首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于景观格局分析的兴国县土壤侵蚀演变研究   总被引:17,自引:1,他引:17  
利用1958年、1975年、1982年和1996年的土壤侵蚀强度等级图,在GIS软件支持下生成土壤侵蚀强度栅格分类图。通过FRAGSTATS景观格局分析软件计算出了10多种景观类型参数,并从斑块类型水平和景观水平2个层次上定量地分析了兴国县土壤侵蚀的分布格局及其变化规律。结果表明:兴国县的土壤侵蚀状况从1958年到1996年已发生了明显的好转。此期间经历了两个明显的时期:即1958年到1975年的侵蚀加剧时期和1975年后的侵蚀减退期。到1996年,兴国县无明显侵蚀的面积已达到全县面积的74.6%,严重土壤侵蚀状况已基本得到了控制。  相似文献   

2.
江西省兴国县土壤侵蚀动态演变趋势分析   总被引:3,自引:0,他引:3  
利用1958、1975、1982、2000年4期的土壤侵蚀强度等级图,空间配准及矢量化后,制成栅格分类图。在IDRISI 的CROSSTAB模块下分别计算了1958年到1975年,1975年到1982年及1982年到2000年的土壤侵蚀等级转换矩阵。根据该矩阵对兴国县土壤侵蚀的情况分期地进行了定量分析。结果表明:在研究的时期内,兴国县的土壤侵蚀经历了三个主要过程:1958年到1975年的侵蚀加剧期,1975年到1982年的自然恢复期,1982年到2000年的全面恢复期。到2000年,强度侵蚀的面积明显减少,无明显侵蚀的面积已达到全县面积的74.7%,严重土壤侵蚀状况已基本得到了控制。  相似文献   

3.
42年来兴国县土壤侵蚀时空变化规律研究   总被引:6,自引:0,他引:6  
梁音  潘贤章  孙波 《水土保持通报》2006,26(6):24-27,71
以江西省兴国县为研究区域,应用遥感和GIS技术,借助6个不同时段的黑白航片、MSS影像和TM数据为信息源,在建立土壤侵蚀解译标志的基础上,对全县3 215 km2范围内的土壤侵蚀进行了监测研究。结果表明,该县从1958—2000年42 a期间,土壤侵蚀的变化分2个阶段。第一阶段是1982年前,全县的侵蚀面积在2 000 km2左右;第二阶段是从80年代初到2000年,该县被列为全国水土流失综合治理重点区,侵蚀面积在18 a间共减少了739 km2,平均每年减少41 km2。将1992与2000年的土壤侵蚀图叠置分析可以看出,该县5个侵蚀等级的面积都有不同程度的降低;在侵蚀等级的转变方面,大约有34%的侵蚀面积,其侵蚀等级发生了改变,其中以改变一个等级的面积为主,大约有66%的侵蚀面积其侵蚀等级未发生变化,说明兴国县的土壤侵蚀已呈现出明显的减弱趋势。  相似文献   

4.
The presence and condition of roadways control the utilization of natural resources, which are associated with direct and indirect impacts on soil erosion in undeveloped countries. This paper addresses the relationship between soil erosion and distance to roadways in Xingguo County, an undeveloped area in Jiangxi Province of South China, for four time periods, 1958, 1975, 1982, and 2000. Soil erosion maps for each time period were interpreted using remote sensing and GIS technology for buffer zones four kilometers wide, subdivided into eight strips, each 0.5 kilometers wide, which were located alongside various types of road classes, namely trunk, town, village, and unpaved. The distribution patterns of various types of erosion were identified by GIS overlay of buffer strips and soil erosion maps. Results demonstrate that soil erosion cases found in buffer zones along both sides of trunk and town roads are the most severe, and areas with severe erosion decrease as distance from the strip to the road increases. However, moderate and slight erosion cases only have a minor relationship to the strip to road distance. There are more severe erosion cases than moderate and light erosion cases alongside village and unpaved roads, but the total area is not distinctly different from moderate and slight erosion cases, and severe erosion cases tend to decrease with an increase in the strip to road distance. Also, areas with severe erosion differentiated by time periods in the strips alongside roadways of all classes, except trunk roads, rank from highest to lowest as follows: 1975, 1958, 1982, and 2000. Notably, severe erosion areas in 1975, 1958 and 1982 are all quite extensive. Soil erosion alongside roadways of various classes is impacted jointly by historical policy, distance to roadways, and landscape. In undeveloped countries and areas, much more attention should be paid to the impacts of road construction, specifically soil erosion associated with road edge construction, and relevant measures for forest resource conservation should be formulated before initiating road construction projects.  相似文献   

5.
利用遥感和GIS研究兴国县土壤侵蚀的变化   总被引:10,自引:0,他引:10  
The spatial and temporal dynamics of soil erosion in Xingguo County, Jiangxi Province, China were studied using multi-period remote sensing images and GIS. The results indicated that the soil erosion status of the region has been improving, particularly since the 1980s, with the erosion rate showing an evident decline over the past 30 years. The improvement showed not only in the decline of eroded soil area, but also with the reduction in the extent of erosion. The extent of erosion mainly changed by one level, and the change primarily occurred with the severely or moderately eroded soil types. However, in general, soil erosion was still an overriding problem in the region with some areas becoming more serious, especially those with large quantities of granite.  相似文献   

6.
Soil plays an important role in the global carbon cycle, and carbon sequestration in soil is important for mitigating global climate change. Historically, soil erosion led to great reductions of soil organic carbon (SOC) storage in China. Fortunately, with the economic development and remarkably effective soil erosion control measures in subtropical China over the past 20 years, soil erosion has been greatly decreased. As a result, soil organic carbon sequestration has gradually increased due to the rapid recovery of vegetation in the area. However, little information exists concerning the potential of soil carbon sequestration in the area. This paper introduces a case study in Xingguo County, Jiangxi Province, China, which used to be a typical area with significant soil loss in subtropical China. This work represents a systematic investigation of the interrelations of carbon sequestration potential with soil erosion types, altitudes, soil types and soil parent materials. In this study, 284 soil samples were collected from 151 sampling sites (51 are soil profile sites) to determine soil physicochemical properties including organic carbon content. Soil organic carbon distribution maps of the surface layer (0–20 cm) and whole profile (0–100 cm) were compiled by linking soil types to the polygons of digital soil maps using GIS. Assuming that SOC was lost following the destruction of native vegetation, these lands hold great promise for potentially sequestering carbon again. The potential of soil carbon sequestration in the study area was estimated by subtracting the organic carbon status in eroded soils from that in non-eroded soils under undisturbed forest. Results show that the potential of SOC in the surface layer is 4.47 Tg C while that in the whole profile is 12.3 Tg C for the entire county. The greatest potential for carbon sequestration (3.72 Tg C) is found in severely eroded soil, while non-eroded soil has the smallest potential. Also, soil carbon sequestration potential decreases with increasing altitude. Soils at altitudes of <300 m show the greatest potential (5.01 Tg C), while those of >800 m have the smallest potential (0.25 Tg C). Among various soil types, red earths (Humic Acrisols) have the greatest potential of carbon sequestration (5.32 Tg C), and yellow earths (Ferralic Cambisols) have the smallest (0.15 Tg C). As for soils derived from various parent materials, soils derived from phyllite possess the greatest carbon sequestration potential, and soils from Quaternary red clays have the smallest.  相似文献   

7.
Soil losses affect the physical, chemical and biological soil properties and as a consequence reduce soil productivity. Erosion reduces or eliminates root-explorable soil depth and crop available water, selectively decreases the nutrient and organic matter content, and exposes soil layers with unsuitable characteristics for crop growth. Yield is hence assumed to be a function of root growth, which in turn is a function of the soil environment. In order to evaluate the water erosion impact on soil properties and productivity, a study was carried out on a Typic Haplustalfs soil, with sorghum (Sorghum bicolor (L) Moench), located in Chaguaramas in the Central Plains of Venezuela. Four different study locations with the same soil type, with slopes ranging from 3% to 6% and with different levels of erosion were selected: Chaguaramas I (slightly eroded), Chaguaramas II, (moderately eroded), Chaguaramas III (moderately eroded), and Chaguaramas IV (severely eroded). A sorghum–livestock farming system was introduced 30 years ago. Secondary tillage with a disc harrow (without mulch on the topsoil) was applied for seedbed preparation. Fertilizers and pesticides were applied uniformly over the entire fields. Soil samples from each horizon were analysed for particle size distribution, water retention, bulk density, pH and organic matter content. The relative production potential was estimated using the Productivity Index developed by Pierce et al. [Pierce, F.C., W.E. Larson, R.H. Dowdy and W.A. Graham. 1983. Productivity of soils: assessing long-term changes due to erosion. Journal of Soil and Water Conservation. 38 39–44.], and adapted to the methodology proposed by Delgado [Delgado F. 2003. Soil physical properties on Venezuelan steeplands: applications to conservation planning. The Abdus Salam International Centre for Theoretical Physics. College on Soil Physics. 11 pp.] for Venezuelan soil conditions. The Productivity Index (PI) could estimate the tolerable rate of soil productivity loss. A soil erosion risk was assessed by the Erosion Risk Index (ERI) taking into account the soil hydrological characteristics (infiltration–runoff ratio), rainfall aggressiveness and topography (slope). The Productivity Index (PI) and the Erosion Risk Index (ERI) were used to classify the lands for soil conservation priorities, for conservation requirements and for alternative land uses. The results showed that: (a) the Productivity Index (PI) decreased with increasing level of erosion, (b) the Productivity Index (PI) was mainly affected by changes in available water storage capacity, bulk density and pH, (c) the erosion risk (ERI) was strongly affected by slope gradient and rainfall aggressiveness, (d) the areas were classified as critical lands and super-critical lands, with high to very high soil conservation requirements, depending on the level of soil erosion.  相似文献   

8.
基于景观破碎化的三峡库区(重庆)土壤侵蚀评价   总被引:2,自引:0,他引:2  
彭月  何丙辉  黄世友 《土壤学报》2012,49(4):636-645
以三峡库区重庆段为研究区域,以景观生态学原理为基础,将地理信息系统技术与传统的数量生态学方法(双向指标种分析与除趋势典范对应分析)相结合,对研究区的土壤侵蚀组成、强度、空间格局进行分析;对22个区县进行土地利用景观破碎化分类;对土壤侵蚀与土地利用景观破碎化的内在联系进行了评价。主要结果如下:(1)三峡库区(重庆)以微度侵蚀和中度侵蚀为主;耕地上的土壤侵蚀强度最高,林地、水体和未利用地上侵蚀强度较低;研究区下游和近中游地区土壤侵蚀明显高于上游地区。(2)根据其空间位置,22个区县从东往西划分为农草破碎区、林地破碎区和建水破碎区3个土地利用景观高破碎区域,且土壤侵蚀等级从东向西依次减弱。(3)较强的土壤侵蚀等级能够增加土地利用景观破碎化,但是其加剧土地利用景观破碎化的强度同土壤侵蚀等级呈相反趋势(如:强度侵蚀最高,极强度侵蚀其次,剧烈侵蚀低于前两者)。  相似文献   

9.
华南兴国县影响土壤侵蚀时空动力学的环境因素   总被引:7,自引:0,他引:7  
By using soil erosion maps of four different time periods and a digital elevation model (DEM), in combination with the remote sensing and GIS technologies, soil erosion dynamics in Xingguo County of Jiangxi Province in South China were analyzed on both temporal and spatial scales in soils of different parent materials, altitudes and slopes. The results showed that from 1958 to 2000 severe soil erosion was coming under control with a decreasing percentage of the land under severe erosion. It was also found that the soils developed from Quaternary red clay, granite and purple shale were more susceptible to soil erosion and that areas sitting between 200 to 500 m in altitude with a slope less than 3° or between 7° to 20° where human activities were frequent remained to be zones where soil erosion was most likely to occur. These areas deserve special attention in monitoring and controlling.  相似文献   

10.
Accelerated soil erosion can impact upon agronomic productivity by reducing topsoil depth (TSD), decreasing plant available water capacity and creating nutrient imbalance in soil and within plant. Research information on soil‐specific cause – effect relationship is needed to develop management strategies for restoring productivity of eroded soils. Therefore, two field experiments were established on Alfisols in central Ohio to quantify erosion‐induced changes in soil properties and assess their effects on corn growth and yield. Experiment 1 involved studying the effects of past erosion on soil properties and corn yield on field runoff plots where soil was severely eroded and comparing it with that on adjacent slightly eroded soil. In addition, soil properties and corn grain yield in runoff plots were compared on side‐slopes with that on toe‐slopes or depositional sites. Experiment 2 involved relating corn growth and yield to topsoil depth on a sloping land. With recommended rates of fertilizer application, corn grain yield did not differ among erosional phases. Fertilizer application masked the adverse effects of erosion on corn yield. Corn grain yield on depositional sites was about 50 per cent more than that on side‐slope position. Corn plants on the side‐slope positions exhibited symptoms of nutrient deficiency, and the ear leaves contained significantly lower concentrations of P and Mg and higher concentrations of Mn and K than those grown on depositional sites. Corn grain yield in experiment 2 was positively correlated with the TSD. Soil in the depositional site contained significantly more sand and silt and less clay than that on the side‐slope position. There were also differences in soil properties among erosional phases. The soil organic carbon (SOC) content was 19\7 g kg−1 in slightly eroded compared with 15\1 g kg−1 in severely eroded sites. Aggregate stability and the mean weight diameter (MWD) were also significantly more in slightly eroded than severely eroded soils. Adverse effects of severe erosion on soil quality were related to reduction in soil water retention, and decrease in soil concentration of N and P, and increase in those of K, Ca and Mg. Severe erosion increased leaf nutrient contents of K, Mn and Fe and decreased those of Ca and Mg. Corn grain yield was positively correlated with aggregation, silt and soil N contents. It was also negatively correlated with leaf content of Fe. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Soil organic carbon (SOC) dynamics are affected by tillage, soil erosion and depositional processes. The objectives of this paper are to evaluate soil organic carbon and fly-ash distribution methods for identifying eroded phases of soils in Illinois and Russia and quantifying the extent of soil loss from erosion. The effect of accelerated erosion on soils is recorded on National Cooperative Soil Survey maps as phases of soil series that reflect the percentage of the original A horizon materials remaining. Identification depends on knowledge of the original A horizon thicknesses, SOC and fly-ash contents at uncultivated and uneroded sites when determining erosion phases of soil at cultivated and eroded sites. However, locating uncultivated and uneroded comparison sites with similar landscape and slope characteristics can be difficult. The amount of A horizon materials within the plow layers (Ap horizons) or topsoils are often determined by soil colors which reflect the SOC contents. Soil erosion phases based on original A horizon materials remaining in the topsoils may underestimate the extent of soil losses from topsoils and subsoils, particularly where soils have been cultivated for hundreds of years and are severely eroded. The SOC contents and soil erosion phases can be affected by losses or gains of organic C-rich sediments from tillage translocation and erosion, by management input level differences, oxidation, or as a result of land use and landscape position variations. Fly-ash was found to be more stable and act as a better indicator of soil erosion phase than SOC content.  相似文献   

12.
黄土丘陵林区开垦地土壤侵蚀强度时间变化研究   总被引:1,自引:1,他引:0  
以黄土丘陵林区10a径流泥沙观察资料为基础,分析了林地开垦后不同侵蚀年限情况下土壤侵蚀强度的变化。结果发现,随侵蚀年限的增长,土壤侵蚀强度呈明显的增长趋势,平均每年约有10mm的土层被侵蚀掉,到侵蚀的第10a时,已有100.81mm的土层被侵蚀掉,相当于林地土壤的A层大部分遭到流失。土壤侵蚀强度的增加,土壤质量的下降,土壤性状的恶化,更促使侵蚀程强度的加剧。  相似文献   

13.
淮河流域因解决粮柴短缺问题造成新的水土流失面积约3880万亩,占全流域山丘区总流失面积的44%,其中滥垦山地300万亩,坡耕地1000万亩,坡式梯田500万亩,田间隙地、林粮间作地400万亩,滥樵滥伐林地1680万亩,所导致的土壤侵蚀量达1.2亿t,占总侵蚀量的52%。该文在分析上述问题的基础上,提出了对现有林草植被和水土资源的保护,引进节能技术,选择优良品种,大搞水土保持,狠抓坡耕地治理,营造薪炭林,以及开展以小流域为单元的综合治理,解决流域内因粮柴短缺问题造成的水土流失。  相似文献   

14.
侵蚀土壤地表径流和土壤渗透的研究   总被引:1,自引:1,他引:1  
我国南方水土流失区属水蚀区,地表径流是引起土壤侵蚀的主要动力.研究不同土壤在特定降雨条件下,降雨持续时间与地表径流的关系、土壤渗透时间与渗透速度的关系、渗透时间与渗透总量的关系,掌握地表径流和土壤渗透规律,揭示地表径流、土壤渗透与土壤环境、土壤性质的内在联系,可为保护、改良土壤,防治土壤侵蚀,以及进行侵蚀预报提供理论依据.为此,我们在采用渗透筒法进行土壤渗透性研究[6]的基础上,进一步采用人工降雨方法,对侵蚀土壤地表径流和土壤渗透进行研究.  相似文献   

15.
《CATENA》2006,65(2-3):297-306
Soil losses affect the physical, chemical and biological soil properties and as a consequence reduce soil productivity. Erosion reduces or eliminates root-explorable soil depth and crop available water, selectively decreases the nutrient and organic matter content, and exposes soil layers with unsuitable characteristics for crop growth. Yield is hence assumed to be a function of root growth, which in turn is a function of the soil environment. In order to evaluate the water erosion impact on soil properties and productivity, a study was carried out on a Typic Haplustalfs soil, with sorghum (Sorghum bicolor (L) Moench), located in Chaguaramas in the Central Plains of Venezuela. Four different study locations with the same soil type, with slopes ranging from 3% to 6% and with different levels of erosion were selected: Chaguaramas I (slightly eroded), Chaguaramas II, (moderately eroded), Chaguaramas III (moderately eroded), and Chaguaramas IV (severely eroded). A sorghum–livestock farming system was introduced 30 years ago. Secondary tillage with a disc harrow (without mulch on the topsoil) was applied for seedbed preparation. Fertilizers and pesticides were applied uniformly over the entire fields. Soil samples from each horizon were analysed for particle size distribution, water retention, bulk density, pH and organic matter content. The relative production potential was estimated using the Productivity Index developed by Pierce et al. [Pierce, F.C., W.E. Larson, R.H. Dowdy and W.A. Graham. 1983. Productivity of soils: assessing long-term changes due to erosion. Journal of Soil and Water Conservation. 38 39–44.], and adapted to the methodology proposed by Delgado [Delgado F. 2003. Soil physical properties on Venezuelan steeplands: applications to conservation planning. The Abdus Salam International Centre for Theoretical Physics. College on Soil Physics. 11 pp.] for Venezuelan soil conditions. The Productivity Index (PI) could estimate the tolerable rate of soil productivity loss. A soil erosion risk was assessed by the Erosion Risk Index (ERI) taking into account the soil hydrological characteristics (infiltration–runoff ratio), rainfall aggressiveness and topography (slope). The Productivity Index (PI) and the Erosion Risk Index (ERI) were used to classify the lands for soil conservation priorities, for conservation requirements and for alternative land uses. The results showed that: (a) the Productivity Index (PI) decreased with increasing level of erosion, (b) the Productivity Index (PI) was mainly affected by changes in available water storage capacity, bulk density and pH, (c) the erosion risk (ERI) was strongly affected by slope gradient and rainfall aggressiveness, (d) the areas were classified as critical lands and super-critical lands, with high to very high soil conservation requirements, depending on the level of soil erosion.  相似文献   

16.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha−1 year−1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg−1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha−1 year−1 exhibited thick sola with low inorganic carbon content (mean 3 g kg−1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions.  相似文献   

17.
Spatial distribution of carbon (C) within a soil profile and across a landscape is influenced by many factors including vegetation, soil erosion, water infiltration, and drainage. For this reason, we attempted to determine the soil C distribution of an eroded soil. A three-dimensional (3D) map of a 0.72 ha field with a Dubuque silt loam soil which has three levels of erosion (slight, moderate, and severe) was developed using soil distribution and profile data collected using a profile cone penetrometer (PCP). This map displays the distribution of the total depth of the Ap and Bt1 horizons and the upper part of the 2Bt2 horizon. A map of soil C distribution was created for this landscape using C content information obtained from soil samples. Based on the C distribution in the upper two horizons, a 3D viewing was developed of soil C distribution for this eroded landscape. The 3D assessment of C distribution provides a better means of assessing the impact of soil erosion on C fate. It was estimated that there were 52 Mg ha−1 of total C in the surface (Ap) horizon and 61 Mg ha−1 in the Bt1 horizon for the 0.72 ha area. This increase in C with depth in the soil can be attributed to an increase in clay content and C leaching resulting in stable carbon–clay complexes. The C content was 16.0, 17.5, and 19.0 g kg−1 for the Ap horizon in the slight, moderate, and severe erosion levels, respectively. However, it was estimated that the total C amount in the respective Ap horizons was 28, 14, and 10 Mg ha−1 for the slight, moderate, and severe areas. The Bt1 horizon had 31, 19, and 11 Mg ha−1 of C in the slight, moderate, and severe areas, respectively. For the 0.72 ha area, 25% was severely eroded with 31 and 44% being moderate and slight, respectively. Soil C distribution information, such as that presented here, can be very valuable for soil management and could be used to determine possible C storage credits.  相似文献   

18.
基于GIS/RS和USLE鄱阳湖流域土壤侵蚀变化   总被引:26,自引:7,他引:19  
将空间信息技术(RS和GIS)和通用土壤流失方程(USLE)相结合对鄱阳湖流域土壤侵蚀量进行计算。分别利用1990年和2000年TM/ETM+影像分类得到两期土地利用/覆盖类型图,结合鄱阳湖流域数字高程模型(DEM)、土壤类型分布图和流域降雨资料分别获取USLE模型中各因子值的空间分布,最后计算流域2个年份的土壤侵蚀空间分布图。研究表明:鄱阳湖流域土壤侵蚀区域主要分布在赣江上游,信江上游,抚河上中游和修水上游地区;鄱阳湖流域1990年和2000年大范围土地经受着Ⅰ级微度与Ⅱ级轻度侵蚀,其侵蚀面积之和分别占流域面积的97.38%和97.30%;而流域产沙主要来源于Ⅱ级轻度侵蚀和Ⅲ级中度侵蚀,所占土壤侵蚀总量分别为58.16%和51.20%,其中中度以上等级的侵蚀对产沙量的贡献是不可忽视的;从1990年到2000年土壤侵蚀等级变化呈现了由中等级侵蚀(Ⅱ级轻度侵蚀和Ⅲ级中度侵蚀)向低等级(Ⅰ级微度侵蚀)和高等级侵蚀(Ⅴ级极强度和Ⅵ级剧烈侵蚀)的2个极端演化的趋势。鄱阳湖流域土壤侵蚀量从1990年到2000年增长幅度达6.3%;土壤平均侵蚀模数都约为1 100 t/(km2·a),属于Ⅱ级轻度侵蚀。分析2个年份的土地利用/覆盖变化,发现鄱阳湖流域湿地和农田面积减少,建筑用地增加均是造成土壤侵蚀量增加的因素,而降雨侵蚀力因子空间格局也对土壤侵蚀空间分布具有重要影响,最后提出了鄱阳湖流域水土保持规划措施。  相似文献   

19.
中国亚热带红壤团聚体稳定性与土壤化学性质的关系   总被引:16,自引:1,他引:16  
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and Al oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates, especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm. In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

20.
Soil carbon (C) losses and soil translocation from tillage operations have been identified as causes of soil degradation and soil erosion. The objective of this work was to quantify the variability in tillage-induced carbon dioxide (CO2) loss by moldboard (MP) and chisel (CP) plowing across an eroded landscape and relate the C loss to soil properties. The study site was a 4 ha wheat (Triticum aestivum L. cv. Marshall) field with rolling topography and five soil types in the Svea-Barnes complex in west central Minnesota (N. Latitude = 45°41′W, Longitude = 95°43′). Soil properties were measured at several depths at a 10 m spacing along north–south (N–S) and west–east (W–E) transects through severely eroded, moderately eroded and non-eroded sites. Conventional MP (25 cm deep) and CP (15 cm deep) equipment were used along the pre-marked transects. Gas exchange measurements were obtained with a large, portable chamber within 2 m of each sample site following tillage. The measured CO2 fluxes were largest with the MP > CP > not tilled (before tillage). The variation in 24 h cumulative CO2 flux from MP was nearly 3-fold on the N–S transect and 4-fold on the W–E transect. The surface soil organic C on the transects was lowest on the eroded knolls at 5.1 g C kg−1 and increased to 19.6 g C kg−1 in the depositional areas. The lowest CO2 fluxes were measured from severely eroded sites which indicated that the variation in CO2 loss was partially reflected by the degradation of soil properties caused by historic tillage-induced soil translocation with some wind and water erosion.

The spatial variation across the rolling landscape complicates the determination of non-point sources of soil C loss and suggests the need for improved conservation tillage methods to maintain soil and air quality in agricultural production systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号