首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Durum wheats cultivated in the Middle Anatolia region of Turkey (Triticum durum cvs ‘Kunduru’, ‘Berkmen’ and ‘Cakmak’) were crossed with maize to evaluate their capacity for haploid embryo and doubled haploid (DH) plant production. A total of 2960 florets were crossed with maize and 13.7% of the florets produced haploid embryos across the three varieties. Haploid embryo and plant regeneration frequencies were highest in ‘Kunduru’, but colchicine doubling was less successful with this genotype. There were statistically significant differences between ‘Cakmak’ and other genotypes for embryo yield (P < 0.01). Overall, 52.3% of all embryos differentiated, but there were no geno-typic differences in differentiation frequencies.  相似文献   

2.
Barbela is an old Portuguese landrace of wheat that is highly genetically heterogeneous. Different Barbela populations when subjected to aluminium stress show variable levels of tolerance. In order to study the inheritance of this character, doubled haploid (DH) lines were developed. These DH were obtained by intergeneric crosses of 14 different lines of Barbela with maize. During this process the efficiency of the technique was evaluated and suggestions for its improvement were obtained. Several parameters were studied in the crosses: % of crossability, % of embryos per florets pollinated and % of embryos per seed set. The different genotypes of Barbela showed significant variation for the parameters analysed. When the reciprocal crosses were analysed, no differences were found, indicating that cytoplasm differences do not influence the parameters of DH production. However, different spikelet positions (lower, middle and upper) gave highly significant differences in all parameters analysed. Highest success frequencies were obtained for pollinated spikelets in the middle of the spike. This can indicate that concentrating on the middle part of the spike can increase the frequency of DHs obtained using inter generic crosses of wheat with maize. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The interactive influence of winter and/or spring wheat genetic background on haploid induction parameters and trait correlation was studied by hybridizing five elite and diverse genotypes each of winter and spring wheat and their F1s (winter × winter, spring × spring, and winter × spring, generated in a diallel design excluding reciprocals) with a single genotype of maize. Data were recorded with respect to per cent seed formation, embryo formation, and regeneration. High genetic variability was present among the wheat genotypes (parents + F1s) for the three haploid induction parameters. Significant differences were obtained within and between different groups viz., spring wheats, winter wheats, spring × spring wheats, winter × winter wheats, and winter × spring wheats with respect to the three haploid induction parameters based on ANOVA. The winter genotypes (winter parents and winter × winter wheat hybrids) responded better than the spring groups (spring wheat parents, spring × spring and winter × spring wheat hybrids) with respect to embryo formation and winter × spring wheat hybrids yielded significantly the highest numbers of regenerants. Correlation studies amongst the haploid induction parameters indicated that the genes controlling seed formation and haploid plantlet regeneration are negatively correlated when the genetic backgrounds of both ecotypes are combined in winter × spring hybrids. Haploid embryo formation had no association with seed formation and regeneration in all genetic backgrounds, suggesting independent inheritance.  相似文献   

4.
N. Amrani    A. Sarrafi  G. Alibert 《Plant Breeding》1993,110(2):123-128
Crosses were made between 14 wheat genotypes (11 tetraploid, 3 hexaploid) and a single Fl hybrid of maize that was used as the male parent. The experimental design consisted of randomized blocks with three replications. Plants were grown under controlled greenhouse conditions (day length 16 h and temperature 25 °C/15 °C, day/night). To enhance embryo survival, 2, 4-D treatment (10 mg/1) was applied to spikes 24 h after pollination with maize. Embryos were recovered from all tetraploid and hexaploid wheats at a rate of 2.09 to 26.76 per 100 pollinated florets. Haploid and doubled haploid plants were obtained from all hexaploid genotypes (T. aestivum) and from 5 of 11 tetraploid genotypes (T. turgidum var.). The most important point of these experiments was the ability to produce haploid plants from tetraploid wheat for two reasons: firstly, anther culture cannot be applied in tetraploid wheat (T. turgidum var.) due to the inefficiency of embryo formation and the high proportion of albino plants. Secondly, to date, crosses between tetraploid wheat and maize have resulted in embryo formation, but not in haploid plants.  相似文献   

5.
D. A. Laurie 《Plant Breeding》1989,103(2):133-140
Crosses of ‘Highbury’בSeneca 60’ were studied to determine the effect of four crossing procedures on the frequency of fertilization. The procedures were: 1) glumes of emasculated florets left intact, 2) glumes cut to expose the stigmas, 3) intact glumes given a 75 mg 1-1 GA spray 2 h after pollination, and 4) cut glumes given a 75 mg 1-1 GA spray 2 h after pollination. Within each treatment florets with developmental ages ranging from 3 days before an-thesis to 3 days after anthesis were pollinated. Fertilized florets were found in all four treatments. Overall, 20.2 % had only an embryo, 2.5 % had only an endosperm and 7.9 % had an embryo and an endosperm. Significant variation in the frequency of embryo formation, and hence in the frequency of potential plants, was found both between treatments and between developmental stages within treatments. The highest frequency (55.8 % of pollinated florets) was found in florets with intact glumes which had not received a GA spray and which had been pollinated on the day of anthesis. Cutting the glumes to expose the stigmas, pollinating earlier or later than the day of anthesis or application of a GA spray all tended to reduce the number of embryos. This was also the case when the total fertilization frequencies (embryos plus endosperms) were analyzed. The potential of wheat × maize crosses for wheat haploid production is discussed.  相似文献   

6.
Genotypic influence of both male and female parents on haploid production through interspecific crosses was studied using eight wheat and four maize genotypes. The average numbers of embryos and green haploid plantlets obtained per pollinated floret were 17.6% and 10.1%, respectively. Clear genotypic influence of the wheat genotype was detected, but heterozygosity of the wheat did not affect haploid production. Analogous response to anther culture and interspecific crossing was observed, still a wheat variety which did not respond to anther culture, produced 1.1 plantlets per pollinated spike upon maize pollination. This appears to be a major advantage of interspecific crossing compared to anther culture technique in wheat. Circumstantial evidence is presented for specific wheat × maize interaction on haploid plantlet formation. Rye chromatin enhanced haploid production but only in a complete 1B/1R substitution line. Ovaries with an embryo were found to be dispersed evenly all over the wheat spike, suggesting that within certain limits the developmental stage of ovaries and thus time of pollination within a spike are not as important as it was previously assumed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性   总被引:2,自引:0,他引:2  
陈新民  王凤菊  李思敏  张文祥 《作物学报》2013,39(12):2247-2252
小麦与玉米杂交是诱导小麦单倍体最有效的途径之一, 但单倍体和双单倍体产生频率不稳定影响了该技术的应用。选用13个小麦杂种F1代单交组合与玉米杂交, 研究了不同小麦生长环境、生长素处理、培养基和壮苗处理对单倍体及双单倍体产生频率的影响。小麦生长在大田, 去雄后割穗培养与玉米杂交平均得胚率为23.9%, 每个杂交穗平均得胚数6.8个, 均是返青后从大田移回冷温室盆栽的3倍以上;不同小麦杂交组合间胚产生频率存在明显差异。生长素Dicamba蘸穗处理平均得胚率是21.5%, 与2,4-D处理得胚率(21.1%)无显著差异, 但不同杂交组合间差异显著。B5培养基幼胚萌发率为70.9%~88.3%, 平均82.0%;1/2 MS培养基胚萌发率为70.0%~86.0%, 平均76.6%;两种培养基平均胚萌发率无显著差异。试管苗经壮苗培养基壮苗处理与试管苗经移栽壮苗处理后加倍效率分别是67.6%和8.6%。移栽壮苗处理的苗分蘖少, 生长较弱, 加倍处理后存活率低和加倍率低是其单倍体加倍效率低的原因。  相似文献   

8.
Summary The study was undertaken to evaluate the relative efficiency of anther culture and chromosome elimination (by crosses with maize) techniques of haploid induction in intergenotypic triticale and triticale × wheat hybrids. For this, 15 triticale × wheat and 8 triticale × triticale F1 hybrids were subjected to anther culture and were also simultaneously crossed with the `Madgran Local' genotype of maize (Zea mays L.) to induce haploids through the chromosome elimination technique. The haploid embryo formation frequency through the chromosome elimination technique was significantly higher in both, triticale × wheat (20.4%) and triticale × triticale (17.0%) F1 genotypes, as compared to the calli induction frequencies through anther culture (1.6 and 1.4%, respectively). Further, four triticale × wheat and three triticale × triticale F1 genotypes failed to respond to anther culture, whereas, all the F1 genotypes formed sufficient number of haploid embryos through the chromosome elimination technique with no recovery of albino plantlets. The haploid plantlet regeneration frequencies were also significantly higher through the latter technique in both triticale × wheat (42.7%) and triticale × triticale (49.4%) F1s as compared to anther culture (8.2 and 4.0%, respectively), where the efficiency was drastically reduced by several constraints like, high genotypic specificity, low regeneration frequency and albinism. The overall success rates of obtaining doubled haploids per 100 pollinated florets/anthers cultured were also significantly higher through the chromosome elimination technique (1.1% in triticale × wheat and 1.5% in triticale × triticale hybrids), proving it to be a highly efficient and economically more viable technique of haploid induction as compared to anther culture, where the success rates were only 0.2% and 0.1%, respectively.  相似文献   

9.
Doubled haploid (DH) lines are important in wheat (Triticum aestivum L.) breeding, and haploids produced via maize pollination precede DH line development. Although maize pollination has proven reliable and broadly applicable to wheat, its success is determined by the wheat and maize genotypes employed. A wheat genotype consisting of nuclear and cytoplasm components predisposing it to parthenogenesis was compared with three other genotypes, each possessing only one or neither component necessary for parthenogenesis. In a glasshouse experiment, each genotype was pollinated with maize and subsequently treated with a2,4-Dichlorophenoxyacetic Acid (2,4-D) solution to determine if parthenogenesis affected embryo formation frequency (EFF)and haploid formation efficiency (HFE). Wheat genotypes were also treated with the2,4-D solution alone to determine if embryos and haploid plants could be produced in vivo without maize pollination. ‘Salmon(K)’, a parthenogenetic genotype consisting of a Salmon 1BL.1RS nucleus in a Ae. kotschyii cytoplasm, had a mean EFF of 32%; whereas, the non-parthenogenetic genotypes had mean EFF calculations ranging from 7 to 21%. Mean HFE for Salmon(K) was not significantly different than the mean HFE for non-parthenogenetic Salmon; however, EFF and HFE calculations for Salmon(K) and Salmon, each with a 1BL.1RS translocation, were generally higher than calculations for genotypes without the translocation. Salmon(K) was the only genotype to produce a 3% or higher EFF and HFE after treatment with 2,4-D alone. Parthenogenesis significantly affected the frequency at which embryos were produced after pollination with maize and the frequency at which embryos and haploid plants were produced after treatment with 2,4-D alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Haploidization is a useful tool for genetic analysis and plant breeding, but a consistent and satisfactory protocol for haploid production has been difficult to achieve in durum wheat. The objective of this study was to analyze the influence of the relative humidity of the environment, when culturing detached tillers during the production of haploids plants in durum wheat by the maize method. Thirty‐eight F3 lines from eight crosses of durum wheat were pollinated with bulked pollen from three commercial maize hybrids. A mixture of 2‐4D and dicamba was used as a hormone treatment. The numbers of caryopses, embryos and haploids plants were scored. When 65‐85% (light‐dark) humidity was substituted for 55‐65% the number of haploids per spike increased notably. This increased frequency was largely attributed to a rise in the production of generated caryopses. On average, 15.2 vs. 9.3 caryopses, 5.0 vs. 2.8 embryos, and 3.1 vs. 0.6 haploid plants, per spike, were produced under low and high humidity regimes, respectively.  相似文献   

11.
F. Matzk  A. Mahn 《Plant Breeding》1994,113(2):125-129
Wheat × maize and wheat × pearl millet crosses have proved efficient for haploid production using various genotypes of wheat; 22 and 27 % of florets produced embryos. In favourable conditions 6—9 haploid plants per spike were produced. The following simplifications or improvements in technique are recommended: 1. Only a single treatment with an aqueous solution of dicamba or 2,4-D (50–100 ppm) for embryo stimulation in vivo; 2. Application by spraying or dipping the spikes; 3. Application time two to four days after pollination; 4. Embryo rescue 15 to 18 days after pollination; 5. Crosses without emasculation are possible if pollination occurs 1–2 days before anthesis. More than 450 haploids and some doubled haploid (DH) lines (after colchicine treatment in vitro) were produced using these methods. No hybrid plants, chromosome additions or substitutions were found.  相似文献   

12.
All wheat varieties (106) grown in the U.S. on more than 100,000 acres (38,610 ha) as of the latest (1984) crop variety survey were characterized by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The high-molecular-weight glutenin subunit (HMW-GS) band patterns for each variety were assigned the corresponding Payne numbers and theoretical quality scores based on those assignments. The subunit assignments were compared for the different wheat varieties and the five main wheat classes grown in the U.S. Hard red spring (HRS) and winter (HRW) wheats used mainly for breadmaking showed a remarkably high percentage of bands associated with good breadmaking quality. The allele 5+10, which has the strongest association with good quality, was present in 91 % of the hard red spring wheats and 62 % of the hard red winter wheats. Also, 91 % of all HRS and 53 % of HRW wheat varieties had quality scores of 9 or 10 (10 is the highest possible score). Evidently, by selecting for quality through close cooperation with quality testing laboratories, U.S. breeders have unknowingly selected for high quality glutenin subunits in their released varieties. HRS and HRW wheat varieties are normally grown in different environments in time and/or space, accounting to a large extent for differences in protein content (~2 %) and other quality traits in the two crops. The uniformly high theoretical quality scores of the HRS wheats compared to more variable scores for HRW wheats may help to explain the popular perception that spring wheats have intrinsically higher quality than winter wheats. Admixing grain from variable (some poorer, most good) HRW wheat varieties (due to genetics or environment) has probably also led to the perception of overall lower quality for HRW than HRS wheats. In the soft red winter (SRW) and soft white (SW) wheat classes where the end-use is typically cookies and cakes, 40 and 90 %, respectively, have the allele 2+12 that correlates with poor bread baking quality. The absence of alleles for good bread baking quality may be predictive of good quality for soft wheat products.  相似文献   

13.
L. Kant    V. P. Mani  H. S. Gupta 《Plant Breeding》2001,120(3):255-258
Introgression of the winter gene pool into spring wheat is being considered as one of the strategies to break through the yield plateau. However, little information is available on the combining ability of these two important but distinct groups of wheats in Indian conditions. Therefore, the present study was undertaken to determine the combining ability and gene action of yield and yield attributes in winter × spring wheat crosses. Seventy F1 progenies developed by 14 winter and five spring wheat lines using a line × tester design were evaluated, along with their parents, for yield and yield attributes in a randomized complete block design under field conditions. The mean squares for all the characters studied showed highly significant differences. The mean squares due to female × male interactions were significant for all the characters studied except for grains per ear and grain weight per ear. Additive genetic effects were found to play a key role in controlling the expression of days to heading, plant height and spikelets per ear.‘MV 19’ and ‘Stepniak’/‘Karvuna’ among winter and ‘PBW 65’ among spring wheats were good general combiners for most of the yield attributes studied. The estimates for specific combining ability effects suggested that, although general combining ability (GCA) effects of most winter wheats are either average or poor, their combination can give desirable genotypes with spring wheat parents possessing a high GCA.  相似文献   

14.
L. A. Sitch  J. W. Snape 《Euphytica》1986,35(3):1045-1051
Summary An attempt was made to produce doubled haploids on 16 winter wheat and six spring and winter triticale genotypes thought to carry genes for interspecific incompatibility. The potential for haploid production was maximized by the use of Hordeum bulbosum genotypes selected for high crossability on crossable wheat genotypes, the use of two post-pollination applications of gibberellic acid and by the pollination of immature florets.A low frequency of seed was set on both the wheat and the triticale genotypes, having mean seed sets of 0.20 per cent and 0.27 per cent respectively. Although the frequency of embryos (seed quality) was high, doubled haploid production was further limited by poor embryo differentiation and regeneration. Haploid plantlets were obtained from the wheat cultivars Moulin and Renard, although successful chromosome doubling and doubled haploid production was achieved in Moulin only.  相似文献   

15.
在玉米花粉诱导普通小麦产生单倍体技术中,2,4-D浓度是影响幼胚得胚率的重要因素之一.为了确定2,4-D的适宜浓度,利用9个玉米材料和16个小麦材料进行了研究.在小麦散粉前和散粉后,授玉米花粉后12h和36 h分别用150、200、250、300、350 mg/L的2,4-D蘸穗2次,调查数据显示,散粉前处理得胚率平均值分别为6.74%、7.19%、8.44%、7.53%和6.61%;散粉后分别为2.53%、3.11%、4.70%、2.81%和2.67%.结果表明,小麦散粉前授玉米花粉后用250 mg/L的2,4-D处理得胚率最高.  相似文献   

16.
Wheat × Imperata cylindrica‐mediated approach of doubled haploidy breeding requires hand emasculation followed by pollination with I. cylindrica pollen. The pace of this endeavour can be enhanced by utilizing asynchronous flowering of wheat spikes by direct pollination without emasculation followed by morphological marker–assisted screening of selfed and crossed seeds. The emasculated and un‐emasculated spikes of 13 spring and six winter wheat genotypes and two triticale × wheat derivatives were pollinated with I. cylindrica pollen. The response of different genotypes for production of crossed and selfed seeds with direct pollination varied significantly within and between groups for spring and winter wheats, whereas triticale × wheat derivatives responded similarly to each other but significantly different from spring and winter wheats. Although, the proportion of pseudoseed formation was lower in case of direct pollination, yet in some genotypes, it was comparable to that of pollination after emasculation. Moreover, the response for haploid embryo induction frequency was similar in both the cases. The method of direct pollination can be utilized for easy and economical induction of haploids.  相似文献   

17.
Doubled haploid plants are useful in genetic studies and plant breeding, but a consistent and satisfactory frequency of production has been difficult to achieve in durum wheat. Triticum turgidum L., using the maize pollen method. The objective of this study was to develop an objective method of producing doubled haploids in durum wheat. Plant growing and handling conditions, aspects of hormone treatments, wheat genotype and pollen source were considered. The number of caryopses, embryos, haploids, doubled plants and doubled plants that set seed were measured. Although growth conditions, pollen source, method of handling plants and wheat genotype are important considerations, the type of hormone was found to be most significant in the production of doubled haploid plants. When 50mg/l dicamba was substituted for 100 mg/l 2,4‐D the number of doubled haploids per spike increased from 0.2 for the best 2,4‐D treatment to 1.3 for the dicamba treatment. This increased frequency was largely attributed to an increase in the number of caryopses generated for each spike emasculated and from an increased frequency of germination of embryos to haploid plantlets. The best production of caryopses was 0.41 caryopses per florest with 2,4‐D. The best production of haploids per 100 florets was 12 with dicamba and 1.65 with 2,4‐D. The frequency of one doubled haploid per emasculated spike through the use of dicamba is a practical level for generating populations for genetic studies.  相似文献   

18.
Moshe J. Pinthus 《Euphytica》1967,16(2):231-251
Grain yield components of high yielding European winter wheat varieties and of the best spring varieties grown in Israel were compared and their growth was analyzed. F1- and F2-populations of crosses between winter and spring varieties were tested. Under conditions in which winter wheat attained its normal kernel size which was similar to that of the spring varieties tested, it markedly outyielded spring wheat by means of its greater number of spikelets per spike. This advantage was also expressed in the F2-populations and, was apparently, not linked with cold requirement. Winter wheat had a longer growing period and a greater leaf-area but a lower net assimilation rate than spring wheat. The higher total dry matter yield of winter wheat was owing to its longer growing period. The higher grain yield, however, was induced by a higher ratio of grain to total dry matter accumulated during the period of kernel development. The inheritance of several characters is discussed and it is concluded that winter wheat should be able to contribute to an increase in yield of progenies of its crosses with spring wheat.Contribution from The National and University Institute of Agriculture, Rehovot, No. E-1072. This research was supported by a grant of the Ford Foundation, Project Ford 4(A-3).  相似文献   

19.
为探明冬小麦和春小麦产量形成差异,2016年10月-2017年6月以冬小麦品种济麦22和春小麦品种津强8号为材料,在大田条件下研究了冬小麦和春小麦生育期、叶面积指数、干物质积累及产量构成。结果表明,春小麦出苗比冬小麦延长8d,营养生长期缩短77~78d,灌浆期延长1~2d,全生育期缩短143~144d。拔节期和开花期,春小麦和冬小麦的叶面积指数无显著差异,但灌浆期春小麦叶面积指数比冬小麦叶面积指数增加6.34%~7.67%,不同生育时期春小麦和冬小麦干物质积累量无差异。春小麦收获穗数和千粒重比冬小麦分别增加2.35%~5.29%和4.28%~5.13%,但穗粒数比冬小麦少1.4~2.3,春小麦与冬小麦理论产量和实际产量均无显著差异。综上所述,春小麦可通过增加播量,增加穗数,保持稳定的叶面积指数和干物质积累量,实现小麦稳产,可为区域变革麦-玉种植制度,实现麦-玉周年双机收子粒提供理论支撑。  相似文献   

20.
Increasing climatic variability is projected to affect large‐scale atmospheric circulation, triggers and exacerbates more extreme weather events, including winter warming and more frequent extreme low temperatures in spring. Historical data from 1961–2000 indicate these temperature fluctuations may seriously affect grain yield of winter wheat crops. In this study, a field air temperature control system (FATC) was used to simulate the winter warming, spring cold and freezing events in the field experiment in 2010–2011 to explore their impacts on growth and yield of winter wheat. Eight elite wheat varieties released during 1961–2000 were included and four temperature scenarios were applied, including late spring freeze alone, winter warming + late spring freeze, early spring cold + late spring freeze and the normal temperature condition as control. Winter warming combined with late spring freeze significantly decreased tiller survival rate, leaf photosynthetic rate and leaf growth in wheat plants, and reduced the spike number and kernel number per spike, and the final grain yield. In contrast, the wheat plants experienced early spring cold had higher tiller survival rate, leaf photosynthetic capacity and sugar accumulation and improved tolerance to the late spring freeze, resulting in less yield loss, as compared with those without experiencing early spring cold. Both the meta‐analyses and the field experimental data demonstrated that the effects of later spring freeze stress on wheat yield were exacerbated by winter warming but were extenuated by early spring cold events. Therefore, it is important to consider the characteristics of temperature fluctuations during winter to spring for precise evaluation of climate change effects on wheat production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号