首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
During autumnal leaf senescence, leaf nitrogen in deciduous trees is translocated to storage sites, especially bark and xylem tissues. Proteins that accumulate in large amounts in bark and xylem in winter and are absent from these organs in summer are called storage proteins, and are believed to be vehicles for storing nitrogen reserves. These reserves are important for spring growth and help trees tolerate or recover from both abiotic and biotic stresses. Based on seasonal patterns of accumulation, we previously identified three storage proteins with molecular masses of 60, 19 and 16 kDa in bark tissues of 'Loring' peach (Prunus persica (L.) Batsch). To characterize the distribution of these proteins in different-aged tissues and to determine if they have any function other than nitrogen storage, we examined their seasonal distribution in bark tissues of current-year and 1-year-old shoots, scaffold branches, main trunks and 4-5-year-old roots of 'Loring' peach. Verification of protein identity was based on molecular mass and reactions with antibodies directed against each specific protein. Protein distribution was variable. For all three proteins, the greatest amount was present in mid-winter in current-year and 1-year-old shoots. These tissues also showed the greatest seasonal variation in the amount of protein present. The 16 kDa protein was present only in the youngest shoots, whereas the 19 kDa protein was present in all tissues examined. The 60 kDa protein was absent in root tissue. The amino acid composition and sequence of each protein were determined. The 60 kDa protein was identified as a dehydrin, and the 19 kDa protein appeared to be related to a family of allergen proteins in Rosaceous plants, some members of which are associated with pathogenesis-related proteins. The amino acid sequence of the 16 kDa protein appeared to have no homology with any proteins in the SwissProt database. Therefore, it is likely that the 16 kDa protein, in a strict sense, is a bark storage protein. Defining storage proteins solely by their pattern of accumulation and the extent to which they accumulate may not be a good functional definition. It is possible that storage proteins have functional roles in addition to nitrogen storage.  相似文献   

4.
We compared root system morphogenesis of micropropogated transplants of Prunus cerasifera L. inoculated with either of the arbuscular mycorrhizal (AM) fungi Glomus mosseae or Glomus intraradices or with the ericoid mycorrhizal species Hymenoscyphus ericae. All plants were grown in sand culture, irrigated with a nutrient solution that included a soluble source of phosphorus, for 75 days after transplanting. Arbuscular mycorrhizal colonization increased both the survival and growth (by over 100%) of transplants compared with either uninoculated controls or transplants inoculated with H. ericae. Arbuscular mycorrhizal colonization increased root, stem and leaf weights, leaf area, root length and specific leaf area, and it decreased root length/leaf area ratio, root/shoot weight ratio and specific root length. Both uptake of phosphorus and its concentration in leaves were increased by AM infection, although the time course of the relationships between intensity of AM infection and P nutrition were complex and suggested a role for factors other than nutrition. The time course for the development of infection varied. It was most rapid with G. mosseae, but it was ultimately higher with G. intraradices. None of the treatments significantly affected the lengths of adventitious roots or the first-, second- or third-order laterals that developed from them. Arbuscular mycorrhizal colonization increased the intensity of branching in all root orders with the effect being most obvious on first-order lateral roots where the number of branches increased from under 100 to over 300 brances m(-1). As a result, although first-order laterals made up 55% of the root systems of control plants, the comparable value was 36% in AM-infected plants. In contrast, second-order laterals represented 25% of control root systems, but 50% of AM-colonized root systems. Glomus intraradices but not G. mosseae increased root diameter. Anatomical studies revealed no changes in the overall form of the root tip, although there were changes in the diameter of the root cap, cell numbers and cell size. Hymenoscyphus ericae increased the duration of the metaphase index. Both AM fungal treatments increased the concentrations of soluble proteins in root extracts and modified the protein profiles by the elimination and addition of protein bands detected by PAGE analysis. We conclude that AM fungal inoculation influenced processes in the root system at different levels, but not all effects were due to improved P nutrition or increased physiological age.  相似文献   

5.
6.
杨乐  张秀娟  吴楚  涂逸 《绿色科技》2022,(2):14-17,21
以沙棘(Hippophae rhamnoides L.)实生幼苗为试材,设置正常供磷170 mg/L(HP)和低磷胁迫0.68 mg/L(LP)两种处理,采用沙培盆栽的方式,探讨了沙棘幼苗对低磷胁迫的响应,分析了沙棘幼苗生物量、根系构型及光合特性的差异.结果表明:低磷胁迫显著(P<0.05)增加了植株的根冠比,高达45...  相似文献   

7.
8.
Amino acid profiles of leaf, stem, and root tissues from nodulated and nonnodulated Leucaena leucocephala (Lam.) de Wit plants were determined by gas chromatography-mass spectrometry. High concentrations of mimosine and several other potentially toxic nonprotein amino acids, including pipecolic acid and two isomers of hydroxypipecolic acid, were identified in the tissues. Five metabolites remain unidentified. Of the foliar free amino acid nitrogen, 57-66% was associated with the potentially toxic amino acids. Major constituents in the leaf tissues of nonnodulated plants were mimosine and hydroxypipecolic acid (isomer 1). Mimosine was recovered in both the neutral plus basic and acidic amino acid fractions. Major differences between amino acid profiles of nodulated and nonnodulated roots were the low percentages of asparagine + aspartate (3.6% of the total pool compared to 33% in nodulated plants) and pipecolic acid in nonnodulated roots (1% of the total compared to 12.5% in nodulated plants). A novel plant betaine (dihydroxypipecolic acid betaine) was identified by fast-atom-bombardment mass spectrometry in leaf tissues, albeit at relatively low concentrations (< 1 micro mol per gram fresh weight). Analyses of the xylem sap collected from nodulated plants confirmed that Leucaena is an asparagine transporter, as suggested by the high concentrations of asparagine and the low concentrations of ureides in its root nodules. Amino acid profiles of xylem sap from nonnodulated plants showed extremely low concentrations of asparagine + aspartate (0.12 micro mol ml(-1)), whereas asparagine + aspartate was the major constituent (4.38 micro mol ml(-1)) in the xylem sap of nodulated plants. Two nonprotein amino acids, pipecolic acid and hydroxypipecolic acid, were major constituents of the xylem sap of nodulated and nonnodulated plants, respectively. Three unidentified compounds detected in xylem sap samples from both nodulated and nonnodulated plants did not correspond with any of the peaks characterized from tissue samples.  相似文献   

9.
The effect of cutting the tap root on shoot growth and development of lateral roots was observed in seedling Quercus robur L. growing in PVC tubes containing peat and perlite. Cutting the tap root had little effect on shoot height and leaf number although some treatments caused a significant but slight reduction in shoot dry weight and number of branches. Total root dry weight was similar in control and treated plants but distributed differently between the types of root present. The tap root always formed the largest part of the total root dry weight. In control plants most lateral root dry weight was in roots < 1 mm diameter whereas in treated plants most dry weight was in roots > 1 mm diameter. Development of the root system following root cutting was similar for all treatments: new long laterals > 1 mm diameter with relatively few branches, that formed replacement tap roots, developed near the cut end of the original tap root. Fine laterals (< 1 mm diameter) near the root collar continued to grow forming highly branched systems.  相似文献   

10.
Increased exudation of carbon compounds from roots may provide a mechanism for enhancement of nutrient availability to plants growing in a CO(2)-enriched atmosphere. Therefore, the effect of atmospheric CO(2) concentration on carbon allocation and root exudation was investigated in Pinus echinata Mill. (shortleaf pine) seedlings. After 34 and 41 weeks, seedlings growing in 695 microl l(-1) CO(2) allocated proportionately more (14)C-labeled photosynthate to fine roots than did seedlings growing in ambient air. This was associated with greater fine root mass and mycorrhizal density in CO(2)-enriched plants after 34 weeks. Exudation of soluble, (14)C-labeled compounds from roots also was greater in these plants at 34 weeks, but the effect of CO(2) concentration on exudation did not persist at 41 weeks.  相似文献   

11.
[目的]DET2基因编码一个5α-还原酶,是油菜素内酯(BRs)合成过程中的关键限速基因。研究DET2基因在杨树生长发育中的作用,对于进一步研究油菜素内酯在木本植物中的调控机制有重要意义。[方法]从银腺杨84K(Populus alba×P. glandulosa,‘84K’)克隆得到拟南芥AtDET2同源基因PagDET2,利用生物信息学对其进行序列比对、生化特征分析、构建系统发育进化树。通过RT-PCR分析其在杨树中的表达模式。构建由CaMV 35S强启动子驱动的过表达载体,通过农杆菌介导的叶盘转化法转化84K杨,得到PagDET2-OE转基因植株。分析过表达DET2基因对于转基因植株内源BRs含量、植株生长和抗逆的影响。[结果]克隆了包含全长编码区PagDET2基因全长,可编码一个长度为257个氨基酸的蛋白质。其蛋白序列与毛果杨、拟南芥、水稻、棉花、大豆、番茄DET2蛋白同源性较高,说明该基因在进化过程中相对保守。PagDET2在84K杨不同组织中均检测到表达,其在茎中的表达较高。通过ELISA检测植物BRs含量发现,过量表达DET2可以显著提高杨树内源BRs含量。过量表达DET2基因,可以导致转基因植株的高生长,但对盐胁迫更加敏感。[结论]DET2基因作为BRs合成的关键基因,在杨树中过量表达可以显著提高内源BRs含量,促进植株增高。DET2转基因植株的获得为进一步分析BR参与木本植物生长发育的调控机制奠定了基础。  相似文献   

12.
We describe the proteomic identification of two pathogenesis-related group 5 (PR-5) proteins, an acidic thaumatin-like protein (TLP) and a basic TLP isolated from the pollination drop of hybrid yew (Taxus x media Rehder). The basic TLP (TxmTLPb) was the most abundant protein in the yew pollination drop based on protein spot size after two-dimensional electrophoresis. The acidic TLP (TxmTLPa) is also a major protein component of the yew ovular secretion and appears to be encoded by a number of mRNAs transcribed from a TLP gene family that has undergone limited sequence divergence. We have sequenced five acidic TLP-encoding cDNAs (TxmTLPa-1,2,3,4 and 5) isolated from the yew ovule that vary from each other by no more than five out of 233 amino acid residues in their predicted protein sequences. All of the cDNA variants encode TLPs possessing the 16 conserved cysteine residues and five charged amino acid side chains associated with antifungal activity. Amplification of genomic DNA with TxmTLPa primers indicated that at least 11 acidic TLPs with highly similar amino acid sequences may be expressed in yew tissues. Antibodies against TLPs confirmed the identity of TxmTLPa and TxmTLPb in the yew pollination drop and detected TLPs in the ovular secretions of four other species from three other conifer families. Our results suggest that TLPs are a conserved component of conifer ovular secretions and are involved in broad spectrum pathogen defence of ovules.  相似文献   

13.
【目的】 TATA框结合蛋白相关因子TAF10作为基本转录因子之一,在生长发育和胁迫响应过程中发挥着广泛的、重要的生物学作用。对蜡梅中TAF10同源基因 CpTAF10的克隆与功能分析,有利于丰富对植物TAFs基因功能的认识,并为解析蜡梅抗逆形成的转录调节机理提供新的理论依据。【方法】以转录组数据库中获得的蜡梅TAFs家族基因序列,克隆得到 CpTAF10基因的cDNA序列,并对其编码蛋白进行序列特征和进化树分析。采用实时荧光定量PCR 技术分析 CpTAF10基因在蜡梅不同组织及花期中的表达特性,以及高温、低温、盐胁迫及ABA处理后的表达变化。同时,构建 CpTAF10基因的过表达载体,采用花序侵染法进行拟南芥遗传转化,对拟南芥转基因纯合株系进行表型观察和胁迫耐性分析。【结果】获得的 CpTAF10基因 cDNA序列为712 bp,包含405 bp的开放阅读框(ORF),编码134个氨基酸,蛋白理论分子量为15.21 kDa,预测的等电点pI值为5.19。CpTAF10蛋白序列与其他植物同源序列具有较高的同源性,蛋白多序列比对显示CpTAF10蛋白属于TAF10同源蛋白,并含有组蛋白折叠结构域。表达特性分析结果发现,CpTAF10基因在蜡梅的根、茎、子叶、幼叶、成熟叶和花6个不同组织中均有不同程度的表达,其中,在成熟叶中的表达量最高。 CpTAF10在蜡梅花朵的不同花期中,呈现出波动的表达模式,在衰老期表达量最高。在低温、盐胁迫和ABA处理的蜡梅叶片中均能被诱导表达,但其表达变化各不相同。在拟南芥中过表达 CpTAF10基因可提高盐胁迫下拟南芥种子的萌发率,相对于野生型植株,转基因植株的主根和侧根在盐胁迫下均表现出一定的生长优势。【结论】 CpTAF10基因能在低温、盐胁迫和ABA处理后诱导表达,可能参与蜡梅逆境胁迫耐性的分子调控。在拟南芥中过表达 CpTAF10基因显著提高了转基因拟南芥的萌芽率及主根和侧根的生长优势,在一定程度上可增强植物的盐胁迫耐性。  相似文献   

14.
We have studied the development in nurseries of containerized Pinus radiata produced with different container systems in order to choose the most suitable system for producing well-balanced plants with an optimal root system. At the end of the production period, significant differences were found in morphological responses among the seedlings to the various container characteristics. Seedlings grown in containers that permitted lateral air puning presented less growth and lower biomass production. However, root deformations were more frequent and severe in plants produced in closed-wall containers. Field performance was likewise mainly affected by container type and plant growth rate, as faster grown plants showed more problems of stability than plants with a balanced root and stem development.  相似文献   

15.
Leaf gas exchange, water relations and osmotic adjustment were studied in hydroponically grown Phillyrea latifolia L. plants exposed to 5 weeks of salinity stress (0, 80, 160, 240 and 320 mM NaCl) followed by 5 weeks of treatment with half-strength Hoagland solution. Whole-plant relative growth rate and root/shoot and lateral/structural root ratios were also evaluated. Net CO2 assimilation rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Growth was also strongly depressed by all salt treatments, especially lateral root growth. Leaf water potential decreased soon after salinity stress was imposed, whereas there was a lag of several weeks before leaf osmotic potential decreased in response to the salt treatments. After 5 weeks of salinization, leaf turgor of salt-treated plants was similar to that of controls. Although Na+ + Cl- contributed little to the salt-induced changes in osmotic potential at full turgor (Psi(piFT)), the contributions of K+, mannitol (Man) and glucose (Glc) to Psi(piFT) markedly increased as external salinity increased. Salt accumulation was negligible in the youngest leaves, which mostly accumulated soluble carbohydrates and K+; in contrast, old leaves served as storage sinks for Na+ and Cl-. Photosynthetic performance of salt-treated plants fully recovered once salt was leached from the root zone, with the recovery rate depending on the severity of the salt stress previously experienced by the plants. Recovery of gas exchange occurred even though the leaves still had a salt load similar to that detected in leaves at the end of the 5-week salinity period, and had markedly lower concentrations of K+ and soluble carbohydrates than control leaves. We conclude that salt-induced water stress primarily controlled gas exchange of salt-treated P. latifolia leaves, whereas the salt load in the leaves did not cause irreversible damage to the photosynthetic apparatus.  相似文献   

16.
We have compared the metabolic responses of leaves and roots of two Eucalyptus globulus L. clones CN5 and ST51 that differ in their sensitivity to water deficits (ST51 is more drought sensitive), with regard to the effect of chilling (10/5 °C, day/night). We studied changes in growth, osmotic potential and osmotically active compounds, soluble proteins, leaf pigments, and membrane lipid composition. Our data showed that both clones have the ability to acclimatize to chilling temperatures. As a result of 10 days of acclimation, an increase of soluble sugars in leaves of treated plants of both clones was observed that disappeared later on. Differences between clones were observed in the photosynthetic pigments and soluble protein content which were more stable in CN5 under chilling. It also was apparent that CN5 presented a less negative predawn water potential (ψpd) and a higher leaf turgor than ST51 throughout the chilling treatment. In the case of the CN5, increased total lipids (TEA) and concomitant increase of linolenic acid (C18:3) in leaves after acclimatization may be related to a better clone performance under chilling temperatures. Moreover, a higher constitutive investment in roots in the case of CN5 as compared to ST51 may benefit new root regeneration under low temperatures favoring growth after cold Mediterranean winter.  相似文献   

17.
We compared bark proteins from four contrasting (blister rust-resistant versus susceptible) half-sib seedling pairs of western white pine (Pinus monticola D. Don). Pooled proteins from resistant and susceptible groups (four trees per group) were separated by two-dimensional gel electrophoresis, silver stained, and analyzed with the aid of a laser scanner interfaced with a computerized gel documentation system. Qualitative and quantitative protein differences were observed between resistant and susceptible groups. The number of proteins unique to a group was greater in the susceptible category than in the resistant category. Biosynthesis of some common proteins was enhanced near lesioned areas of susceptible seedlings. Many proteins shared similar charge and mass characteristics with those of pathogenesis-related (PR) proteins. Two protein bands were isolated and partially characterized by N-terminal amino acid sequencing: a 10.6-kDa band that was selectively enriched in all resistant individuals, and a 26.0-kDa band that was enriched in some susceptible individuals. The significance of these protein differences and the possible use of selected proteins as disease or resistance markers are discussed.  相似文献   

18.
Norway spruce [Picea abies (L.) Karst.] and silver birch (Betula pendula Roth) seedlings were grown for one season under three different fertilization regimens in the forest nursery. During the first 50 days the seedlings were grown in a glasshouse, and thereafter outdoors until the beginning of September. Finally, the plants were exposed to 16 h nights in the glasshouse throughout September. When the seedlings were supplied with fertilizers at a rate adjusted to expected plant demand (RO), less than half as much of each nutrient was applied as in a conventional regimen (RC), in which equal amounts were supplied per unit time during the growth season, yet the plants still looked healthy. Utilization of N increased by almost 50% in spruce when supply was adjusted to plant demand. In the third treatment (RL), nutrients were supplied as in the RO treatment, but at a growth-limiting rate. These plants were loaded with nutrients at the end of the season and had higher root:plant ratios, i.e. root weight in relation to total plant weight, compared with the other treatments. The nutrient status of the plants was not growth limiting at the end of the growing season in any of the treatments. The plants given the different treatments differed in size at planting out, but they had similar heights after 3 yrs in the field. This indicates that the root:plant ratio may be important for growth performance, provided that nutrient status is not at a growth-limiting level. This study suggests that the use of fertilizers can be considerably reduced in Swedish forest nurseries.  相似文献   

19.
20.
Restricted gas exchange between the rhizosphere and aerial environment reduces the concentration of oxygen (O(2)) and elevates the concentration of carbon dioxide (CO(2)) in the root zone, thereby leading to increased resistance to root water uptake. In this study, the effects of hypoxia and 20% CO(2) on water flux (J(v)) through roots of hybrid poplar (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh) were measured in detached root systems under pressure in solution culture. Because stomata closed and there was no change in foliar water potential in hypoxic plants, root resistance was measured in detached systems as opposed to using whole plant measurements. However, under aerated conditions root resistance values were similar in intact plants and excised roots. Water fluxes through pressurized root systems treated with nitrogen and low oxygen (< 2% O(2)), elevated CO(2) (20% CO(2)), and low O(2) with elevated CO(2) concentrations were reduced to 40, 51 and 58%, respectively, of J(v) of plants aerated with ambient air. Reductions in J(v) occurred more rapidly in response to elevated CO(2) than to low O(2) concentrations. The effects of low O(2) and elevated CO(2) were not additive. Changes in pH that resulted from elevated CO(2) concentrations did not account for the reduction in J(v). When root systems of intact plants were pretreated for 24 or 48 h with low O(2) concentration, J(v) measured on pressurization was reduced by 33 and 48%, respectively, compared to aerated roots. Stomatal conductance was also reduced, however, so leaf water potential of plants with hypoxic roots were similar to those of aerated controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号