carbon stock in western Canada. However, the current rates of carbon accumulation and the environmental controls on ecosystem photosynthesis and respiration in peatland ecosystems are poorly understood. As part of Fluxnet-Canada, we continuously measured net ecosystem carbon dioxide exchange (NEE) using the eddy covariance technique in a treed fen dominated by stunted Picea mariana and Larix laricina trees during August 2003–December 2004. The total carbon stock in the ecosystem was approximately 51,000 g C m−2, with only 540 g C m−2 contributed by live above ground vegetation. The NEE measurements were used to parameterize simple physiological models to assess temporal variation in maximum ecosystem photosynthesis (Amax) and ecosystem respiration rate at 10 °C (R10). During mid-summer the ecosystem had a relatively high Amax (approx. 30 μmol m−2 s−1) with relatively low R10 (approx. 4 μmol m−2 s−1). The peak mid-day NEE uptake rate during July and August was 10 μmol m−2 s−1. The ecosystem showed large seasonal variation in photosynthetic and respiratory activity that was correlated with shifts in temperature, with both spring increases and fall decreases in Amax well predicted by the mean daily air temperature averaged over the preceding 21 days. Leaf-level gas exchange and spectral reflectance measurements also suggested that seasonal changes in photosynthetic activity were primarily controlled by shifts in temperature. Ecosystem respiration was strongly correlated with changes in ecosystem photosynthesis during the growing season, suggesting important links between plant activity and mycorrhizae and microbial activity in the shallow layers of the peat. Only very low rates of respiration were observed during the winter months. During 2004, the peatland recorded a net annual gain of 144 g C m−2 year−1, the result of a difference between gross photosynthesis of 713 and total ecosystem respiration of 569 g C m−2 year−1.  相似文献   

8.
We measured the terpene concentration in pentane and water extracts from soil horizons (litter, organic, top and low mineral) and from roots growing in top and low mineral horizons on a distance gradient from Pinus halepensis L. trees growing alone on a grassland. Terpene concentrations in pentane were higher than in water extracts, although β-caryophyllene showed relatively high solubility in water. The litter and roots were important sources of terpenes in soil. Alpha-pinene dominated in roots growing in both “top” (A1) and “low” (B) mineral horizons (123 ± 36 μg g−1 or 14 ± 5 mg m−2) and roots in low mineral horizon (270 ± 91 μg g−1 or 7 ± 2 mg m−2). Beta-caryophyllene dominated in litter (1469 ± 331 μg g−1 or 2004 ± 481 mg m−2). Terpene concentration in soil decreased with increasing distance to the trunk. This is likely to be related to changes in litter and roots type on the distance gradient from pine to grass and herbs. The relative contributions of all compounds, except α-pinene, were similar in the mineral soils and litter. This suggests that litter of P. halepensis is probably the main source of major terpene compounds. However, long-term emissions of α-pinene from P. halepensis roots might also contribute to α-pinene concentrations in rhizosphere soils.  相似文献   

9.
Understanding the spatial variation of temperature sensitivity (i.e. Q10) of soil respiration (Rs) and its controlling factors, is critical to improve the precision of carbon budget estimations at regional scales. In this study, data from 2-3 continuous years of Rs measurements over 15 ecosystems of ChinaFLUX were summarized to analyze the response of Rs to soil temperature. Moreover, we improved our dataset by collecting previously published Q10 values from 34 ecosystems in China. The ecosystems studied were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Spatial variations of Q10 and its controlling factors were analyzed. The results showed that soil temperature at a 5 cm depth satisfactorily explained the seasonal variations in Rs of the 15 ChinaFLUX ecosystems (R2 varying from 0.37 to 0.83). Based on the overall data, the Q10 values of Rs in China ranged from 1.28 to 4.75. The spatial variations in Q10 were primarily determined by soil temperature during measurement periods, soil organic carbon (SOC) content, and ecosystem type. Ecosystems in colder regions and with higher SOC content had relatively higher Q10 values. Moreover, ecosystems of different vegetation types showed different Q10 values. A temperature- and SOC-dependent function for Q10 is suggested, which could be a valuable reference for improving the regional-scale models of Rs and ecosystem carbon cycles.  相似文献   

10.
During raindrop impact soil, aggregates breakdown and produce finer, more transportable particles and micro-aggregates. These particles and micro-aggregates appreciably affect the processes of infiltration, seal and crust development, runoff, and soil erosion. Aggregate stability is, therefore, an important property that may explain, quantify, and predict these processes. This study was designed to develop improved formulae for assessing interrill erosion rate by incorporating the aggregate stability index (As) in the prediction evaluations for soil erodibilites of Ultisols in subtropical China. Field experiments of simulated rainfall involving rainstorm simulations with medium and high rainfall intensity were conducted on six cultivated soils for which the soil aggregate stability was determined by the LB-method. This study yielded two prediction equations Di = 0.23AsI2(1.05 − 0.85 exp−4sin θ) and Di = 0.34AsqI(1.05 − 0.85 exp−4sin θ) that allowed a comparison of their efficiency in assessing the interrill erosion rate. As is an aggregate stability index, which reflected the main mechanisms of aggregate breakdown in interrill erosion process, θ is the slope angle, I is the rainfall intensity, and q is the runoff rate. Relatively good agreement was obtained between predicted and measured values of erosion rates for each of the prediction models (R2 = 0.86**, and R2 = 0.90**). It was concluded that these formulae based on the stability index, As, have the potential to improve methodology for assessing interrill erosion rates for the subtropical Chinese Ultisols. Considering the time-consuming and costly experimentation of runoff rate measurements, the equation without runoff rate (q) was the more convenient and effective one to predict interrill erosion rates on Ultisols of subtropical China.  相似文献   

11.
Ayman A. Suleiman   《CATENA》2008,73(3):312-320
Crop management models require simulation of daily soil water dynamics. The objective of this study was to develop a model to simulate the daily soil water dynamics during vertical drainage with reasonable accuracy using the incoming flow concept. The execution of this model, which has been developed based on the conservation of mass law, consists of two steps. First, calculating the potential daily change of soil water content (Δθp) for each soil layer in the profile assuming each one receives no water from the above layer. Then, calculating the actual daily change of soil water (Δθa) for each soil layer in the profile by adjusting Δθp using the incoming water flow, which can be defined as the amount of drainage water that reaches a layer in a soil profile from the above layer. The model was compared with the Suleiman and Ritchie [Suleiman, A.A., Ritchie, J.T., 2004. Modifications to the DSSAT vertical drainage model for more accurate soil water dynamics estimation. Soil Sci. 169 (11), 745–757] vertical drainage model (SRVDM) and HYDRUS-1D for diverse soils and was tested using drainage experimental data of a Eutric Regosol in Bekkevoort, Belgium and a sandy soil in Georgia, U.S. The difference in Δθp between the new model and HYDRUS-1D for diverse soils ranged from − 0.01 to 0.016 m3 m− 3 for the first day and from − 0.005 to − 0.025 m3 m− 3 for the second day while the difference in Δθp between the SRVDM and HYDRUS-1D for these soils ranged from 0.014 to 0.062 m3 m− 3 for the first day and from − 0.01 to 0.026 m3 m− 3 for the second day. The relative maximum absolute errors in Δθa between the new model and HYDRUS-1D was 10% while the relative maximum absolute errors in Δθa between the SRVDM and HYDRUS-1D was 112%. In the experiments, the root mean square difference of the soil water content for the new model was lower than that for the SRVDM at the different soil depths. These results indicated that the new model outperformed the SRVDM in simulating Δθp and Δθa for diverse soil. It can be concluded that the new model was robust and reasonably accurate for diverse soils at different soil depths. The implementation of such model will improve the accuracy and applicability of regional soil water dynamics simulation and will reduce considerably the computational time and the required inputs.  相似文献   

12.
Reiji Kimura  Long Bai  Jiemin Wang 《CATENA》2009,77(3):292-296
We analyzed relationships among dust outbreaks, Normalized Difference Vegetation Indices (NDVI), and surface soil water content (0 to 2 cm depth) on the Loess Plateau, a significant dust source area of East Asia. World Surface Data for wind speed and current weather, coarse-resolution data for NDVI, and a three-layer soil model for surface soil water content were used. The threshold NDVI for preventing dust outbreaks was about 0.2 when the wind speed ranged from 7 to 8 m s− 1. This threshold NDVI corresponds to a vegetation cover of 18%. The threshold ratio of surface soil water content to the field capacity (θr) was about 0.2. Conditions facilitating dust outbreaks on the Loess Plateau are when NDVI is less than 0.2 with wind speed  7 m s− 1 and θr < 0.2, and when NDVI is greater than 0.2 with wind speed  9 m s− 1 and θr < 0.2.  相似文献   

13.
The CO2 efflux from loamy Haplic Luvisol and heavy metal (HM) uptake by Zea mays L. were studied under increased HM contamination: Cd, Cu, and Ni up to 20, 1000, and 2500 mg kg−1 soil, respectively. Split-root system with contrasting HM concentrations in both soil halves was used to investigate root-mediated HM translocation in uncontaminated soil zones. To separate root-derived and soil organic matter (SOM)-derived CO2 efflux from soil, 14CO2 pulse labeling of 15-, 25-, and 35-days-old plants was applied. The CO2 evolution from the bare soil was 10.6 μg C–CO2 d−1 g−1 (32 kg C–CO2 d−1 ha−1) and was not affected by HM (except 2500 mg Ni kg−1). The average CO2 efflux from the soil with maize was about two times higher and amounted for about 22.0 μg C–CO2 d−1 g−1. Portion of assimilates respired in the rhizosphere decreased with plant development from 6.0 to 7.0% of assimilated C for 25-days-old Zea mays to 0.4–2.0% for 45-days-old maize. The effect of the HM on root-derived 14CO2 efflux increased with rising HM content in the following order: Cd < Cu < Ni. In Cu and Ni contaminated soils, shoot and root dry matter decreased to 70% and to 50% of the uncontaminated control, respectively. Plants contained much more HM in the roots than in the shoots. A split-root system with contrasting HM concentrations allowed to trace transport of mobile forms of HM by roots from contaminated soil half into the uncontaminated soil half. The portion of mobile HM forms in the soil (1 M NH4NO3 extract) increased with contamination and amounted to 9–16%, 2–6% and 1.5–3.5% for Cd, Cu, and Ni, respectively. Corresponding values for the easily available HM (1 M NH4OAc extract) were 22–52%, 1–20% and 5–8.5%. Heavy metal availability for plants decreased in the following order: Cd > Cu ≥ Ni. No increase of HM availability in the soil was found after maize cultivation.  相似文献   

14.
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m−2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m−2 s−1 in 2002 while only approximately 5 μmol m−2 s−1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient (Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO2 exchange and ecosystem gross photosynthesis.  相似文献   

15.
Extensive research has focused on the temperature sensitivity of soil respiration. However, in Mediterranean ecosystems, soil respiration may have a pulsed response to precipitation events, especially during prolonged dry periods. Here, we investigate temporal variations in soil respiration (Rs), soil temperature (T) and soil water content (SWC) under three different land uses (a forest area, an abandoned agricultural field and a rainfed olive grove) in a dry Mediterranean area of southeast Spain, and evaluate the relative importance of soil temperature and water content as predictors of Rs. We hypothesize that soil moisture content, rather than soil temperature, becomes the major factor controlling CO2 efflux rates in this Mediterranean ecosystem during the summer dry season. Soil CO2 efflux was measured monthly between January 2006 and December 2007 using a portable soil respiration instrument fitted with a soil respiration chamber (LI-6400-09). Mean annual soil respiration rates were 2.06 ± 0.07, 1.71 ± 0.09, and 1.12 ± 0.12 μmol m−2 s−1 in the forest, abandoned field and olive grove, respectively. Rs was largely controlled by soil temperature above a soil water content threshold value of 10% at 0-15 cm depth for forest and olive grove, and 15% for abandoned field. However, below those thresholds Rs was controlled by soil moisture. Exponential and linear models adequately described Rs responses to environmental variables during the growing and dry seasons. Models combining abiotic (soil temperature and soil rewetting index) and biotic factors (above-ground biomass index and/or distance from the nearest tree) explained between 39 and 73% of the temporal variability of Rs in the forest and olive grove. However, in the abandoned field, a single variable - either soil temperature (growing season) or rewetting index (dry season) - was sufficient to explain between 51 and 63% of the soil CO2 efflux. The fact that the rewetting index, rather than soil water content, became the major factor controlling soil CO2 efflux rates during the prolonged summer drought emphasizes the need to quantify the effects of rain pulses in estimates of net annual carbon fluxes from soil in Mediterranean ecosystems.  相似文献   

16.
Soil water content is the most sought-after soil physical parameter. Recent experiments have shown that dual probe heat pulse (DPHP) sensors can be used to determine volumetric water content of soil without roots. Little work has been done to document the performance of DPHP sensors in the presence of roots, and no work has been done with a taprooted plant. Thus, the objective of this experiment was to determine the accuracy of DPHP sensors in measuring volumetric water content (θv) and changes in volumetric soil water content (Δθv) in soil with a branched taproot system. Another objective was to determine plant water use. A sunflower plant (Helianthus annuus L. ‘Hysun 354') was grown in a column (0.20 m in diameter and height) with Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents; FAO-Eutric Fluvisols) containing 11 DPHP sensors. Results from the sensors were compared with those from the gravimetric method. Discrepancies between measurements of soil volumetric water content and changes of soil volumetric water by the DPHP and gravimetric methods were small (within 0.018 and 0.01 m3 m−3, respectively). The sunflower had a small amount of nocturnal transpiration, and roots took up water at a higher rate near the surface of the soil than at deeper depths. The results showed that the DPHP technique can monitor volumetric soil water content in the presence of a taproot.  相似文献   

17.
A Lagrangian experiment was conducted over Iowa during the daytime (9:00–17:30 LT) on June 19, 2007 as part of the North American Carbon Program's Mid-Continent Intensive using a light-weight and operationally flexible aircraft to measure a net drawdown of CO2 concentration within the boundary layer. The drawdown can be related to net ecosystem exchange when anthropogenic emissions are estimated using a combination of the Vulcan fossil fuel emissions inventory coupled with a source contribution analysis using HYSPLIT. Results show a temporally and spatially averaged net CO2 flux of −9.0 ± 2.4 μmol m−2 s−1 measured from the aircraft data. The average flux from anthropogenic emissions over the measurement area was 0.3 ± 0.1 μmol CO2 m−2 s−1. Large-scale subsidence occurred during the experiment, entraining 1.0 ± 0.2 μmol CO2 m−2 s−1 into the boundary layer. Thus, the CO2 flux attributable to the vegetation and soils is −10.3 ± 2.4 μmol m−2 s−1. The magnitude of the calculated daytime biospheric flux is consistent with tower-based eddy covariance fluxes over corn and soybeans given existing land-use estimates for this agricultural region. Flux values are relatively insensitive to the choice of integration height above the boundary layer and emission footprint area. Flux uncertainties are relatively small compared to the biospheric fluxes, though the measurements were conducted at the height of the growing season.  相似文献   

18.
CO2 exchange was measured on the forest floor of a coastal temperate Douglas-fir forest located near Campbell River, British Columbia, Canada. Continuous measurements were obtained at six locations using an automated chamber system between April and December, 2000. Fluxes were measured every half hour by circulating chamber headspace air through a sampling manifold assembly and a closed-path infrared gas analyzer. Maximum CO2 fluxes measured varied by a factor of almost 3 between the chamber locations, while the highest daily average fluxes observed at two chamber locations occasionally reached values near 15 μmol C m−2 s−1. Generally, fluxes ranged between 2 and 10 μmol C m−2 s−1 during the measurement period. CO2 flux from the forest floor was strongly related to soil temperature with the highest correlation found with 5 cm depth temperature. A simple temperature dependent exponential model fit to the nighttime fluxes revealed Q10 values in the normal range of 2–3 during the warmer parts of the year, but values of 4–5 during cooler periods. Moss photosynthesis was negligible in four of the six chambers, while at the other locations, it reduced daytime half-hourly net CO2 flux by about 25%. Soil moisture had very little effect on forest floor CO2 flux. Hysteresis in the annual relationship between chamber fluxes and soil temperatures was observed. Net exchange from the six chambers was estimated to be 1920±530 g C m−2 per year, the higher estimates exceeding measurement of ecosystem respiration using year-round eddy correlation above the canopy at this site. This discrepancy is attributed to the inadequate number of chambers to obtain a reliable estimate of the spatial average soil CO2 flux at the site and uncertainty in the eddy covariance respiration measurements.  相似文献   

19.
The aim of this work was to compare the kinetic parameters of acid phosphatase (EC 3.1.3.2.) extracted from two forest soils under oak or pine. Soil was extracted with 4 mM CaCl2 and the extract was divided into two fractions by filtration: one >0.2 μm containing microbial cells and soil particulates, and the other <0.2 μm containing fine particles and dissolved organic compounds of soil. The >0.2 μm fraction had higher Km (0.26–0.82 vs. 0.12–0.39) and Vmax (0.07–0.79 vs. 0.06–0.16) values than the <0.2 μm fraction, indicating a higher enzyme-substrate affinity and smaller amount of enzyme in fine particles and dissolved organic matter.  相似文献   

20.
RZ-SHAW is a hybrid model, comprised of modules from the Simultaneous Heat and Water (SHAW) model integrated into the Root Zone Water Quality Model (RZWQM) that allows more detailed simulation of different residue types and architectures that affect heat and water transfer at the soil surface. RZ-SHAW allows different methods of surface energy flux evaluation to be used: (1) the SHAW module, where evapotranspiration (ET) and soil heat flux are computed in concert with a detailed surface energy balance; (2) the Shuttleworth–Wallace (S–W) module for ET in which soil surface temperature is assumed equal air temperature; and (3) the PENFLUX module, which uses a Penman transformation for a soil slab under incomplete residue cover. The objective of this study was to compare the predictive accuracy of the three RZ-SHAW modules to simulate effects of residue architecture on net radiation, soil temperature, and water dynamics near the soil surface. The model was tested in Akron, Colorado in a wheat residue-covered (both standing and flat) no-till (NT) plot, and a reduced till (RT) plot where wheat residue was incorporated into the soil. Temperature difference between the soil surface and ambient air frequently exceeded 17 °C under RT and NT conditions, invalidating the isothermal assumption employed in the S–W module. The S–W module overestimated net radiation (Rn) by an average of 69 Wm−2 and underestimated the 3-cm soil temperature (Ts3) by 2.7 °C for the RT plot, attributed to consequences of the isothermal assumption. Both SHAW and PENFLUX modules overestimated midday Ts3 for RT conditions but underestimated Ts3 for NT conditions. Better performances of the SHAW and PENFLUX surface energy evaluations are to be expected as both approaches are more detailed and consider a more discretized domain than the S–W module. PENFLUX simulated net radiation slightly better than the SHAW module for both plots, while Ts3 was simulated the best by SHAW, with a mean bias error of +0.1 °C for NT and +2.7 °C for RT. Simulation results for soil water content in the surface 30 cm (θv30) were mixed. The NT conditions were simulated best by SHAW, with mean bias error for θv30 within 0.006 m3 m−3; RT conditions were simulated best by the PENFLUX module, which was within 0.010 m3 m−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号