首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to investigate the expression of metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in chronic doxorubicin cardiomyopathy in a rabbit model and to evaluate the effects of bone marrow-derived mesenchymal stem cell (MSC) transplantation in this disease. Thirty-nine 3-month-old New Zealand rabbits were divided into 4 groups: group 1 (n = 9) was the untreated control. Groups 2-4 were treated with 6 weeks of doxorubicin (3 mg/kg). Group 2 (n = 6) received no further treatment. In group 3 (n = 9), animals were treated with culture medium (CM) alone. In group 4 (n = 15), autologous MSCs (1.5-2.0 x 10(6)/ml) were injected in the left ventricular (LV) wall. Hearts were stained with HE and picrosirius red. MMP-1, -2, -3 and -9 and TIMP-2 and -3 were detected immunohistochemically. The mRNA levels were determined by real-time polymerase chain reaction. The results confirmed that doxorubicin treatment resulted in minimal myocardial fibrosis and showed that expression of MMPs increased and TIMP-3 decreased. The injection procedure resulted in increased myocardial fibrosis in groups 3 and 4. After MSC injection, MMP-1, MMP-2, and TIMP-3 expression was higher than that in group 2. CM injection led to more fibrosis, elevated TIMP-3, but diminished MMP-1 and MMP-2 expression compared with MSC injection. The mRNA levels of MMPs and TIMPs were not significantly different among all groups. In conclusion, chronic doxorubicin cardiomyopathy was characterized by increased MMP and decreased TIMP-3 expression. MSCs injection into the LV resulted in marked differences of collagen content and MMP/TIMP expression in the whole heart, although significant numbers of living MSCs were not detected after 4 weeks.  相似文献   

2.
Renal fibrotic change, extreme accumulation of extracellular matrix (ECM) components in glomeruli and tubulointerstitum, is one of the characteristic features of ICR-derived glomerulonephritis (ICGN) mice. Decreased degradation of ECMs by matrixmetalloproteinases was demonstrated in kidneys of ICGN mice. To determine the balance between production and degradation of ECMs in kidneys of ICGN mice, we examined expression of mRNAs of ECMs in those. To demonstrate the localization of type I, III and IV collagen mRNAs in kidney sections of ICGN and control ICR mice, in situ hybridization using digoxigenin-labeled oligonucleotide antisense probes for procollagen-alpha(1) (I), -alpha(1) (III) and -alpha(1) (IV) mRNAs, respectively, was performed. Negative or trace expressions of type I and III collagen mRNAs were observed in the kidneys of control mice, but stronger expressions of those were seen in glomeruli and injured renal tubules of the kidneys of ICGN mice. Moderate expression of type IV collagen mRNA was demonstrated in a part of glomeruli and renal tubules of both control and ICGN mice, and no remarkable difference was seen between them. Severe renal fibrosis, extreme accumulation of interstitial type I and III collagens is caused by increased production and decreased degradation in the kidneys of ICGN mice. Thus, the profiles of metabolism between interstitial and membranous collagens may be different in the kidneys of ICGN mice, and excessive production of interstitial collagens may be the dominant cause of renal disease in them.  相似文献   

3.
Fibrotic degeneration was examined in the kidneys of ICR-derived glomerulonephritis (ICGN) mice, a novel inbred mouse line with a hereditary nephrotic syndrome of unknown etiology considered to be a good model of human idiopathic nephrotic syndrome. In the present study, we histochemically revealed changes in accumulation of extracellular matrix (ECM) components and in localization of integrins, cellular receptors for ECM, in the kidneys of ICGN mice with the progression of renal failure. Excessive accumulation of basement membrane (laminin and collagen IV) and interstitial (type III collagen) ECM components were demonstrated in the glomeruli and tubulointerstitum of ICGN mice. Marked deposition of type I collagen and tenascin was seen only in the glomeruli of ICGN mice but not in those of ICR mice as normal controls. Increased expression of integrin alpha1-, alpha2-, alpha5- and beta1-subunits in glomeruli with fibrotic degeneration and abnormal distribution of alpha6-subunit were noted in the kidneys of ICGN mice. Excessive laminin, a ligand of alpha6beta1-integrin, was demonstrated on the tubular basement membrane, but alpha6-subunit diffusely disappeared on the basal side of the tubular epithelial cells. We presumed that abnormal integrin expression in renal tubules causes epithelial cell detachment, and consequently tubular nephropathy, and results in disorder of ECM metabolism causing excessive accumulation of ECM components in the kidneys of ICGN mice.  相似文献   

4.
为研究大肠杆菌(E.coli)及脂多糖(LPS)对奶牛乳腺上皮细胞(BMECs)基质金属蛋白酶(MMPs)表达的影响,以及MMPs与基质金属蛋白酶组织抑制因子(TIMPs)、尿激酶型纤溶酶原激活物(uPA)系统在调控细胞外基质(ECM)代谢中的作用,分别以106 CF U/mL热灭活E.coli菌液、7.5μg/mL ...  相似文献   

5.
We recently demonstrated that luteal cells flow out from the ovary via lymphatic vessels during luteolysis. However, the regulatory mechanisms of the outflow of luteal cells are not known. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix and basal membrane, and tissue inhibitors of matrix metalloproteinases (TIMPs) inhibit the activity of MMPs. To test the hypothesis that MMP expression in luteal cells is regulated by luteolytic factors, we investigated the effects of prostaglandin F2α (PGF), interferon γ (IFNG) and tumor necrosis factor α (TNF) on the mRNA expression of MMPs and TIMPs in cultured luteal cells. Luteal cells obtained from the CL at the mid-luteal stage (days 8–12 after ovulation) were cultured with PGF (0.01, 0.1, 1 μM), IFNG (0.05, 0.5, 5 nM) and TNF (0.05, 0.5, 0.5 nM) alone or in combination for 24 h. PGF and IFNG significantly increased the expression of MMP-1 mRNA. In addition, 1 μM PGF in combination with 5 nM IFNG stimulated MMP-1 and MMP-9 mRNA expression significantly more than either treatment alone. In contrast, IFNG significantly decreased the level of MMP-14 mRNA. The mRNA expression of TIMP-1, which preferentially inhibits MMP-1, was suppressed by 5 nM INFG. One μM PGF and 5 nM IFNG suppressed TIMP-2 mRNA expression. These results suggest a new role of MMPs: luteal MMPs stimulated by PGF and IFNG break down the extracellular matrix surrounding luteal cells, which accelerates detachment from the CL during luteolysis, providing an essential prerequisite for outflow of luteal cells from the CL to lymphatic vessels.  相似文献   

6.
In the pathogenesis of epilepsy aberrant synaptic plasticity plays an important role. Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are responsible for nervous tissue remodelling resulting in synaptic plasticity in the central nervous system (CNS) and might therefore be crucially involved in epileptogenesis. To assess the potential pathogenetic role of microglial MMPs and TIMPs in seizure induction, twenty-four dogs suffering from different intracranial diseases with and without seizure activity were comparatively examined. Microglial cells were isolated by density gradient centrifugation and their expression profiles of MMP-2, MMP-9, MMP-12, MMP-13, MMP-14, TIMP-1, TIMP-2, and RECK (reversion-inducing cysteine-rich protein with Kazal motifs) were examined via quantitative real-time PCR (qPCR). Interestingly, a significant up-regulation of TIMP-2 expression was found for the first time in dogs suffering from seizures. In conclusion, microglial TIMP expression might be involved in seizure generation.  相似文献   

7.
Matrix metalloproteinases (MMPs), MMP inhibitors (TIMPs, tissue inhibitors of matrix metalloproteinases), and the membrane-anchored glycoprotein RECK (reversion-inducing cysteine-rich protein with Kazal motifs) contribute to the pathogenesis of many CNS diseases. To assess the potential pathogenetic roles of microglial MMP, TIMP, and RECK generation in extracellular matrix breakdown, opening of the blood brain barrier (BBB) and subsequent recruitment of leukocytes in the CNS, twenty-four dogs suffering from spontaneously occurring different intracranial and extracranial (control group) diseases were examined. Microglia cells were isolated ex vivo by density gradient centrifugation and their expressions of MMP-2, MMP-9, MMP-12, MMP-13, MMP-14, TIMP-1, TIMP-2, and RECK were examined via quantitative real-time polymerase chain reaction (qPCR). Zymography on CNS tissues in selected cases was performed to assess differences at the protein level. Dogs were grouped in different disease categories according to histopathological examinations, in groups with or without inflammatory reactions, and in groups with/without contrast enhancement in advanced diagnostic imaging as a function of BBB breakdown. The results showed a significant up-regulation of MMP-9 in dogs with inflammation in the nervous system compared to dogs with non-inflammatory diseases. An increased expression of MMP-9 might lead to a facilitated invasion of white blood cells. Furthermore, down-regulation of MMP-13 was found in dogs with contrast enhancement. Zymographical data reflected MMP-2 qPCR data. In conclusion, differential expression of MMPs and their inhibitors, but not of RECK, which might crucially influence the pathogenesis of a given disease, could be demonstrated in canine microglia. This reflects a further pathway in the microglial repertoire to respond to various disease conditions in the CNS, a characteristic that might be of particular relevance as a target for specific treatments.  相似文献   

8.
Matrix metalloproteinases (MMPs), which degrade tissues in health and disease are under the control of the tissue inhibitors of MMPs, the TIMPs. TIMP-2 is particularly important for control of MMP-2 and both have been implicated in many pathological processes from arthritis to tumour invasion. This study characterized and detected TIMP-2 from canine cells; including synovial fibroblasts and three tumour-derived canine cell lines, K1, K6 and DH82. Gelatin zymography demonstrated that pro-MMP-2 is produced by synovial fibroblasts and the three cells lines. Reverse zymograms showed that all the cell sources tested secrete both TIMP-1 and TIMP-2. The 22 kDa band was purified and n-terminal amino acid sequencing showed it to be highly homologous to equine and human TIMP-2. Analysis of purified canine MMP-2 and MMP-9 showed that TIMP-2 is associated, and co-purifies with MMP-2. Polymerase chain reaction, using consensus primers, was used to detect TIMP-2 mRNA from the cell sources and proved positive in all cases. This work highlights the importance of TIMP-2 as the main inhibitor for MMP-2 and, therefore, opens the possibilities of targeting TIMP-2 for therapeutic intervention against connective amino acid tissue degradation in a range of diseases.  相似文献   

9.
10.
The ICR-derived glomerulonephritis (ICGN) mouse, a novel inbred mouse strain with a hereditary nephrotic syndrome, develops severe anemia associated with chronic renal failure. To reveal the pathogenic mechanism of anemia in ICGN mice, we subcutaneously administered recombinant human erythropoietin (rhEPO; 5 IU/mouse/day) or saline for 5 days to ICGN mice. In terminal-stage ICGN mice with severe anemia, rhEPO significantly increased hematocrit (Ht), red blood cells (RBC) and hemoglobin levels. Endogenous EPO levels in peripheral blood were reduced by rhEPO injection. No histopathological changes in bone marrow and kidneys were induced by rhEPO injection. Insufficiency of EPO may cause anemia in ICGN mice.  相似文献   

11.
The histomorphological findings and immunohistochemical expression of matrix metalloproteinases (MMPs-1, 2, 9 and 14) and their tissue inhibitors (TIMPs-2, 3 and 4) are reported in the parietal (pTV) and septal leaflets (sTV) of the tricuspid valves in normal dogs and dogs with chronic valvular disease (CVD). The layers of the normal sTV were not as well defined as in the pTV and the spongiosa of the sTV contained abundant mucopolysaccharides (MPS) and adipocytes. In CVD, there was expansion of the spongiosa of the pTV due to deposition of MPS, leading to formation of nodules along the free edge. In CVD, there was fibrosis of the atrialis of the sTV and formation of nodular deposits of MPS in the spongiosa and ventricularis, mainly affecting the proximal and middle parts of the leaflet. In dogs with normal pTV and sTV, MMPs-1 and 14 and TIMPs-2, 3 and 4 were expressed, while MMPs-2 and 9 were absent. In mild CVD, expression of MMPs-2, 9 and 14 were increased in the pTV, whereas small foci within the spongiosa contained MMP-9 and TIMP-3 positive cells. In advanced CVD, MMP-14 also was increased in the pTV. In mild CVD, there was increased expression of MMPs-1 and 2 and TIMP-2, but decreased expression of TIMP-4, in the sTV. Small foci with expression of MMP-14 and TIMPs-2, 3 and 4 were also present in the sTV in mild CVD. In advanced CVD, there was increased expression of MMPs-2 and 9 and TIMP-2 in the sTV. In CVD there is upregulation of various MMPs in the pTV, whereas there is a complex alteration in expression of MMPs and TIMPs in the sTV.  相似文献   

12.
Anemia is a major secondary symptom in chronic renal disorder (CRD), but the precise cause of insufficient production of erythropoietin (EPO) remains unclear owing to the controversial localization of EPO-producing cells in the kidneys. The ICR-derived glomerulonephritis (ICGN) mouse, a new hereditary nephrotic mouse, is an appropriate model of anemia associated with CRD. By using an amplified in situ hybridization technique, we detected and counted the renal EPO-producing cells under both normoxic and hypoxic conditions. The expression levels of renal EPO mRNA were quantified and oxygen gradients were also assessed immunohistochemically. Amplified in situ hybridization clarified that EPO-producing cells were peritubular interstitial cells in the middle region of renal cortex in both ICR and ICGN mice. Hypoxia (7% O2) induced low oxygen tension in proximal tubular epithelial cells of renal cortex, and increased the expression of EPO mRNA and the number of EPO-producing cells in both ICR and ICGN mice. However, hypoxia did not increase the serum EPO levels in ICGN mice. The ICGN mouse is a good model for anemia associated with CRD, and the suppression of EPO protein production in the renal EPO-producing cells is considered to be a potential cause of anemia associated with CRD.  相似文献   

13.
The extracellular matrix (ECM) of connective tissue is constantly being remodelled to allow for growth and regeneration. Normal tissue maintenance requires the ECM components to be degraded and re-synthesised in relatively equal proportions. This degradation is facilitated by matrix metalloproteinases (MMPs) and their proteolytic action is controlled primarily by the tissue inhibitors of metalloproteinases (TIMPs). Both MMPs and TIMPs exist in a state of dynamic equilibrium, with a slight excess of one or the other depending on the need for either ECM breakdown or synthesis. Long-term disruption to this balance between MMPs and TIMPs will have pathological consequences.Matrix metalloproteinases are involved in a number of diseases in mammals, including the horse. Excess MMP activity can cause ECM destruction, as seen in the lamellar basement membrane in laminitis and the articular cartilage in osteoarthritis. Matrix metalloproteinase under-activity can potentially impede healing by preventing fibrinolysis in fibrotic conditions and the removal of scar tissue in wounds. Matrix metalloproteinases also degrade non-ECM proteins and regulate cell behaviour via the release of growth factors from the substrates they cleave, increasing the scope of their effects. This review looks at the involvement of MMPs in equine health and pathologies, whilst exploring the potential consequences of therapeutic intervention.  相似文献   

14.
The ICR-derived glomerulonephritis (ICGN) mouse is an appropriate model for anemia associated with chronic renal disorder (CRD). Insufficient renal production of erythropoietin (EPO) induces the anemia associated with CRD. EPO mRNA is expressed in both kidneys and liver of progressing-stage ICGN mice. Hypoxic stimulation induced the EPO mRNA expression in the liver as well as in the kidneys of ICGN mice. The localization of EPO-producing cells in the liver remains controversial. Present study using an amplified in situ hybridization technique identified that nonparenchymal cells were the source of hepatic EPO production in ICGN mice under both normoxia and hypoxia.  相似文献   

15.
A morbillivirus infection of tumour cells is known to exert oncolytic activity, but the mechanism of this inhibitory action has not been well defined. Matrix metalloproteinases (MMPs) are important enzymes degrading the extracellular matrix and are often upregulated in malignant neoplasms. Recent studies have demonstrated that RECK may potently suppress MMP-2 and -9 activity, thus inhibiting angiogenesis and metastasis. In this study, real time quantitative polymerase chain reaction (RT-qPCR) was used to determine the effect of persistent infection with canine distemper virus (CDV) infection on the expression of MMPs and their inhibitors (TIMPS) in a canine macrophage/monocytic tumour cell line (DH82). The activity of proMMP-2 and proMMP-9 was also verified zymographically. Following CDV infection, MMP-2, TIMP-1 and TIMP-2 were down-regulated, while RECK was upregulated. These findings suggest that CDV infection restores RECK expression in tumour cells and may interfere with the intracellular processing of MMPs and TIMPs, thus possibly influencing tumour cell behaviour beneficially for the host. However, this needs to be verified in in vivo studies.  相似文献   

16.
17.
The ICR-derived glomerulonephritis (ICGN) mouse is a novel inbred mouse strain with a hereditary nephrotic syndrome, considered to be a good model of human idiopathic nephrotic syndrome and develops proteinuria, hypoproteinemia and anemia. In the present study, we compared the cell kinetics in the kidneys of ICGN mice with age-matched ICR mice as normal controls. The proliferating cells were visualized by 5-bromo-2'-deoxyuridine labeling, and apoptotic cells were determined by terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end-labeling. Many proliferating epithelial cells of renal tubules, glomerular mesangial cells and tublointerstitial fibroblast-like cells were observed in the kidneys of ICGN mice, but no proliferating cells were seen in the kidneys of ICR mice. Apoptotic cells had round nuclei, and were observed only in the tubulointerstitium in the kidneys of ICGN mice but not in that of controls. The proliferation of renal tubular epithelial cells may represent a compensatory response, and that of mesangial and fibroblast-like cells may play a pathogenic role in nephrotic syndrome. Apoptosis in tubulointerstitial cells with round nuclei may have been erythropoietin-producing cells, and probably caused anemia.  相似文献   

18.
Canine Steroid-Responsive Meningitis–Arteritis (SRMA) is a suitable animal model for studies on the development of neutrophilic pleocytosis in aseptic meningitis. Samples of dogs in the acute phase of SRMA (n = 16) were examined for gene expression of matrix metalloproteinases (MMP)-2 and -9 and tissue inhibitors of metalloproteinases (TIMP)-1 and -2. Results were compared to those of dogs under glucocorticosteroid treatment for SRMA (n = 16) and dogs with other inflammatory and neoplastic diseases of the central nervous system (CNS) (n = 19). Samples included mononuclear (PBMCs) and polymorphonuclear cells (PBPMNs) of peripheral blood and cerebrospinal fluid white blood cells (CSF WBCs). In the acute phase of SRMA CSF WBCs showed mRNA expression for MMP-2 and -9 and TIMP-1 and -2, highlighting a contribution of these cells to the overall content of MMPs and TIMPs in CSF. MMP-2 mRNA levels in CSF WBCs were significantly up-regulated in comparison to PBMC expression levels, suggesting that MMP-2 is relevant for PBMC invasion into the subarachnoidal space and that the expression is influenced by migratory activity through the blood–CSF-barrier.  相似文献   

19.
The ICR-derived glomerulonephritis (ICGN) mice consist of heterozygous and homozygous groups and are considered to be a good model for human idiopathic nephrotic syndrome. To reveal changes in cell-surface carbohydrate construction, 24 lectins were applied to kidney sections of 10-, 30- and 50-week-old male heterozygous and homozygous ICGN mice and age-matched male ICR mice. Bandeiraea simplicifolia lectin-I (BSL-I), which specifically binds to alpha-D-galactopyranosyl groups, showed positive staining in the glomeruli of ICGN mice, but not in those of ICR mice. Positive BSL-I staining was observed only in distal tubules of homozygous ICGN mice. Lectin blotting for BSL-I demonstrated characteristic glycoproteins (45, 58 and 64 kD) in ICGN but not in ICR mice, and the levels of these molecules augmented in homozygous ICGN mice with the progression of renal failure. Moreover, succinylated wheat germ agglutinin, Dolichos biflorus agglutinin, Aleuria aurantia lectin and Ulex europaeus agglutinin-I showed positive staining only in the glomeruli of homozygous ICGN mice, but not in those of heterozygous ICGN or ICR mice. The staining intensities of Ricinus communis agglutinin-I, Phaseolus vulgaris agglutinin-E and -L, Lens culinaris agglutinin and Erythrina cristagalli agglutinin (ECL) in the glomeruli of homozygous ICGN mice were stronger than those of heterozygous ICGN and ICR mice. In conclusion, lectin histochemistry provided useful information for the diagnosis and prognosis of nephrotic lesions. Characteristic BSL-I binding glycoproteins may be pathogenic factors which cause renal disease in ICGN mice and are good tools to investigate the molecular mechanism of renal disorders in ICGN mice.  相似文献   

20.
Nivalenol (NIV) is a trichothecene mycotoxin produced by Fusarium fungi that frequently contaminates agricultural commodities. Dietary administration of NIV to adult mice affects the renal glomeruli, but data about NIV toxicity in human infants are limited. To evaluate the effects of NIV on infant kidneys, 3-week-old male ICR-derived glomerulonephritis (ICGN) and ICR mice were administered 0, 4, 8 or 16 ppm NIV in diet for 4 weeks, and their renal status was compared with age-matched or adult ICR mice. In ICGN mice, the number of glomeruli showing mesangial expansion and α-smooth muscle actin (SMA)-positive mesangial cells was higher with 16 ppm NIV compared with controls. No other significant differences were observed in ICGN mice. In infant ICR mice, the IgA serum concentrations were significantly elevated without glomerular morphological changes in the 16 ppm NIV group. There was no difference in NIV sensitivity in the kidneys of infant ICGN and ICR mice. These data suggest that the kidneys in infant mice are not sensitive to nivalenol under the present conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号