首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of two protein fractions extracted from cod to form and stabilize oil-in-water emulsions was examined: a high salt extracted fraction (HSE protein) and a pH 3 acid extracted fraction (AE protein). Both fractions consisted of a complex mixture of different proteins, with the predominant one being myosin (200 kDa). The two protein fractions were used to prepare 5 wt % corn oil-in-water emulsions at ambient temperature (pH 3.0, 10 mM citrate-imidazole buffer). Emulsions with relatively small mean droplet diameters (d(3,2) < 1 microm) and good creaming stability (> 9 days) could be produced at protein concentrations > or =0.2 wt % for both fractions. The isoelectric point of droplets stabilized by both protein fractions was pH approximately 5. The emulsions were stable to droplet flocculation and creaming at relatively low pH (< or =4) and NaCl concentrations (< or =150 mM) when stored at room temperature. In the absence of salt, the emulsions were also stable to thermal treatment (30-90 degrees C for 30 min), but in the presence of 100 mM NaCl droplet flocculation and creaming were observed in some of the emulsions, particularly those stabilized by the AE fraction. The results suggest that protein fractions extracted from cod can be used as emulsifiers to form and stabilize food emulsions.  相似文献   

2.
The ability of sugar beet pectin to stabilize 20% w/w limonene oil-in-water emulsions has been investigated. The size of the oil droplets as determined by laser diffraction measurements decreased from about 15 mum to about 6 mum when the pectin concentration increased from 0.05% to 2% w/w but leveled off thereafter, suggesting complete coverage of the oil droplets by the polymer at this optimum concentration. Isotherms for the adsorption of pectin, protein, and ferulic acid were constructed. The adsorption capacities at the oil-water interface of approximately 1.4 and approximately 0.2 mg/m (2) for protein and ferulic acid, respectively, compared to approximately 9.5 mg/m (2) for pectin revealed that the adsorbed fractions of the pectin sample were rich in protein (14.7%) and ferulic acid (2.1%) given that there were only 2.7% protein and 1.06% ferulic acid present in the whole pectin sample. Direct measurements on the adsorbed fraction recovered from the oil droplets via desorption with SDS confirmed that it contained 11.1% protein and 2.16% ferulic acid. The results suggest that one or both of these two functional groups adsorb onto the surface of the oil droplets and stabilize the emulsions. High molecular mass fractions adsorbed preferentially onto oil droplets during emulsification. As compared to those made with gum arabic, the emulsion samples made with sugar beet pectin samples exhibited similar (or even slightly higher) stability.  相似文献   

3.
Protein fractions were isolated from coconut: coconut skim milk protein isolate (CSPI) and coconut skim milk protein concentrate (CSPC). The ability of these proteins to form and stabilize oil-in-water emulsions was compared with that of whey protein isolate (WPI). The solubility of the proteins in CSPI, CSPC, and WPI was determined in aqueous solutions containing 0, 100, and 200 mM NaCl from pH 3 to 8. In the absence of salt, the minimum protein solubility occurred between pH 4 and 5 for CSPI and CSPC and around pH 5 for WPI. In the presence of salt (100 and 200 mM NaCl), all proteins had a higher solubility than in distilled water. Corn oil-in-water emulsions (10 wt %) with relatively small droplet diameters (d32 approximately 0.46, 1.0, and 0.5 mum for CSPI, CSPC, and WPI, respectively) could be produced using 0.2 wt % protein fraction. Emulsions were prepared with different pH values (3-8), salt concentrations (0-500 mM NaCl), and thermal treatments (30-90 degrees C for 30 min), and the mean particle diameter, particle size distribution, zeta-potential, and creaming stability were measured. Considerable droplet flocculation occurred in the emulsions near the isoelectric point of the proteins: CSPI, pH approximately 4.0; CSPC, pH approximately 4.5; WPI, pH approximately 4.8. Emulsions with monomodal particle size distributions, small mean droplet diameters, and good creaming stability could be produced at pH 7 for CSPI and WPI, whereas CSPC produced bimodal distributions. The CSPI and WPI emulsions remained relatively stable to droplet aggregation and creaming at NaCl concentrations of < or =50 and < or =100 mM, respectively. In the absence salt, the CSPI and WPI emulsions were also stable to thermal treatments at < or =80 and < or =90 degrees C for 30 min, respectively. These results suggest that CSPI may be suitable for use as an emulsifier in the food industry.  相似文献   

4.
Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by changes in the phase ratio. Dynamic phase inversion emulsification was achieved by slowly increasing the water volume fraction (fw) to obtain O/W emulsions from water in oil emulsions. Composition and processing variables were optimized to minimize droplet size and polydispersity index (PdI). It was found that addition of the continuous phase to the dispersed phase following the standard CPI procedure resulted in the formation of oil droplets with diameters of 100-200 nm. Droplet size distribution during CPI and emulsification time depended on stirring speed and surfactant concentration. Droplet sizes in the inverted emulsions were compared to those obtained by direct emulsification: The process time to reach droplet sizes of around 100 nm was reduced by 12 times by using CPI emulsification. The Acetem/water nanoemulsion was also used as a carrier to incorporate oregano and cinnamon essential oils into soy protein edible films. The resulting composite films containing oregano oil showed better moisture barrier and mechanical properties compared to soy protein films.  相似文献   

5.
The effect of heating on the physicochemical properties of emulsions prepared with soybean soluble polysaccharide (SSPS) was investigated. The emulsions were stable after heating at 90 degrees C for up to 30 min. Heating at different pH values or in the presence of CaCl2 (<10 mM) did not affect the stability; however, at higher concentrations of calcium ions, the emulsion particle size increased. Two fractions, a high molecular weight (HMF) and a low molecular weight (LMF) fraction, were separated from the crude SSPS preparation by gel fitration. Emulsions prepared with SSPS/HMF (MW = 310-420 kDa) showed little change in size with heating, while the protein impurities of the SSPS/LMF fraction formed aggregates by heating at pH 7. Analysis of the heat-induced aggregation of the two fractions of SSPS suggested that the changes in SSPS functionality with heating can be attributed to the protein impurities (LMF) present in the SSPS.  相似文献   

6.
In the present study emulsions were made with various potato protein preparations, which varied in protease inhibitor and patatin content. These emulsions were characterized with respect to average droplet size, plateau surface excess, and the occurrence of droplet aggregation. Droplet aggregation occurred only with potato protein preparations that contained a substantial amount of protease inhibitors and could be prevented only at pH 3. The average droplet size of the emulsions made with potato proteins appeared to be related to the patatin content of the preparation used. Average droplet size was found to be dominated by the patatin-catalyzed lipolytic release of surface active fatty acids and monoglycerides from the tricaprylin oil phase during the emulsification process. Addition of monoglycerides and especially fatty acids, at concentrations representative of those during emulsification, was shown to cause a stronger and much faster decrease of the interfacial tension than that with protein alone and to result in a drastic decrease in droplet size. The patatin used was shown to have a lipolytic activity of 820 units/g with emulsified tricaprylin as the substrate. Because of the droplet aggregating properties of the protease inhibitors, the patatin-rich potato preparations seem to be the most promising for food emulsion applications over a broad pH range, provided the lipolytic activity can be diminished or circumvented.  相似文献   

7.
A series of dextrans and beta-lactoglobulin were covalently conjugated and screened for their ability to stabilize oil-in-water emulsions. Dextrans with the molecular mass of 19.6 kDa, 87 kDa, 150 kDa, 500 kDa, and 2000 kDa were attached to beta-lactoglobulin via the Maillard reaction. The conjugates were then purified and evaluated as emulsifiers under neutral conditions. The ability to stabilize emulsions was determined by monitoring oil droplet size over time. Adsorption of the conjugates to the droplet surface was characterized by determining the protein surface load. The results show that increasing polysaccharide size increases emulsion stability up to 150 kDa before leveling off. Conversely, surface protein density remains constant until 150 kDa before decreasing with polysaccharide size. A model is presented to interpret the results.  相似文献   

8.
The stability of heat-treated and/or acidified, partly-crystalline-fat-based, whey-protein-stabilized oil-in-water (o/w) emulsions against partial coalescence was investigated during chilled storage (at 5 degrees C) and repeated temperature cycling (three times between 5 and 25 degrees C). Experiments focused on the evolution of firmness and droplet size (using pulsed field gradient NMR and scanning electron microscopy). Besides the effects of denaturation and/or acidification, the influence of the droplet size of the dispersed phase on emulsion stability was investigated also. It was found that heat treatment or acidification before emulsification led to unstable emulsions during temperature cycling, whereas heat treatment after acidification resulted in stable emulsions.  相似文献   

9.
To investigate the chemical heterogeneity of humic substances in relation to molecular size, fulvic and humic acids were extracted and purified from the surface horizon of a Humic Gleysol in northern Switzerland. A fractionation scheme using hollow‐fibre ultrafiltration cartridges was developed and used to obtain four size fractions of the humic acid with nominal molecular weight ranges > 300 kDa, 100–300 kDa, 30–100 kDa, and 10–30 kDa. The fulvic acid and all humic acid fractions were characterized by size exclusion chromatography, elemental analysis (C, H, N, S), as well as spectroscopic techniques including UV‐VIS, CP‐MAS 13C‐NMR, FT‐IR, and fluorescence spectroscopy. Clear chemical differences between the humic acid size fractions were observed. Smaller size fractions of the soil humic acid contained more chargeable functional groups and a larger percentage of aromatic carbon than the larger size fractions. Conversely, the percentage of aliphatic carbon increased with increasing apparent molecular weight. The chemical composition of the smallest humic acid fraction differed clearly from the fulvic acid fraction, despite similar apparent molecular size and carboxyl carbon content. Small humic acids contained much more aromatic carbon and less aliphatic carbon than the fulvic acid fraction. Apparently, humic size fractions differ in their chemical composition, which can have important implications for their environmental behaviour.  相似文献   

10.
Hemicelluloses (A and B) were isolated from an Indo-African hybrid variety of finger millet (ragi, Eleusine coracana) by extracting the starch-free residue with 10% sodium hydroxide under a continuous stream of nitrogen, and changes in their sugar composition during malting for 96 h were studied. Hemicellulose B, obtained in higher yield from both native (N) and malted (M) flours, was found to be completely soluble in water, richer in uronic acid, and more viscogenic than hemicelullose A. Fractional precipitation of hemicellulose B by ammonium sulfate resulted in four precipitable fractions (F-60, F-70, F-80, and F-100) and a nonprecipitable (NP) fraction varying in their yield and arabinose, xylose, galactose, and glucose contents. A progressive increase in the pentose-to-hexose ratio (P:H) from 0.42:1.0 in F-60 to 1.94:1.0 in NP was observed in native hemicellulose B fractions; however, in malted hemicellulose B the P:H ratio increased from 0.43:1.0 in F-60 to 1.56:1.0 in F-80 and then decreased to 1.13:1.0 in NP. The major fraction, F-70 (N, 44.5%; M, 38.5%), was separated into eight subfractions on DEAE-cellulose by successive elution with water, ammonium carbonate (AC) (0.1, 0.2, and 0.3 M AC), and sodium hydroxide (0.1 and 0.2 M) differing in their yield and neutral sugar composition. The purity of the major glucuronoarabinoxylan fraction (0.1 M AC eluted) was ascertained by Sepharose CL-4B, HPSEC, cellulose acetate, and capillary electrophoresis methods. A significant decrease in the molecular mass of arabinoxylan from 1200 to 1120 kDa upon malting for 96 h is an indication of cell wall degradation by the inducible cell wall degrading enzymes.  相似文献   

11.
In this study, the impact of mechanical treatments on the physicochemical and emulsifying properties of hen egg yolk and its fractions plasma and granules has been assessed. Yolk, plasma, and granule dispersions at pH 4.0 and 0.75 M NaCl were subjected to rotor-stator and high-pressure pretreatments at different dynamic pressure levels: 30, 100, and 200 bar at 20 degrees C. Physicochemical characteristics (protein solubility, rheological behavior, and micro- and ultra-structures) and emulsifying properties (oil/water 60:40 emulsions: droplet size and flocculation, protein adsorption) of control dispersions and dispersions subjected to mechanical pretreatments (rotor-stator or high pressure) were compared. Homogenization at high pressures (100 and 200 bar) led to a decreased protein solubility and to an increase in apparent viscosity of yolk and plasma dispersions. These pressures certainly disrupted low-density lipoproteins (LDL) particles and generated aggregates of proteins liberated from LDL and livetins in the plasma fraction, and led to a moderated reorganization of the microstructure of granules. Despite the modifications observed in the pretreated plasma and granules dispersions, the oil droplet diameter and the bridging flocculation obtained in emulsions made with these dispersions were similar to that obtained with untreated dispersions. Results concerning interfacial protein adsorption suggested that preformed or natural aggregates at least partially persist at the oil-water interface.  相似文献   

12.
Hydroxycinnamic acid content and ferulic acid dehydrodimer content were determined in 11 barley varieties after alkaline hydrolysis. Ferulic acid (FA) was the most abundant hydroxycinnamate with concentrations ranging from 359 to 624 microg/g dry weight. p-Coumaric acid (PCA) levels ranged from 79 to 260 microg/g dry weight, and caffeic acid was present at concentrations of <19 microg/g dry weight. Among the ferulic acid dehydrodimers that were identified, 8-O-4'-diFA was the most abundant (73-118 microg/g dry weight), followed by 5,5'-diFA (26-47 microg/g dry weight), the 8,5'-diFA benzofuran form (22-45 microg/g dry weight), and the 8,5'-diFA open form (10-23 microg/g dry weight). Significant variations (p < 0.05) among the different barley varieties were observed for all the compounds that were quantified. Barley grains were mechanically fractionated into three fractions: F1, fraction consisting mainly of the husk and outer layers; F2, intermediate fraction; and F3, fraction consisting mainly of the endosperm. Fraction F1 contained the highest concentration for ferulic acid (from 77.7 to 82.3% of the total amount in barley grain), p-coumaric acid (from 78.0 to 86.3%), and ferulic acid dehydrodimers (from 79.2 to 86.8%). Lower contents were found in fraction F2, whereas fraction F3 exhibited the lowest percentages (from 1.2 to 1.9% for ferulic acid, from 0.9 to 1.7% for p-coumaric acid, and <0.02% for ferulic acid dehydrodimers). The solid barley residue from the brewing process (brewer's spent grain) was approximately 5-fold richer in ferulic acid, p-coumaric acid, and ferulic acid dehydrodimers than barley grains.  相似文献   

13.
Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.  相似文献   

14.
The fraction of sugar beet pectin (SBP) adsorbed onto limonene oil droplets during emulsification has been isolated, and its chemical and physicochemical characteristics have been determined. While the SBP sample itself was found to contain 2.67 and 1.06% protein and ferulic acid, respectively, the adsorbed fraction contained 11.10% protein and 2.16% ferulic acid. The adsorbed fraction was also found to have a higher degree of acetylation, notably at the C2 position on the galacturonic acid residues, and was also found to contain a higher proportion of neutral sugars, which are present in the ramified side chains of the pectin molecules. The thickness of the layer of SBP adsorbed onto polystyrene latex particles was studied by dynamic light scattering and was found to increase with increasing surface coverage. It was found to have a value of approximately 140 nm at plateau coverage, which closely corresponded to the hydrodynamic diameter of the pectin chains. The adsorbed layer thickness was found to be sensitive to pH and the presence of electrolyte. The thickness at a surface coverage of approximately 20 mg/m(2) in the absence of electrolyte at pH approximately 4 was 107 nm and at pH 8.8 was 70 nm, while at pH approximately 4 in the presence of 10 mM NaCl the thickness was found to be 70 nm. It was concluded that the SBP molecules form multilayers at the surface due to electrostatic interaction between the positively charged protein moieties and the galacturonic acid residues. The removal of calcium from the SBP had no effect on the adsorbed layer thickness; hence, multilayer formation due to calcium ion cross-linking was considered unlikely.  相似文献   

15.
Pecans (cv. Desirable) contained approximately 10% protein on a dry weight basis. The minimum nitrogen solubility (5.9-7.5%) at 0.25-0.75 M trichloroacetic acid represented the nonprotein nitrogen. Among the solvents assessed for protein solubilization, 0.1 M NaOH was the most effective, while borate saline buffer (pH 8.45) was judged to be optimal for protein solubilization. The protein solubility was minimal in the pH range of 3-7 and significantly increased on either side of this pH range. Increasing the NaCl concentration from 0 to 4 M significantly improved ( approximately 8-fold increase) protein solubilization. Following Osborne protein fractionation, the alkali-soluble glutelin fraction (60.1%) accounted for a major portion of pecan proteins followed by globulin (31.5%), prolamin (3.4%), and albumin (1.5%), respectively. The majority of pecan polypeptides were in the molecular mass range of 12-66 kDa and in the pI range of 4.0-8.3. The pecan globulin fraction was characterized by the presence of several glycoprotein polypeptides. Lysine was the first limiting essential amino acid in the defatted flour, globulin, prolamin, and alkaline glutelin fractions. Leucine and tryptophan were the first limiting essential amino acids in albumin and acid glutelin fractions, respectively. Rabbit polyclonal antibodies detected a range of pecan polypeptides in the 12-60 kDa range, of which the globulin fraction contained the most reactive polypeptides.  相似文献   

16.
The distribution of cadmium- (Cd-) binding components in flaxseed (cultivar NorMan) containing 0.526 ppm (ng/mg) Cd was investigated. Proteins extracted from dehulled, defatted flaxseed were fractionated by anion-exchange and size-exclusion chromatography. The contents of Cd and other metals, UV/visible spectral characteristics, and amino acid compositions of these fractions were analyzed. Over 66% of the eluted Cd was recovered by 0.1 M NaCl elution from DEAE-Sephacel, in a thiol-rich fraction representing only 7% of the extracted proteins. Sephadex G50 size-exclusion chromatography of this 0.1 M NaCl fraction concentrated most of the Cd in a low-molecular-weight peak eluting at V(t). About 72% of the extracted flaxseed proteins eluted from DEAE-Sephacel at 0.25 M NaCl and contained only 25% of the eluted Cd. Because the major Cd-binding fraction is a minor constituent of flaxseed, these results indicate the potential to isolate flaxseed's major storage protein with a low Cd content.  相似文献   

17.
Proteins associated with starch synthase (SS) activities were identified in immature mungbeans (Vigna radiata L. cv KPS1). Seed soluble extract was separated by native-PAGE and subjected to in situ activity staining. The gel zymogram located starch-enzyme complex bands. The soluble extract was also partitioned by preparative-IEF and screened for SS activity using radioactive assay. IEF fractions eluted within pH 4-6 revealed enriched SS activity of 145-fold. Parallel comparison of the protein profiles among the activity stained enzyme complex and the active isoelectric focused fractions on SDS-PAGE depicted three SS-activity-related proteins with molecular size of 32, 53, and 85 kDa. The 85 kDa protein, however, was identified to be methionine synthase by MALDI-TOF analysis and should be a protein physically associated with the active SS. Polyclonal antibodies raised from eluted native enzyme complex neutralized up to 90% activity and antigenically recognize the other 53 and 32 kDa proteins on Western blot. Antibodies raised from the two individual denatured proteins were able to neutralize SS activities near 60% separately, indicating that the 53 kDa and 32 proteins associated with SS activity are potentially involved in starch biosynthesis during mungbean seed development.  相似文献   

18.
Abstract

Humic acids were extracted from the surface horizon Yu 1 and buried humic horizons (Yu 2, 800-864 AD; Yu 4, ca. 4,000 years B.P.; Yu 6, 7,000 years B.P.; Yu 7, ca. 10,000 years B.P.). The humic acids were filtered with ultramembranes with 20, 10, 5, 1 or 0.1 × 10' M.W. in this order and separated into five fractions; (>20), (20-10), (10-5), (5-1) and (1-0.1) × 104 M.W. fractions. The elementary composition, functional groups, optical properties, and hydrolyzable total- and sugar-carbon contents of each humic acid fraction were determined, and the changes in properties of the humic acid with age after burial were discussed.

In horizons Yu 1 to Yu 6, the patterns of M.W. distribution of the >20 × 104 to (1- 0.1) × 104 fractions were rather similar. In contrast, Yu 7 was characterized by the predominance of (1-0.1) x 10' M.W. fraction and the presence of a small amount of <0.1 × 104 M.W. fraction.

The chemical properties of humic acid (HA) fractions of each humic horizon and their changes with age after burial were as folIows:

1) Elementary composition of HA fractions of each humic horizon was rather similar to each other. The C% and C/N ratio increased, and the H%, N% and H/C ratio decreased in all HA fractions with age.

2) Total acidity and carboxyl contents of HA fractions of Yu 1 were higher in the lower M.W. fractions. These values increased with age up to Yu 4 or Yu 6 horizons, then decreased in the Yu 6 or Yu 7 horizon. The contents of carbonyl groups in all the HA fractions which were very low in Yu 1, showed a wide range of variations in Yu 2, intermediate values from Yu 4 to Yu 6 horizons then decreased in the HA fractions of Yu 7, except for the (>20) fraction.

3) The degree of humification of the HA fractions of Yu 1 judging from the RF and \sDlogK values, tended to be higher in higher M.W. fractions, and increased in all the HA fractions with age after burial.

4) Hydrolyzable total- and sugar-carbon contents were high in the HA fractions of Yu 1 and decreased with age.

5) Changes of elementary composition, degree of humification and hydrolyzable total- and sugar-carbon contents were conspicuous from the Yu 1 to Yu 2 horizons, and less significant afterwards.

6) The 0%, C/O ratio and phenolic OH content did not show any consistent change with age after burial.  相似文献   

19.
Casein and whey protein were hydrolyzed using 11 different commercially available enzyme preparations. Emulsion-forming ability and emulsion stability of the digests were measured as well as biochemical properties with the objective to study the relations between hydrolysate characteristics and emulsion properties. All whey protein hydrolysates formed emulsions with bimodal droplet size distributions, signifying poor emulsion-forming ability. Emulsion-forming ability of some casein hydrolysates was comparable to that of intact casein. Emulsion instability was caused by creaming and coalescence. Creaming occurred mainly in whey hydrolysate emulsions and in casein hydrolysate emulsions containing large emulsion droplets. Coalescence was dominant in casein emulsions with a broad particle size distribution. Emulsion instability due to coalescence was related to apparent molecular weight distribution of hydrolysates; a relative high amount of peptides larger than 2 kDa positively influences emulsion stability.  相似文献   

20.
The purpose of this study was to create water-in-oil (W/O) and water-in-oil-in-water (W/O/W) emulsions containing gelled internal water droplets. Twenty weight percent W/O emulsions stabilized by a nonionic surfactant (6.4 wt % polyglycerol polyricinoleate, PGPR) were prepared that contained either 0 or 15 wt % whey protein isolate (WPI) in the aqueous phase, with the WPI-containing emulsions being either unheated or heated (80 degrees C for 20 min) to gel the protein. Optical microscopy and sedimentation tests did not indicate any significant changes in droplet characteristics of the W/O emulsions depending on WPI content (0 or 15%), shearing (0-7 min at constant shear), thermal processing (30-90 degrees C for 30 min), or storage at room temperature (up to 3 weeks). W/O/W emulsions were produced by homogenizing the W/O emulsions with an aqueous Tween 20 solution using either a membrane homogenizer (MH) or a high-pressure valve homogenizer (HPVH). For the MH the mean oil droplet size decreased with increasing number of passes, whereas for the HPVH it decreased with increasing number of passes and increasing homogenization pressure. The HPVH produced smaller droplets than the MH, but the MH produced a narrower particle size distribution. All W/O/W emulsions had a high retention of water droplets (>95%) within the larger oil droplets after homogenization. This study shows that W/O/W emulsions containing oil droplets with gelled water droplets inside can be produced by using MH or HPVH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号