首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mycorrhizal associations imply a remarkable reprogramming of functions in both plant and fungal symbionts. This consequent alteration on plant physiology has a clear impact on the plant responses to biotic stress management. As a consequence, a pot experiment was conducted to study the interactions between the arbuscular mycorrhizal fungus (AMF) Glomus fasciculatum and the two pathogens Fusarium oxysporum and Colletotrichum gloeosporioides and subsequent effect on growth, disease tolerance and the changes in antioxidative ability in cyclamen plants under growth chamber condition were investigated. At plant maturity, inoculation with F. oxysporum and C. gloeosporioides, responsible for Fusarium wilt and anthracnose of cyclamen respectively, significantly reduced shoot and root dry weights, increased both the disease incidence percentage and showed lower antioxidative activity viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), ascorbic acid (AA) and polyphenol contents in plants. In contrast, the growth response and biomass production of cyclamen plants inoculated with AMF was significantly higher than the nonmycorrhizal control plants, both in the presence and absence of the pathogens. Mycorrhization enhanced plants to reduce the Fusarium wilt and anthracnose incidence compared to nonmycorrhizal controls. In every case, without and with pathogen association, plants inoculated with AMF increased the antioxidant (SOD, APX, AA and polyphenol) production compared to control plants. The results demonstrate that AMF have the ability to induce resistance against Fusarium wilt and anthracnose in cyclamen by increasing the antioxidative activity in plants, which promoted plant growth, biomass production and drastically reduced the disease incidence in cyclamen.  相似文献   

2.
Efficacy of Trichoderma harzianum and the arbuscular mycorrhizal fungus (AMF) Glomus clarum for suppression of southern stem rot caused by Sclerotium rolfsii in Jerusalem artichoke was investigated in Thailand under greenhouse conditions. Experimental factors included two Jerusalem artichoke genotypes (HEL 246 and JA 37), two levels of T. harzianum and G. clarum (inoculated and blank). The biological control agents were added to the potting medium immediately before seedlings of Jerusalem artichoke were transplanted into it; 20 days later, seedlings were inoculated with S. rolfsii by placing infested sorghum seeds at the base of the stem. The combination of cv. HEL 246 with addition of both G. clarum and T. harzianum had the lowest disease incidence (30%) and required the longest time to permanent wilt (11 days after inoculation). Inoculation of cv. JA 37 and HEL 246 with G. clarum alone gave better control of the disease than did inoculation with T. harzianum alone. The results are the first published report of biological control of S. rolfsii on Jerusalem artichoke.  相似文献   

3.
The effects of biofumigation and soil heating on arbuscular mycorrhizal fungi (AMF) colonisation, strawberry growth and strawberry yield in pot experiments compared with untreated soil and chemical fumigation with dazomet were tested. Three different Brassicaceae species (Brassica juncea, Eruca sativa, Sinapis alba) were used as biofumigant plant green manure and soil heating was applied to simulate soil solarisation. Half of the plants were inoculated with indigenous arbuscular mycorrhizal fungi inoculum. With one exception (E. sativa) among the uninoculated plants, the treatments significantly decreased the mycorrhizal colonisation parameters compared with the untreated control. Dazomet displayed the greatest inhibitory effects on AMF establishment. In addition, the intensity and number of bands corresponding to Glomus spp. obtained with temporal temperature-gradient gel electrophoresis were lower for strawberry plants from biofumigant treatments than from the control. For the inoculated plants, there were almost no significant differences among the mycorrhizal colonisation parameters. The mass of leaves for the uninoculated and inoculated plants was higher for almost all non-chemical soil fumigant treatments compared with the control, except for heating of the uninoculated treatments. The number of strawberry fruits for the uninoculated biofumigant treatments was the highest, being higher than the values observed for the heating treatments, the chemical disinfection treatments and the control. There were no significant differences among the inoculated treatments. Biofumigation with Brassicaceae species resulted in higher soil organic matter and mineral nutrients and had a relatively small effect on AMF colonisation (F% = 59.0, 80.3, 47.3 for Bj, Es and Sa, respectively) compared with uninoculated controls (F% = 84.3). Despite the reduced AMF colonisation, biofumigation resulted in a higher fruit number and mass of leaves. Therefore, it represents a non-chemical soil fumigation method that should be applied in sustainable strawberry production.  相似文献   

4.
Stem brown canker or Botryosphaeria canker disease impairs the growth and kills the shoots, limbs and even trunks of infected apple trees. Apple roots are usually colonized by arbuscular mycorrhizal fungi, which may have a positive influence on plant growth and suppression of diseases. In order to assess the efficacy of AM to suppress the disease severity and plant growth enhancement, nine AMF inoculation treatments (Sclerocystis dussi, Glomus intraradices, G. fasciculatum, G. bagyaraji, G. leptotichum, G. monosporum, Gigaspora margarita, a mixed AM culture and a non-mycorrhizal control treatment) were used in this present study. Two-year-old potted apple plants, maintained under glasshouse conditions, were either pre-inoculated with AMF followed by stem inoculation with Botryosphaeria ribis or simultaneously inoculated with Botryosphaeria ribis and AM. The results indicated that the incidence of canker was less severe in plants inoculated with AMF in comparison to non-mycorrhizal control. Timing of inoculation also had a significant effect on disease development and plant survival. Plants pre-inoculated with mycorrhiza performed better over those inoculated simultaneously with Botryosphaeria ribis and AM fungi. Furthermore, AM inoculation resulted in improved survival and growth of AMF-colonized plants; though, it varied by species of AM fungi utilized.  相似文献   

5.
White backed planthopper (WBPH; Sogota furcifera Horvath) has become the major threat to rice crops throughout Asia, damaging plants both through its feeding behavior and by acting as a virus vector. Here, we developed a novel method for biologically controlling WBPH by using endophytic bacterium to express anti-pest plant lectins. Strain SJ-10 of an endophytic bacterium, characterized as Enterobacter cloacae by morphological, physiological, biochemical and 16s rDNA characteristics, was isolated from rice seedlings. The Pinellia ternate agglutinin (PTA) gene was cloned into SJ-10 for expression. The positive transformant, selected by antibiotic resistance, was evaluated using PCR, SDS-PAGE and Western blot assay. After inoculation, rSJ-10 could colonize rice plants so that they expressed PTA, and then the rice was shown to have insecticidal activity against WBPH. The results showed that rSJ-10 could significantly decrease the survival and fecundity of WBPH fed on rice seedlings (p < 0.01). At day 19, the fecundity of WBPH inoculated with rSJ-10, or with wild-type SJ-10 was decreased by 86.1%, and 25.6%, respectively. At day 22, numbers of WBPH on rice in the control were 19.4 times greater than on rice inoculated with rSJ-10. At day 26, the rice seedlings all died in the control group, but the seedlings inoculated with rSJ-10 grew well. The results showed that the rice seedlings inoculated with rSJ-10 expressing PTA protein were endowed with the anti-pest activity against WBPH. Further work is needed to investigate whether the rice plants expressing rPTA are toxic to mammals. This research highlights a way to biologically control planthoppers by recombinant endophytic bacteria expressing plant lectins.  相似文献   

6.
The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and water stress (P<0.0001), with more disease under drier conditions. Additionally, the tiller number per mature plant, the 1000 grain weight and disease severity in mature stage were reduced by inoculation in greenhouse studies. In a field test, inoculation with F. culmorum significantly reduced the yield (P<0.001), by more than 17% for Om Rabiaa and 38% for Karim, the two cultivars tested. Yield was also significantly affected by precipitation and irrigation levels. The severity of the disease, estimated by the percentage of white heads, was separately affected by the cultivar (P<0.001) and inoculation (P = 0.0004). Percentage of white heads was 1.5 and 2 × higher in inoculated plants than non-inoculated for Om Rabiaa and Karim cultivars, respectively. Disease severity was highest in treatments with the greatest water stress. This is the first detailed study of water stress and F. culmorum on durum wheat in Tunisia, and indicates that cultivar resistance and irrigation management may be important in the management of Fusarium foot rot.  相似文献   

7.
There are numerous studies evaluating biocontrol of root rot by using the antagonistic effects of either arbuscular mycorrhizal fungi (AMF) or rhizobacteria, but usually independently. Fewer studies, although growing in number, report on evaluating the effectiveness of concurrent fungi–bacteria inoculation in combating root rot; and furthermore, there are none to date reported with papaya. In this study, an indigenous Pseudomonas sp. (PPV3) was isolated from roots of papaya (Carica papaya L. cv. Maradol) and used with an AMF complex (MTZ01) consisting of four fungi Glomus intraradices, Glomus mosseae, Glomus etunicatum and Gigaspora albida to inoculate roots of papaya in order to determine their antagonistic effects against Fusarium oxysporum, individually and in combination. It was found that with inoculation with PPV3 and MTZ01 protection was highest (85%) and had reduced disease (10%) as well as reducing F. oxysporum colonization in papaya seedlings. Inoculations with MTZ01 or PPV3 showed an efficacy of 54 and 60%, with a level of disease severity of the 38 and 22%, respectively. The combination of the AMF complex (MTZ01) with rhizobacterial Pseudomonas sp. (PPV3) modified the effects of F. oxysporum and provided increased protection for C. papaya than either acting alone. These results suggest that rhizobacteria and arbuscular mycorrhizal fungi acting together formed a mutualistic relationship that enhances disease control against F. oxysporum and stimulates growth in C. papaya.  相似文献   

8.
A local isolate of Trichoderma asperellum was tested for its antagonistic activity against Thielaviopsis paradoxa (telemorph = Ceratocyctis paradoxa). The highest antagonistic activity was achieved when the concentration of T. asperellum conidia was 1 × 107 conidia/mL. The highest biomass and number of colony forming unit/mL of the T. asperellum peaked at 144 h after incubation in yeast waste residue medium. The minimum inhibition concentration value of the formulation was observed as 1% on growth of Th. paradoxa incubated at 28 ± 2 °C for 10 d. In the soil fungicide-screening test, the effect of concentrations 100-1600 μg/mL on mycelia growth was not significant (P < 0.05). Complete mycelial growth inhibition occurred at concentration above 52,600 μg/mL. Results of the fruit application tests clearly showed that all treated fruits were free of disease at the end of the incubation period. No significant differences (P > 0.05) in pH, total soluble solids and titratable acidity were observed between fruits treated with formulation of T. asperellum and the control formulation treated pineapples.  相似文献   

9.
基于云南热区澳洲坚果种植区季节性干旱及先天性低有效磷的土壤特征,探讨丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)接种对具有排根的引种作物-澳洲坚果幼苗磷利用的影响,为外来物种的本地驯化栽培提供理论依据。在正常水分与水分胁迫条件下,对盆栽的澳洲坚果幼苗分别接种土著丛枝菌根真菌(native arbuscular mycorrhizal fungi)和摩西球囊霉(Glomus mosseae),测定接种不同AMF对澳洲坚果幼苗生长、菌根定殖、酸性磷酸酶活性、柠檬酸分泌及磷素吸收等的影响。结果表明,接种土著AMF(N-AM)处理对澳洲坚果幼苗排根或非排根的侵染率显著高于接种摩西球囊霉(G-AM)处理,正常水分条件下N-AM处理的侵染率最高;两种水分条件下,接种AMF的植株地上部和地下部干重更高,正常水分处理下达到最大。菌根侵染率与排根产生量之间显著正相关,水分胁迫显著抑制了植株的排根产生量;与不接种相比,接种处理能显著提高排根产生量。接种AMF后根系对磷素的活化、吸收及转化能力显著升高,表现为接种的澳洲坚果幼苗根系、茎秆和叶片中全磷含量较高,两种水分条件下均表现为N-AM>G-AM>CK;菌根与排根相互协调共同发挥作用,显著改善了澳洲坚果幼苗根系对磷素的活化和吸收能力,且菌根比排根发挥了更大作用,尤其在水分胁迫条件下。两种AMF均能与澳洲坚果幼苗建立共生关系,N-AM处理的幼苗各指标显著优于G-AM处理,可能是由于拥有多样性优势的土著AMF在澳洲坚果幼苗根系中定殖能力较强或是AMF真菌对外来物种澳洲坚果有正反馈作用。  相似文献   

10.
Phytophthora pod rot (Ppr) disease caused by Phytophthora megakarya is the major constraint to cocoa production in Cameroon. The development of resistant varieties requires the use of effective resistance testing methods. The repeatability and reliability of the leaf disc and detached pod tests, as applied in selection activities in Cameroon, were studied. Repeatability of the tests was estimated by calculating the correlation (r) between resistance scores of clones, progenies and individuals within progenies in different inoculations rounds of the leaf disc and detached pod tests. Such correlations were generally significant for both tests. For the leaf disc test, as expected, correlations were lower for individuals within seedling progenies than for the average of seedling progenies or of clones. This suggests that a higher number of replicate observations are required for correct evaluation of individual seedlings than for evaluation of the average level of resistance of progenies. Observations carried out 5 or 7 days after inoculation was highly correlated, suggesting that scoring in the leaf disc test may be done only once at 5, 6 or 7 days after inoculation. In one experiment the ranking of leaf disc and detached pod inoculation test results could be compared statistically, with data being significantly correlated (r 0.78). The reliability of the tests was evaluated by the correlations between results of the tests and the level of field infection. These were generally positive and significant, for the leaf disc and detached pod test. A variation between mean scores of 5 and 8 in the detached pod test appeared to be related to a 40% difference in field infection with P. megakarya in years with medium disease pressure. However, correlations with field resistance were not always significant, suggesting the influence of uncontrolled environmental factors affecting field observations or the results in the screening tests. It is concluded that the leaf disc and detached pod tests, if applied under standardized conditions, can be of great value to speed up selection for Ppr resistance.  相似文献   

11.
The internal colonization of Brassica napus plants by Metarhizium anisopliae was demonstrated and the endophytic and direct effects of the fungus against Plutella xylostella larvae were assessed. Internal colonization of the plant by the fungus was shown by re-isolating the fungus from leaves, petioles and stems of the plant that were not the initial site of inoculation. Results indicated that significant differences (at P = 0.05) were obtained in mean % successful re-isolation of the fungus from leaves, petioles and stems at 2, 3 and 4 weeks after inoculation. To assess the endophytic effect of the fungus, larvae of P. xylostella were introduced onto plant leaves distant from the initial site of inoculation with the fungus (one leaf per plant). Results indicated that significant differences (at P = 0.05) were obtained in mean % mortality of larvae that were introduced at 2, 3 and 4 weeks after inoculation compared to the non-inoculated control. Similar significant results were obtained when the direct effect of the fungus against the larvae was assessed. In conclusion, this research provides evidence for the first time of the endophytic action of M. anisopliae against P. xylostella larvae and the ability of the fungus to colonize the internal tissues of B. napus plants.  相似文献   

12.
Abstract

Arbuscular mycorrhizal fungi (AMF) improve the uptake of immobile mineral nutrients such as phosphate, thereby improving plant growth. In acid sulfate soil (ASS), AMF spore density is generally low which impacts root colonization and phosphate uptake. Thus, inoculation may help increase AMF colonization of crops grown in ASS. AMF spore density decreases after cultivation of a non-host crop or bare fallow. In addition, preceding crops affect the growth and yield of subsequent crops. The production of AMF inocula requires AMF-compatible plants. The objective of the present study is to elucidate the effect of preceding crops on the persistence of inoculated AMF and growth of succeeding maize under an ASS condition with lime application. Spore density of AMF after cultivation of preceding crops (soybean or job’s tears) was maintained in comparison to fallow leading to higher AMF colonization of maize and improved plant growth. Thus, maintenance of AMF spore density, either through selection of preceding crops or application of AMF inoculum, may be a viable strategy to improve maize growth in limed ASS of Thailand.  相似文献   

13.
为研究不同水分条件下丛枝菌根(Arbuscular mycorrhizal,AM)真菌对茶树生长和茶叶品质的影响,试验以福鼎大白茶(Fuding Dabaicha)为材料,采用温室盆栽法,分别设置正常水分(WW)和干旱胁迫(DS)两个水分条件,研究单接种AM真菌幼套近明球囊霉(Clariodeoglous etunicatum)(+AMF)与不接种(-AMF)处理对福鼎大白茶实生苗叶片数、生物量等生长指标和蔗糖、果糖、儿茶素、氨基酸等品质指标的影响。结果显示,无论水分条件如何,接种AM真菌处理均显著促进了福鼎大白茶实生苗生长,增加了叶片数量和各部分(叶片、茎、根系)生物量,并提高了茶叶品质;与不接种AM真菌(-AMF)相比,茶树叶片蔗糖、葡萄糖、果糖、儿茶素、氨基酸和茶多酚的含量分别增加了7.73%~21.92%、28.49%~53.44%、6.13%~9.59%、18.97%~23.48%、31.29%~39.11%和6.77%~26.32%。接种AM真菌处理在干旱(DS)条件下效果更为显著,干旱抑制了AM真菌对茶苗根系的侵染和茶苗生长,降低了茶叶品质。接种AM真菌能显著缓解这种抑制效应,同时促进茶叶有机物质积累。此外,接种AM真菌还显著上调了干旱胁迫(DS)下茶树叶片谷氨酰胺脱氢酶基因(CsGDH)、谷氨酰胺α-酮戊二酸氨基转移酶基因(CsGOGAT)和3-羟基-3-甲基戊二酰辅酶A还原酶基因(CsHGMR)的表达。研究结果表明,接种AM真菌在不同水分条件,特别是干旱(DS)条件下,可通过显著上调相关基因的表达来促进茶树的生长,改善茶叶品质。  相似文献   

14.
Cereal crops grown in southern Chilean Andisol provide suboptimal levels of this metalloid for human diet. Certain rhizosphere microorganisms, such as rhizobacteria and arbuscular mycorrhizal fungi can increase the selenium uptake in plants. The purpose of this study was to evaluate selenium acquisition by wheat plants through the co-inoculation of native selenobacteria strains (Stenotrophomonas sp. B19, Enterobacter sp. B16, Bacillus sp. R12 and Pseudomonas sp. R8), both individually and in mixture, as selenonanosphere source with one arbuscular mycorrhizal fungus (Glomus claroideum). Total selenium content in plant tissues and substrate was analyzed. According to our results, significant higher selenium content was found in inoculated plants in comparison to uninoculated controls (P ≤ 0.05). Independently of fungal presence, selenium content in grain from plants inoculated with Enterobacter sp. B16 (236 mg kg−1) was higher than the rest of the strains (116–164 mg kg−1). However, when plants were co-inoculated with a mixture of selenobacteria strains and G. claroideum, selenium content in grain was 23.5% higher (725 mg kg−1) than non-mycorrhizal plants (587 mg kg−1). The results suggest a synergistic effect between the selenobacteria mixture and G. claroideum associated to major biodiversity and demonstrate a great potential of these rhizosphere microorganisms for biofortification of cereals and its derivates.  相似文献   

15.
This study aimed to evaluate the silage quality, ingestive behaviour, and sheep energy partition fed corn and sorghum silages, with or without inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri. Whole plants of one dent corn hybrid (DCS), one flint corn hybrid (FCS), and one forage sorghum hybrid (SS) were ensiled with or without an inoculant containing L. plantarum and L. buchneri (4 × 105 CFU g−1), totalling six treatments (3 × 2 factorial scheme). The treatments were ensiled in metal drums with 200 L capacity. The lactic acid concentrations in the inoculated FCS and DCS were higher by 13.4% and 12.8%, respectively, than those in the non-inoculated plants. In contrast, the lactic acid concentration in the inoculated SS was 23.1% lower than that in the non-inoculated SS. Furthermore, there were differences in pH and acetic acid concentrations only in SS, which were 2.3% and 45.2% higher, respectively, in inoculated silage than in non-inoculated silage. In inoculated DCS and SS, propionic acid concentrations were 1.7 times higher (for both silages), and 1-propanol was 3.7 and 1.8 times higher compared than those in non-inoculated silages. There was a main effect of the inoculant on 1,2-propanediol concentrations, which were 37.5% higher in inoculated silages than in non-inoculated silages. However, ingestive behaviour, heat and methane production, and silage net energy concentrations were not affected by inoculant use. Fermentative modifications caused by inoculation with L. plantarum and L. buchneri in whole plant corn or sorghum silage did not modify sheep energy partition.  相似文献   

16.
We examined the effect of saccharin on the systemic acquired resistance (SAR) response of soybean to the fungus Phakopsora pachyrhizi, the causal agent of soybean rust. Plants were grown hydroponically in half-strength Hoagland’s solution and were challenged with the pathogen 1, 5, 10 and 15 d after treatment with 3 mM saccharin applied either as a foliar spray or a root drench at the 2nd trifoliate (V3) and early reproductive (R1) stages. Plants were destructively harvested and assessed for visible rust symptoms 2 wk after inoculation. Mode of saccharin application was a significant factor influencing the severity of rust infection. Saccharin applied as a root drench was more effective than the foliar spray treatment at inducing SAR, with increased resistance observed 1 d after application. Systemic protection against rust infection was still apparent 15 d after application of saccharin as a root drench. In contrast, foliar treatment with saccharin did not increase systemic protection until 15 d after treatment. When systemic protection was induced by the application of saccharin in either manner, there was no significant reduction of plant growth, except when plants were inoculated 15 d after the saccharin application as a root drench at the R1 stage of development.  相似文献   

17.
We hypothesized that inducing systemic resistances can contribute to the control of the nematode Rotylenchulus reniformis in pineapple. In greenhouse experiments conducted in Martinique, the pineapple cultivars Smooth Cayenne and MD-2 were treated with methyljasmonate (JAME) and salicylic acid (SA), elicitors of induced systemic resistance (ISR) and systemic acquired resistance (SAR). The efficacy of the elicitors was tested by inoculating plantlets grown in individual pots with a monospecific population of R. reniformis reared on Vigna unguiculata. The final nematode populations, 45 days after inoculation on MD-2 treated with JAME were reduced by 67.0% (p = 0.006). Nematode populations on MD-2 plants treated with SA were reduced by 55.8% (p = 0.016). Nematode populations on SC were not reduced by the elicitors. In a second experiment, using split-root systems, JAME was applied to MD-2 plantlets and enzymatic activities involved in plant defense and stress responses were monitored for 14 h after treatment. Additional pots were inoculated with nematodes 24 h after JAME treatment and examined ten days later. Transient stress was observed along with an increase in enzymatic response after inoculation with nematodes. These results showed that the MD-2 was primed through an ISR by JAME. The question now arises whether ISR can be specifically induced only in certain pineapple cultivars. Results are discussed from the perspective of introducing new strategies to manage pineapple nematodes.  相似文献   

18.
Vitex agnus-castus methanolic extract showed strong antifungal activity against Pythium ultimum in tomato under both in vitro and in vivo conditions. The 0.2% extract delayed the mycelial growth of the fungus and showed significant antifungal activity against P. ultimum on tomato seedlings with an efficacy comparable to that of the synthetic fungicide. To determine the involvement both of plant extract and pathogenic fungus in PR gene induction, tomato plants were treated with V. agnus-castus extract and/or inoculated with P. ultimum. The expression of four PR genes (PR-1, PR-2, PR-5, PR-6) was monitored at five time points within 48 h of the extract treatment and fungal inoculation. The PR-1 and PR-4 genes were activated directly by V. agnus-castus extract up to 12 h after treatments; at 24 h, the direct activation by plant extract disappeared and a synergistic inducing effect of extract and pathogen applied simultaneously on the plant was observed. The PR-6 gene was not activated directly by the V. agnus-castus extract but only when applied together with the pathogen; activation of the PR-6 gene occurred 24 h after treatments and the gene expression increased at 48 h. There was no activation of PR-5 gene by the plant extract. The ability of V. agnus-castus extract to enhance plant defence responses upon pathogen inoculation might be further investigated. The activation of various PR genes suggests that induction of defence responses by V. agnus-castus extract in tomato may be regulated by more than one signalling pathway.  相似文献   

19.
In tomato crop, the induction of resistance emerges as an important alternative for achieving the reduction of chemicals in disease control. This study aimed to evaluate the ability of 28 Trichoderma isolates to promote the growth of tomato seedlings and to induce systemic resistance (ISR) against Xanthomonas euvesicatoria and Alternaria solani, the causal agents of bacterial spot and early blight, respectively. Twelve isolates promoted the increase of plant dry matter mass (DMM) above 100%, showing the great potential of these strains. All isolates were able to colonize the root system of tomato plants. The plant growth-promoting isolates were further evaluated for potential elicitation of ISR. Treatment of the soil with all Trichoderma isolates provided protection in tomato plants from 24.13 to 95.94% against X. euvesicatoria and 30.69 to 95.23% against A. solani. The most efficient isolates in reducing the severity of bacterial spot and early blight were the isolates IB 28/07, IB 30/07, IB 37/01 and IB 28/07, IB 30/07 and IB 42/03, respectively. The effect of different time intervals between Trichoderma application and inoculation with pathogens in inducing systemic resistance in tomato plants was evaluated for the isolate IB 28/07. IB 28/07 conferred protection against both diseases at all time intervals, confirming the ability of the isolate to reduce the severity of these diseases up to 21 days after treatment of tomato plants. In vitro assays revealed that all isolates of Trichoderma were able to degrade cellulose. Only the isolate IB 34/08 showed antagonistic activity against X. euvesicatoria and none caused reduction in the in vitro mycelial growth of A. solani. Trichoderma isolates were identified at species level by DNA sequencing.  相似文献   

20.
In the present investigation, we studied resistance imparted by seed treatment with an endophytic strain of Achromobacter xylosoxidans, AUM54, against rice blast caused by Magnaporthe oryzae. In vitro studies showed that A. xylosoxidans AUM54 was able to inhibit mycelial growth of M. oryzae by 11% and was able to increase rice germination and seedling vigor index of rice by 31 and 114%, respectively. AUM54 also showed better survivability in the spermosphere and spermoplane and was able to move systemically through the roots and stem. Among the evaluated carriers, liquid formulation amended with 2% glycerol sustained the maximum bacterial population (7.4 log cfu ml−1) after six-months-storage at room temperature. Plants treated with A. xylosoxidans AUM54 followed by inoculation with M. oryzae showed a significant increase in the activities of defense related enzymes such as polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and chitinase. A. xylosoxidans AUM54 treatment was able to reduce blast disease incidence by 39% in treated rice plants. Additionally, inoculation with A. xylosoxidans AUM54 significantly enhanced the growth (3–13% plant height), and yield (11–31%) of inoculated rice plants under no-disease and disease conditions in the greenhouse experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号