首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

2.
Light horse mares, stallions, and geldings were used to 1) extend our observations on the thyrotropin releasing hormone (TRH) inhibition of GH secretion in response to physiologic stimuli and 2) test the hypothesis that stimulation of endogenous TRH would decrease the normal rate of GH secretion. In Exp. 1 and 2, pretreatment of mares with TRH (10 microg/kg BW) decreased (P < 0.001) the GH response to exercise and aspartate infusion. Time analysis in Exp. 3 indicated that the TRH inhibition lasted at least 60 min but was absent by 120 min. Administration of a single injection of TRH to stallions in Exp. 4 increased (P < 0.001) prolactin concentrations as expected but had no effect (P > 0.10) on GH concentrations. Similarly, 11 hourly injections of TRH administered to geldings in Exp. 5 did not alter (P > 0.10) GH concentrations either during the injections or for the next 14 h. In Exp. 5, it was noted that the prolactin and thyroid-stimulating hormone responses to TRH were great (P < 0.001) for the first injection, but subsequent injections had little to no stimulatory effect. Thus, Exp. 6 was designed to determine whether the inhibitory effect of TRH also waned after multiple injections. Geldings pretreated with five hourly injections of TRH had an exercise-induced GH response identical to that of control geldings, indicating that the inhibitory effect was absent after five TRH injections. Retrospective analysis of pooled, selected data from Exp. 4, 5, and 6 indicated that endogenous GH concentrations were in fact lower (P < 0.01) from 45 to 75 min after TRH injection but not thereafter. In Exp. 7, 6-n-propyl-2-thiouracil was fed to stallions to reduce thyroid activity and hence thyroid hormone feedback, potentially increasing endogenous TRH secretion. Treated stallions had decreased (P < 0.01) concentrations of thyroxine and elevated (P < 0.01) concentrations of thyroid-stimulating hormone by d 52 of feeding, but plasma concentrations of GH and prolactin were unaffected (P > 0.10). In contrast, the GH response to aspartate and the prolactin response to sulpiride were greater (P < 0.05) in treated stallions than in controls. In summary, TRH inhibited exercise- and aspartate-induced GH secretion. The duration of the inhibition was at least 1 h but less than 2 h, and it waned with multiple injections. There is likely a TRH inhibition of endogenous GH episodes as well. Reduced thyroid feedback on the hypothalamic-pituitary axis did not alter basal GH and prolactin secretion.  相似文献   

3.
Pituitary and serum from 86 male or female horses of various reproductive states were collected in the normal breeding season (summer) and in the nonbreeding season (winter) at a commercial slaughterhouse. Concentrations of prolactin (PRL), luteinizing hormone (LH) and follicle stimulating hormone (FSH) were measured by radioimmunoassay. Concentrations of pregnant mare serum gonadotropin and reproductive steroids in serum and gross appearance of the reproductive tract and gonads were used to catagorize reproductive state. Concentrations of PRL were higher (P less than .01) in summer than in winter in pituitary and serum of mares, stallions and geldings. In summer, mares had higher (P less than .01) concentrations of PRL in serum than stallions. In mares, concentrations of LH in pituitary were higher (P less than .05) in summer than in winter. Concentrations of LH in serum were higher (P less than .01) in summer than in winter in mares and geldings, higher (P less than .01) in mares than in stallions in summer, higher (P less than .01) in geldings than in stallions in summer and higher (P less than .01) in mares with low serum progesterone (P) concentrations than in mares with high P concentrations in summer. Concentrations of FSH in pituitary and serum did not differ between summer and winter for any type of horse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ten stallions were used to determine if the stallion responds to administration of testosterone propionate (TP) with an increase in follicle stimulating hormone (FSH) secretion after administration of gonadotropin releasing hormone (GnRH) as has been previously observed for geldings and intact and ovariectomized mares. Five stallions were treated with TP (350 μg/kg of body weight) in safflower oil every other day for 11 days; control stallions received injections of safflower oil. The response to GnRH (1.0 μg/kg of body weight) was determined for all stallions before the onset of treatment (GnRH I) and at the end of treatment (GnRH II). Blood samples were also withdrawn daily from 3 days prior to treatment through GnRH II. Treatment with TP decreased (P<.10) concentrations of FSH in daily blood samples. However, treatment with TP did not affect (P>.10) the GnRH-induced secretion of FSH. Concentrations of luteinizing hormone (LH) decreased (P<.05) in daily blood samples averaged over both groups of stallions and were lower (P<.10) in TP-treated stallions than in controls during the latter days of treatment. We conclude that TP administration to stallions does not alter the FSH response to GnRH as has been observed for geldings and for mares of several reproductive states.  相似文献   

5.
The objective of this study was to evaluate the suppressive effect of an LHRH antagonist, Cetrorelix SB-75 (SB-75), on secretion of LH, FSH and ovarian function in beef heifers. In Exp. 1, heifers were treated with a single dose of 10 microg/kg body weight intramuscularly on d 3 of the estrous cycle. In Exp. 2, heifers received either a single injection (100 microg/kg) of SB-75 on d 3 of the estrous cycle or multiple injections of 20 microg/kg on d 3, 4, 5, 6, and 7. Serum LH, but not FSH, was suppressed from one to several days. However, neither FSH nor progesterone was significantly altered. In Exp. 3, heifers received an injection vehicle (5% mannitol) or 100 microg/kg BW of SB-75 on d 1 of the estrous cycle (30 h after first observed standing estrus). Injection of SB-75 suppressed LH pulse frequency on d 3, 5, and 7 (P < 0.001). The mean LH concentrations in the SB-75 treatment groups were lower on d 3 (P < 0.01) and 5 (P < 0.05). There were no differences (P > 0.1) between the two groups in the mean concentrations of LH on d 1, 7, or 14. Treatment did not affect the secretion pattern or concentration of FSH. Injection of SB-75 did not alter estradiol-173 concentrations (P > 0.1). Treatment reduced corpus luteum (CL) function as indicated by lower progesterone production. However, the length of the estrous cycle was not shortened. These data show that the CL can form and survive in the face of depressed LH concentrations during the early stages of the estrous cycle.  相似文献   

6.
Five experiments were performed to evaluate the effects of dexamethasone (DEX), gender, and testosterone on plasma leptin concentrations in horses. In experiment 1, plasma leptin, insulin, glucose, and IGF-1 concentrations were increased (P < 0.01) in stallions following five daily injections of DEX (125 microg/kg BW). In experiment 2, leptin concentrations increased (P < 0.01) in mares, geldings, and stallions following a single injection of DEX, and the response was greater (P < 0.01) in mares and geldings than in stallions. The gender effect was confounded by differences in body condition scores and diet; however, based on stepwise regression analysis, both BCS and gender were significant sources of variation in the best fit model for pre-DEX leptin concentrations (R(2) = 0.65) and for maximum leptin response to DEX (R(2) = 0.75). In experiment 3, in which mares and stallions were pair-matched based on age and body condition and fed similar diets, mares again had higher (P < 0.01) leptin concentrations than stallions after DEX treatment as used in experiment 2. In experiment 4, there was no difference (P > 0.1) in plasma leptin response in mares following four single-injection doses of DEX from 15.6 to 125 microg/kg BW. In experiment 5, treatment of mares with testosterone propionate every other day for 5 days did not alter (P > 0.1) plasma leptin concentrations or the leptin response to DEX. In conclusion, multiple injections of DEX increase leptin concentrations in stallions, as does a single injection in mares (as low as 15.6 microg/kg BW), geldings and stallions. The greater leptin levels observed in mares and geldings relative to stallions were due partially to their greater body condition and partially to the presence of hyperleptinemic individuals; however, even after accounting for body condition and diet, mares still had greater leptin concentrations than stallions after DEX administration. Elevation of testosterone levels in mares for approximately 10 days did not alter leptin concentrations in mares.  相似文献   

7.
Thirty-nine adult light horse mares, geldings, and stallions were used in two experiments to assess the pituitary hormone and insulin responses to infusions of arginine, aspartic acid, lysine, glutamic acid, and N-methyl-D,L-aspartate (NMA). In Exp. 1, 27 horses were assigned to one of three infusion treatments: 1) physiological saline (1 L); 2) 2.855 mmol of arginine/kg BW in 1 L of water; or 3) 2.855 mmol of aspartic acid/kg BW in 1 L of water. In Exp. 2, 12 horses were assigned, in a multiple-square 4 x 4 Latin square design, to one of four infusion treatments: 1) 2 mL of saline/kg BW; 2) 2.855 mmol of lysine/kg BW in water; 3) 2.855 mmol of glutamic acid/kg BW in water; or 4) 1 mg of NMA/kg BW in water. In Exp. 1, an acute (within 20 min) release of growth hormone (GH) was induced (P = 0.002) by aspartic acid. In contrast, acute release of prolactin (P = 0.001) and insulin (P = 0.002) was induced only by arginine; moreover, the arginine effect on insulin was present only in mares (P = 0.011). In Exp. 2, an acute release of GH was induced (P = 0.001) by glutamic acid and NMA. In males, the glutamic acid-induced GH release was greater than that of NMA; in mares, the NMA-induced GH release was greater than that of glutamic acid (P = 0.069). Both lysine and glutamic acid induced (P = 0.001) acute release of prolactin, whereas an acute release of insulin was elicited (P = 0.002) only by lysine. The NMA-induced LH response was due almost entirely to the response in mares and stallions (P = 0.016), and the NMA-induced FSH release was due almost entirely to the response in mares (reproductive status effect; P = 0.004). In the horse, aspartic acid, glutamic acid, and NMA seem to stimulate GH release; arginine and lysine seem to stimulate prolactin and insulin release; and NMA seems to stimulate LH and FSH release. It seems that N-methyl-D-aspartate glutamate receptors are involved in controlling GH, LH, and FSH secretion, whereas other mechanisms are involved with prolactin secretion. These results also indicate that gonadal steroids interact with amino acid-induced pituitary hormone release in adult horses.  相似文献   

8.
Deslorelin acetate implants, recently licensed in Ireland and the UK for ovulation induction in mares, have been associated with prolonged interovulatory intervals in USA studies, leading to the practice of removing implants postovulation. Trial data in Australia indicate a less pronounced effect on interovulatory intervals, suggesting possible geographical variation. Objectives of the current study were to assess the effect of deslorelin implants, with and without removal on oestrous cycle length in Irish- and UK-based Thoroughbred broodmares. Data were collected retrospectively from 88 oestrous cycles. A statistically significant difference (P=0.02) was found between interovulatory intervals in mares in which the deslorelin implant was not removed, compared with administration and removal of the implant or the use of human chorionic gonadotrophin. The results suggest that implant removal when possible is advisable. The delay in subsequent ovulations was less marked than that reported in some studies from the USA. This information is useful in deciding when to schedule subsequent breeding for mares which received a deslorelin implant during the previous oestrous period and provides evidence to counter-concerns that mares treated with deslorelin implants may experience a long delay in return to oestrus if the implant is not removed.  相似文献   

9.
In Exp. 1, 16 long-term ovariectomized pony mares were used to determine the effects of treatment with estradiol benzoate (EB) and dihydrotestosterone (DHT) benzoate alone, and in combination, on secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in daily blood samples and after three consecutive injections of gonadotropin releasing hormone (GnRH). Administration of EB alone, or in combination with DHT, every other day for 11 d reduced (P less than .05) concentrations of FSH and increased (P less than .05) concentrations of LH in daily blood samples, and increased (P less than .05) the secretion of both gonadotropins after administration of GnRH. Treatment with DHT alone had no effect (P greater than .10) on LH or FSH concentrations in daily blood samples and no effect on the LH response to exogenous GnRH. There was no interaction (P greater than .10) between DHT and EB treatment for any hormonal characteristic. In Exp. 2, the control mares and mares treated with DHT in Exp. 1 were equally allotted to treatment with vehicle or testosterone propionate (TP) every other day for six injections, and then GnRH was administered as in Exp. 1. Treatment with TP had no effect (P greater than .10) on LH or FSH concentrations in daily blood samples but increased (P less than .05) the FSH response to exogenous GnRH, confirming our findings in previous experiments. It is concluded that the TP-induced stimulation of FSH secretion after exogenous GnRH in ovariectomized mares may involve estrogens produced from aromatization of the injected androgen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
There is a need for a safe, effective and practical method of oestrus suppression in the mare. The aim of this study was to monitor ovarian activity in mares exposed to either 9.4 or 28.2 mg deslorelin acetate, a GnRH agonist, in the form of a sustained-release implant. Following oestrus synchronisation, mares were randomly assigned to one of three groups (n = 4 per group) and administered either one (Des1 group; 9.4 mg) or three (Des3 group; 28.2 mg) implants of deslorelin acetate (Suprelorin-12, Virbac Australia) or one blank implant (Control group; Virbac Australia). Mares underwent weekly blood sampling for 12 weeks following implant placement (Day 0–Day 84), with transrectal palpation and ultrasonography of the reproductive tract at all sampling timepoints except Days 56, 70 and 77. All mares showed baseline serum progesterone concentrations (SPC; ≤1.3 nmol/L or 0.4 ng/ml) on Day 0. Cycling Control mares showed typical oestrous cyclicity characterised by peaks and troughs in SPC over time. Four of eight treated mares demonstrated a sustained elevation in SPC after the initial ovulation after implant placement; SPC declined to baseline levels (Des1 group; 2 mares) or remained elevated (Des3 group; 2 mares) at the final sampling timepoint on Day 84. Oestrous cyclicity was erratic in three of the remaining four treated mares. In total, 87.5% (7 of 8) of treated mares showed atypical oestrous cyclicity after implant placement. These results suggest that deslorelin acetate disrupts oestrous cyclicity in the mare, which warrants further research.  相似文献   

11.
We previously reported success in inducing early ovulation in seasonally anovulatory mares with a combination of estradiol pretreatment followed by daily administration of a dopamine antagonist (sulpiride). Although every-other-day injections of estradiol benzoate (EB) were effective in that experiment, practical application of this technology would require simplification of the treatment regimen. The current experiment was designed to compare, in a gelding model, the biologic responses of two alternative, one-injection regimens for estradiol delivery to the established EB treatment used previously. Fifteen long-term geldings were sampled via jugular venipuncture from November 5 to 7, 2006, and were then administered intramuscular injections of vegetable oil (n = 4); EB, 11 mg in oil (n = 4; controls); EB in biodegradable microspheres (300 mg; n = 3); or estradiol cypionate, 100 mg in oil (n = 4). Injections of EB in oil were repeated every other day for a total of 10 injections, as was done in our previous experiment. Jugular blood samples were drawn from all geldings at 3, 6, 12, 24, 36, and 48 hours relative to injections, and then on the mornings of days 3, 4, 6, 8, 10 to 18, 22, 26, and 30. On days 10 through 13, all geldings received subcutaneous injections of 125 mg sulpiride, a dopamine receptor antagonist, to stimulate prolactin secretion. On day 12, each gelding received an intravenous injection of 30 μg gonadotropin-releasing hormone (GnRH) analog and 3 mg thyrotropin-releasing hormone (TRH); frequent blood samples were drawn to characterize the luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin responses. Relative to geldings receiving oil, all geldings receiving estradiol injections had a rise (P < .05) in estradiol concentrations lasting at least 12 days. Daily LH concentrations increased (P < 0.01) in all treated groups, but the response was delayed approximately 14 days in the geldings receiving EB in microspheres. Daily FSH concentrations decreased (P < .01) in all treated groups, with the greatest response in the geldings receiving EB in microspheres. Prolactin in daily samples increased (P < .01) similarly in all estradiol-treated groups after injection of sulpiride. The LH response to GnRH analog was greatest (P < .05) in geldings receiving EB in oil and estradiol cypionate; the FSH response was not altered by treatment. The prolactin response to TRH was greater (P < .01) in estradiol-treated geldings relative to controls, but did not differ among groups. Compared with the responses to every-other-day EB injections in oil, as we used previously, a single injection of 100 mg estradiol cypionate gave the most similar and consistent responses. Because of these similar responses in this gelding model, it is likely that a single injection of 100 mg estradiol cypionate can be used in lieu of every-other-day injections of EB in oil in the treatment regimen we reported previously for stimulating ovarian activity in seasonally anovulatory mares.  相似文献   

12.
Effects of testosterone propionate (TP) treatment on plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) before and after an injection of gonadotropin releasing hormone (GnRH) were studied using ovariectomized cows and pony mares. An initial injection of GnRH (1 microgram/kg of body weight) was followed by either TP treatment or control injections for 10 (cows) or 11 (ponies) d. A second GnRH injection was administered 1 d after the last TP or oil injection. Concentrations of LH and FSH were determined in samples of plasma taken before and after each GnRH injection. Control injections did not alter the response to GnRH (area under curve) nor the pre-GnRH concentrations of LH and FSH in ovariectomized cows or ponies. Testosterone treatment increased (P less than .01) the FSH release in response to GnRH in ovariectomized mares by 4.9-fold; there was no effect in cows, even though average daily testosterone concentrations were 59% higher than in pony mares. Testosterone treatment reduced the LH release in response to GnRH by 26% in ovariectomized mares (P less than .05) and by 17% in ovariectomized cows (P approximately equal to .051). These results are consistent with a model that involves ovarian androgens in the regulation of FSH secretion in the estrous cycle of the mare, but do not support such a model in the cow.  相似文献   

13.
Following induction of ovulation with deslorelin acetate (Ovuplant), gonadotrophin concentrations are reduced in the subsequent cycle, leading to increased interovulatory intervals in some mares. This study determined whether implant removal after 2 days prevented the decrease in gonadotrophin concentrations and follicular growth during the ensuing cycle. Twenty-four mares were randomised equally into 3 groups. Group 1 ovulated spontaneously, Groups 2 and 3 received the deslorelin implant to induce ovulation. Two days after treatment, the implant was removed from Group 3. On Day 10 postovulation, FSH was lower (P = 0.009) in Group 2, but not different between Groups 1 and 3. Follicular diameter on Day 14 was less (P<0.05) in Group 2 (19.0 +/- 2.1 mm) than in Groups 1 and 3 (36.6 +/- 2.5 and 30.5 +/- 2.0 mm, respectively). Interovulatory interval was longer (P<0.05) for Group 2 (25.8 +/- 2.9 days) compared to Groups 1 and 3 (18.5 +/- 0.7 and 19.4 +/- 0.3 days, respectively). Removal of the deslorelin implant eliminated the decreased FSH secretion and the increased interovulatory interval associated with implant administration. Therefore, it is recommended that the implant be removed after ovulation is detected to prevent the occurrence of a prolonged interovulatory interval.  相似文献   

14.
OBJECTIVE: To evaluate gonadotropin secretion and ovarian function after administration of deslorelin acetate to induce ovulation in mares. DESIGN: Randomized controlled trial. ANIMALS: 16 healthy mares with normal estrous cycles. PROCEDURE: 8 control mares were allowed to ovulate spontaneously, whereas 8 study mares received deslorelin to induce ovulation when an ovarian follicle > 35 mm in diameter was detected. Follicle development and serum concentrations of gonadotropins were monitored daily during 1 estrous cycle. Pituitary responsiveness to administration of gonadotropin-releasing hormone (GnRH) was evaluated 10 days after initial ovulation. RESULTS: Interovulatory intervals of mares treated with deslorelin (mean +/- SD, 25.6 +/- 2.6 days) were longer than those of control mares (22.9 +/- 1.8 days). Diameter of the largest follicle was significantly smaller during 2 days of the diestrous period after ovulation in deslorelin-treated mares than in control mares. Concentrations of follicle-stimulating hormone (FSH) were lower in deslorelin-treated mares on days 5 through 14 than in control mares. Concentrations of luteinizing hormone were not different between groups during most of the cycle. Gonadotropin release in response to administration of GnRH was lower in mares treated with deslorelin acetate than in control mares. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of deslorelin was associated with reduction in circulating concentrations of FSH and gonadotropin response to administration of GnRH during the estrous cycle. Low concentration of FSH in treated mares may lead to delayed follicular development and an increased interovulatory interval.  相似文献   

15.
Ten stallions were used in a modified split-plot design involving four treatments and two handling methods. Treatments were: a) vision and olfaction not blocked; b) vision blocked, olfaction not blocked; c) vision not blocked, olfaction blocked; and d) vision and olfaction blocked. The methods of handling were: a) stallions turned loose in teasing area, and b) stallions handled on a lead shank. Stallions teased four estrous mares, four diestrous mares and four geldings. Criteria for evaluation of stallion behavior was duration of investigation (sec), of area as well as various portions of the stimulus animal's anatomy, and other pre-copulatory sexual behaviors (Table 1) in duration and frequency. Except for area investigation and no investigation, there were more frequent or longer responses when vision was not blocked compared to blocked (P<0.05). Events associated with display of flehmen and mounting activity were lower (P<0.05) when vision was blocked. Handling a stallion on a lead shank, while teasing, resulted in 23 longer or more frequent pre-copulatory sexual behaviors than when the stallions were loose. There were more frequent or longer (P<0.05) behavioral responses when stallions were handled on a lead shank and olfaction was not blocked. Events such as duration and number of flehmen responses were lower (P<0.05), and time of no investigation was longer (P<0.001) when olfaction was blocked. There was no difference (P>0.05) in the time spent inyestigating estrous mares, diestrous mares or geldings, except for number of flehmen responses. Number of flehmen responses to estrous mares was higher (P<0.05) than to diestrous mares, while number of flehmen responses to diestrous mares was higher (P<0.001) than to geldings. Blocking olfaction did not decrease frequency or duration of sexual behaviors as much as blocking vision (P<0.05), resulted in decreased (P<0.05) flehmen responses. Blocking vision significantly decreased (P<0.05) teasing behaviors, duration of erection, flehmen, and number of mounts regardless of stimulus animal. Stallions utilized visual stimuli to a greater extent than olfactory stimuli. Handling stallions on a lead shank appeared to enhance expression of precopulatory behavior compared to when the stallions were loose.  相似文献   

16.
Seventeen seasonally anovulatory light horse mares were treated daily, starting January 5 (d 1), for 28 d with GnRH analog (GnRH-A; 50 ng/kg BW) and(or) thyrotropin-releasing hormone (TRH; 5 microg/kg BW) in a 2 x 2 factorial arrangement of treatments to test the hypothesis that combined treatment may stimulate follicular growth and development. Ovaries were examined via ultrasonography and jugular blood samples were collected every 3 d. Frequent blood samples were collected after treatment injections on d 1, 2, 4, 7, 11, 16, and 22; on d 29, all mares received an i.v. mixture of GnRH, TRH, sulpiride, and EP51389 (a growth hormone secretagogue) to assess pituitary responsiveness. No consistent effects (P > 0.1) of treatment were observed for plasma LH, FSH, prolactin, or thyroxine concentrations in samples collected every 3 d. The only effect on ovarian follicle numbers was a reduction in number of follicles 11 to 19 mm in diameter due to TRH treatment (P = 0.029). No mare ovulated during treatment. On the days of frequent sampling, mean LH (P = 0.0001) and FSH (P = 0.001) concentrations were higher in mares receiving GnRH-A and tended to increase from d 1 through 7. In contrast, mean prolactin (P = 0.001) and thyroid-stimulating hormone (P = 0.0001) concentrations were high in mares receiving TRH on d 1 but rapidly decreased thereafter. When mares were administered the secretagogue mixture on d 29, the LH response was greater (P = 0.0002) in mares that had previously received GnRH-A but the FSH response was not affected (P > 0.1); the prolactin response was greater (P = 0.014) and the TSH response was smaller (P = 0.0005) in mares that had previously received TRH. Surprisingly, an immediate growth hormone response to EP51389 was absent in all mares. In conclusion, daily GnRH-A treatment stimulated plasma LH and FSH concentrations immediately after injection; although no long-term elevation in preinjection concentrations was achieved, the responses gradually increased over time, indicating a stimulation of gonadotropin production and storage. Daily treatment with TRH stimulated plasma TSH and prolactin concentrations, but the response diminished rapidly and was minimal within a few days, indicating a depletion of pituitary stores and little or no stimulation of production. There was no beneficial effect of adding TRH treatment to the daily GnRH-A regimen.  相似文献   

17.
Eight long-term ovariectomized pony mares were treated with either dihydrotestosterone (DHT) benzoate (400 micrograms/kg body weight) in safflower oil or an equivalent amount of oil every other day for 21 d to determine the effects of DHT on follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in blood samples drawn once daily and after administration of three successive injections of gonadotropin releasing hormone (GnRH). The GnRH injections were given at 4-h intervals on the day following the last DHT or oil injection. Treatment with DHT benzoate did not alter (P greater than .10) concentrations of FSH or LH in daily blood samples relative to controls. The FSH and LH response, assessed by areas under the GnRH curves, decreased (P less than .05) from the first to third injection of GnRH when averaged over both groups of mares. There was no effect of DHT treatment on FSH response to GnRH. There was an interaction (P less than .05) between treatment and GnRH injection for LH areas; areas decreased (P less than .05) for DHT-treated mares from the first to third GnRH injection but were unchanged for control mares. It seems that DHT alone cannot mimic the stimulatory effects of testosterone on FSH production and secretion as observed in previous experiments with ovariectomized and intact mares. Moreover, because intact mares have been shown previously to respond to DHT treatment with an increase in GnRH-induced FSH secretion, it appears that some mechanism is lost in long-term ovariectomized mares, making them unresponsive to DHT treatment.  相似文献   

18.
Synchronization of estrus (SE) in mares has been achieved, but not of ovulation (SO). Progestins followed by PGF2a are useful for SE only. In the two studies reviewed here, SE and SO were attempted by using CIDR-B, an intravaginal (itv) progesterone (1.9 g) releasing device, alone (study 1) or accompanied by estradiol (10 mg) given also itv (study 2). In both studies, Ovuplant™ (OT), an implant containing 2.1 mg of the GnRH analog deslorelin was used for the control of ovulation. Eighty cycling Hanoverian mares, 40 each in studies 1 and 2, received CIDR-B itv for 12 days, with PGF2a given once at CIDR-B removal. In study 1, 15 mares each received OT when the lead follicle had reached 40 mm (A) or on Day 3 of estrus (B); 10 controls received no OT (C). In study 2, E2 was used in addition on Day 0 (CIDR-B insertion) (10 mares; group II), or on Days 0 and 7 (10; group III) or not (20; groups I and IV). Mares in groups I to III received OT as in study 1 (A); group IV (10) remained untreated. Ovaries were examined and blood samples were taken in studies 1 and 2 from all mares in 1, 2 or 4-day intervals, respectively, and concentrations of FSH, LH, progesterone and estradiol were determined by RIA. In study 1, CIDR-B treatment achieved SE, but not SO as shown by a wide spread of days on which follicles were reaching 40 mm; OT treatment assured ovulations in 48 hours in 93.3% of treated mares vs. 44.4% in controls (P<0.05. In study 2, SE was achieved and SO, but only when estradiol was given once (itv) on Day 0 (group II) but not twice on Days 0 and 7 (group III). In both studies, CIDR-B prevented estrus but stimulated follicle growth: 8 mares in study 1 ovulated with CIDR-Bs in place and 2 in trial 2, respectively. Only when estradiol was used together with CIDR-B, follicle growth was retarded (group II) or suppressed (group III: P<0.05 vs. groups I and IV). The pregnancy rate in study 2 from a single breeding at the first estrus was 52.8% with no significant differences between groups. FSH rose until Day 4 or 8 and had dropped sharply at Day 12; after CIDR-B removal FSH rose most quickly in group II, study 2. LH declined slightly until Day 12 and rose thereafter, reaching peak levels by Day 18 or 20, respectively. In both studies, estradiol had dropped slightly by Day 4 but increase steadily thereafter until ovulation had occurred. Preovulatory rise and postovulatory drop was seen earlier in group II, study 2. Values for progesterone had risen uniformly by Day 4, had declined slowly by Day 12 and precipitously in response to PGF2a by Day 14. Treatment of cyclic mares with CIDR-B for 12 days, followed by PGF2a at the day of CIDR-B removal and by Ovuplant™ a deslorelin implant when a follicle had reached 40 mm, resulted in synchronization of estrus. Adding to this scheme a single dose of estradiol (10 mg, intravaginal) on Day 0 resulted also in synchronization of ovulation.  相似文献   

19.
Natural GnRH and its analog have potential for hastening ovulation in mares. A study was conducted to evaluate the efficacy of a GnRH agonist given either as an injectable or s.c. implant for induction of ovulation in mares. Forty-five seasonally anestrous mares (March) were assigned to one of three groups (n = 15/group): 1) untreated controls; 2) i.m. injection of the GnRH agonist buserelin at 12-h intervals (40 micrograms/injection for 28 d or until ovulation) and 3) GnRH agonist administered as a s.c. implant (approximately 100 micrograms/24 h for 28 d). Six mares per group were bled on d 0, 7, 14 and 21 after injection or insertion of implant. Samples were taken at -1, -.5 and 0 h and at .5, 1, 1.5, 2, 4, 6 and 8 h after GnRH. Additional daily samples were drawn for 28 d after injection or until ovulation. Samples were assayed for concentration of LH and FSH. Progesterone concentrations were determined in samples collected on d 4, 6 and 10 after ovulation. Number and size of follicles and detection of ovulation were determined by ultrasonography. Number of mares induced to ovulate within 30 d was 0 of 15, 7 of 15 and 9 of 15 for groups 1, 2 and 3, respectively. During treatment, follicle sizes were smaller for mares in group 3 (implant). The LH response to GnRH agonist (area under curve) was similar among groups at d 0 but was greater (P less than .05) for mares in group 3 on d 7 and 14 and groups 2 and 3 on d 21 than for controls. A similar pattern was detected for peak concentrations of LH after GnRH on d 0, 7, 14 and 21. Daily concentrations of LH remained low in untreated control mares compared with GnRH-treated mares throughout the sampling period. Concentrations of LH for mares in group 3 that ovulated were elevated greatly above those for group 2 mares, whereas concentrations of FSH were similar in both treatment groups prior to ovulation.  相似文献   

20.
Studies were conducted to compare continuous vs pulsatile i.v. infusion of GnRH on serum gonadotropin concentrations and ovulation in seasonally anestrous mares and in cycling mares. Anestrous mares (Exp. 1) received no treatment (control; n = 3), 2, or 20 micrograms of GnRH/h continuous infusion (CI) (n = 4 and n = 6, respectively), or 20 micrograms of GnRH/h pulsatile infusion (PI) (n = 5). After initiation of GnRH infusion, serum LH levels increased earlier, and to a greater extent, in the PI group than in other groups (P less than .05). In contrast, serum FSH concentrations did not differ among groups. The number of days to development of the first 35-mm follicle was not different among GnRH treatment groups; however, mares receiving PI ovulated on d 9.4 of treatment, 2.8 d earlier than those receiving 20 micrograms of GnRH/h CI (P less than .05). Mares given 2 micrograms of GnRH/h CI failed to ovulate spontaneously after 16 d of treatment, but each one ovulated within 2 to 4 d after injection of 2,000 IU of hCG on d 16. Control mares did not ovulate or show any significant follicular development throughout the experiment. Cycling mares (Exp. 2) received no treatment (control; n = 6), 20 micrograms of GnRH/h CI, or 20 micrograms of GnRH/h PI (n = 4) beginning on d 16 of an estrous cycle (d 0 = day of ovulation). Serum LH concentrations in all groups increased after initiation of treatment; however, on the day of ovulation LH concentrations were lower in the CI group than in the PI or control groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号