首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Reference populations for genomic selection usually involve selected individuals, which may result in biased prediction of estimated genomic breeding values (GEBV). In a simulation study, bias and accuracy of GEBV were explored for various genetic models with individuals selectively genotyped in a typical nucleus breeding program. We compared the performance of three existing methods, that is, Best Linear Unbiased Prediction of breeding values using pedigree‐based relationships (PBLUP), genomic relationships for genotyped animals only (GBLUP) and a Single‐Step approach (SSGBLUP) using both. For a scenario with no‐selection and random mating (RR), prediction was unbiased. However, lower accuracy and bias were observed for scenarios with selection and random mating (SR) or selection and positive assortative mating (SA). As expected, bias disappeared when all individuals were genotyped and used in GBLUP. SSGBLUP showed higher accuracy compared to GBLUP, and bias of prediction was negligible with SR. However, PBLUP and SSGBLUP still showed bias in SA due to high inbreeding. SSGBLUP and PBLUP were unbiased provided that inbreeding was accounted for in the relationship matrices. Selective genotyping based on extreme phenotypic contrasts increased the prediction accuracy, but prediction was biased when using GBLUP. SSGBLUP could correct the biasedness while gaining higher accuracy than GBLUP. In a typical animal breeding program, where it is too expensive to genotype all animals, it would be appropriate to genotype phenotypically contrasting selection candidates and use a Single‐Step approach to obtain accurate and unbiased prediction of GEBV.  相似文献   

2.
旨在比较简化基因组测序技术和基因芯片技术实施基因组选择的基因组估计育种值(GEBV)准确性。本研究在AH肉鸡资源群体F2代中随机选取395个个体(其中公鸡212只,母鸡183只,来自8个半同胞家系),同时采用10×SLAF测序技术和Illumina Chicken 60K SNP芯片进行基因标记分型。采用基因组最佳无偏估计法(GBLUP)和BayesCπ对6周体重、12周体重、日均增重、日均采食量、饲料转化率和剩余采食量等6个性状进行GEBV准确性比较研究,并采用5折交叉验证法验证。结果表明,采用同一基因标记分型平台,两种育种值估计方法所得GEBV准确性差异不显著(P>0.05);不同的性状对基因标记分型平台的选择存在差异,对于6周体重,使用基因芯片可获得更高的GEBV准确性(P<0.05),对于剩余采食量,则使用简化基因组测序可获得更高的GEBV准确性(P<0.05)。综合6个性状GEBV均值比较,两个基因标记分型平台之间差异不到0.01,高通量测序技术和基因芯片技术都可以用于黄羽肉鸡基因组选择。  相似文献   

3.
This study aimed to compare the accuracy of the genomic estimated breeding value (GEBV) using reduced-representation genome sequencing technology and SNP chip technology to implement genomic selection. A total of 395 individuals (212♂+ 183♀, from 8 half-sib families) were randomly selected from F2 generation of AH broiler resource population, and genotyped with 10×specific-locus amplified fragment sequencing (SLAF-seq) and Illumina Chicken 60K SNP BeadChip. Genomic best linear unbiased prediction (GBLUP) and BayesCπ were used to compare the accuracy of genomic estimated breeding values (GEBV) for 6 traits: body weight at the 6th week, body weight at the 12th week, average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR) and residual feed intake (RFI). A 5-fold cross validation procedure was used to verify the accuracies of GEBV between prediction models and between genotyping platforms. The results showed that there was no significant difference between accuracies of GEBV predicted by GBLUP and BayesCπ using the same genotyping platform(P>0.05). The superiority of the two genotyping platforms was different for different traits. For body weight at the 6th week, the accuracy of GEBV was higher using chip SNPs (P<0.05). On the contrary, the accuracy was higher using SLAF-seq for residual feed intake (P<0.05). Comprehensive comparison of the means of GEBV for 6 traits, the difference between the two genotyping platforms was less than 0.01, therefore, both high throughput sequencing and chip SNPs can be used for genomic selection in yellow-feathered broiler.  相似文献   

4.
There is an increasing interest in using whole‐genome sequence data in genomic selection breeding programmes. Prediction of breeding values is expected to be more accurate when whole‐genome sequence is used, because the causal mutations are assumed to be in the data. We performed genomic prediction for the number of eggs in white layers using imputed whole‐genome resequence data including ~4.6 million SNPs. The prediction accuracies based on sequence data were compared with the accuracies from the 60 K SNP panel. Predictions were based on genomic best linear unbiased prediction (GBLUP) as well as a Bayesian variable selection model (BayesC). Moreover, the prediction accuracy from using different types of variants (synonymous, non‐synonymous and non‐coding SNPs) was evaluated. Genomic prediction using the 60 K SNP panel resulted in a prediction accuracy of 0.74 when GBLUP was applied. With sequence data, there was a small increase (~1%) in prediction accuracy over the 60 K genotypes. With both 60 K SNP panel and sequence data, GBLUP slightly outperformed BayesC in predicting the breeding values. Selection of SNPs more likely to affect the phenotype (i.e. non‐synonymous SNPs) did not improve the accuracy of genomic prediction. The fact that sequence data were based on imputation from a small number of sequenced animals may have limited the potential to improve the prediction accuracy. A small reference population (n = 1004) and possible exclusion of many causal SNPs during quality control can be other possible reasons for limited benefit of sequence data. We expect, however, that the limited improvement is because the 60 K SNP panel was already sufficiently dense to accurately determine the relationships between animals in our data.  相似文献   

5.
我国白羽肉鸡育种中,通过遗传途径提高产蛋数和控制合适的蛋重是培育优良品系的一个重要方面。为探索适合我国白羽肉鸡育种中的基因组选择模型,本研究以2 474只白羽肉鸡品系的产蛋性状为研究对象,主要分析了机器学习算法KAML、BLUP(包括:PBLUP、GBLUP、SSGBLUP)和Bayes(包括:Bayes A、Bayes B和Bayes Cπ)方法对产蛋数和蛋重性状的预测准确性,准确性以5倍交叉验证进行评估。利用系谱以及基因组信息估计了产蛋数和蛋重性状的遗传力和遗传相关。结果表明,产蛋数性状遗传力为0.061~0.16,属于低遗传力性状;蛋重遗传力为0.28~0.39,属于中等遗传力性状;产蛋数与蛋重是中等遗传负相关(-0.518~-0.184),不同阶段产蛋数之间是强的遗传正相关(0.736~0.998)。不同模型预测43周产蛋数和52周蛋重的育种值估计准确性结果表明,KAML方法对两者的预测准确性分别为0.115和0.266,与GBLUP方法(准确性分别为0.118和0.283)和SSGBLUP方法(准确性分别为0.136和0.259)的准确性差异显著,同时显著低于Bayes方法(准确性分别为0.230~0.239、0.336~0.340)的预测准确性, PBLUP方法预测准确性最低(准确性分别为0.095和0.246)。因此,在白羽肉鸡产蛋数和蛋重性状中应用Bayes方法将获得最高的育种值估计准确性。  相似文献   

6.
The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross‐bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on “average information restricted maximum likelihood” using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10‐fold cross‐validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross‐bred population. In the combined cross‐bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross‐bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross‐bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross‐bred population could be overestimated if heterosis is not fitted in the model.  相似文献   

7.
Independent of whether prediction is based on pedigree or genomic information, the focus of animal breeders has been on additive genetic effects or ‘breeding values’. However, when predicting phenotypes rather than breeding values of an animal, models that account for both additive and dominance effects might be more accurate. Our aim with this study was to compare the accuracy of predicting phenotypes using a model that accounts for only additive effects (MA) and a model that accounts for both additive and dominance effects simultaneously (MAD). Lifetime daily gain (DG) was evaluated in three pig populations (1424 Pietrain, 2023 Landrace, and 2157 Large White). Animals were genotyped using the Illumina SNP60K Beadchip and assigned to either a training data set to estimate the genetic parameters and SNP effects, or to a validation data set to assess the prediction accuracy. Models MA and MAD applied random regression on SNP genotypes and were implemented in the program Bayz. The additive heritability of DG across the three populations and the two models was very similar at approximately 0.26. The proportion of phenotypic variance explained by dominance effects ranged from 0.04 (Large White) to 0.11 (Pietrain), indicating that importance of dominance might be breed‐specific. Prediction accuracies were higher when predicting phenotypes using total genetic values (sum of breeding values and dominance deviations) from the MAD model compared to using breeding values from both MA and MAD models. The highest increase in accuracy (from 0.195 to 0.222) was observed in the Pietrain, and the lowest in Large White (from 0.354 to 0.359). Predicting phenotypes using total genetic values instead of breeding values in purebred data improved prediction accuracy and reduced the bias of genomic predictions. Additional benefit of the method is expected when applied to predict crossbred phenotypes, where dominance levels are expected to be higher.  相似文献   

8.
Using a combined multi‐breed reference population, this study explored the influence of model specification and the effect of including a polygenic effect on the reliability of genomic breeding values (DGV and GEBV). The combined reference population consisted of 2986 Swedish Red Breed (SRB) and Finnish Ayrshire (FAY) dairy cattle. Bayesian methodology (common prior and mixture models with different prior distribution settings for the marker effects) as well as a best linear unbiased prediction with a genomic relationship matrix [genomic best linear unbiased predictor (GBLUP)] was used in the prediction of DGV. Mixture models including a polygenic effect were used to predict GEBV. In total, five traits with low, high and medium heritability were analysed. For the models using a mixture prior distribution, reliabilities of DGV tended to decrease with an increasing proportion of markers with small effects. The influence of the inclusion of a polygenic effect on the reliability of DGV varied across traits and model specifications. Average correlation between DGV with the Mendelian sampling term, across traits, was highest (R2 = 0.25) for the GBLUP model and decreased with increasing proportion of markers with large effects. Reliabilities increased when DGV and parent average information were combined in an index. The GBLUP model with the largest gain across traits in the reliability of the index achieved the highest DGV mean reliability. However, the polygenic models showed to be less biased and more consistent in the estimation of DGV regardless of the model specifications compared with the mixture models without the polygenic effect.  相似文献   

9.
Genomic information has a limited dimensionality (number of independent chromosome segments [Me]) related to the effective population size. Under the additive model, the persistence of genomic accuracies over generations should be high when the nongenomic information (pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this study was to evaluate the decay in accuracy over time and to compare the magnitude of decay with varying quantities of data and with traits of low and moderate heritability. The dataset included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a fitness trait (FT) related to prolificacy in a population with dimensionality around 5,000. The pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1-generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by the linear regression (LR) method. The validation population consisted of single generations succeeding the training population and continued forward for all generations available. The average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 for GT and FT, respectively. The average decay in accuracy from the first generation after training to generation 9 was −0.13 and −0.19 for GT and FT, respectively. The persistence of accuracy improves with more data. Old data have a limited impact on the predictions for young animals for a trait with a large amount of information but a bigger impact for a trait with less information.  相似文献   

10.
Single-step genomic best linear unbiased prediction with the Algorithm for Proven and Young (APY) is a popular method for large-scale genomic evaluations. With the APY algorithm, animals are designated as core or noncore, and the computing resources to create the inverse of the genomic relationship matrix (GRM) are reduced by inverting only a portion of that matrix for core animals. However, using different core sets of the same size causes fluctuations in genomic estimated breeding values (GEBVs) up to one additive standard deviation without affecting prediction accuracy. About 2% of the variation in the GRM is noise. In the recursion formula for APY, the error term modeling the noise is different for every set of core animals, creating changes in breeding values. While average changes are small, and correlations between breeding values estimated with different core animals are close to 1.0, based on the normal distribution theory, outliers can be several times bigger than the average. Tests included commercial datasets from beef and dairy cattle and from pigs. Beyond a certain number of core animals, the prediction accuracy did not improve, but fluctuations decreased with more animals. Fluctuations were much smaller than the possible changes based on prediction error variance. GEBVs change over time even for animals with no new data as genomic relationships ties all the genotyped animals, causing reranking of top animals. In contrast, changes in nongenomic models without new data are small. Also, GEBV can change due to details in the model, such as redefinition of contemporary groups or unknown parent groups. In particular, increasing the fraction of blending of the GRM with a pedigree relationship matrix from 5% to 20% caused changes in GEBV up to 0.45 SD, with a correlation of GEBV > 0.99. Fluctuations in genomic predictions are part of genomic evaluation models and are also present without the APY algorithm when genomic evaluations are computed with updated data. The best approach to reduce the impact of fluctuations in genomic evaluations is to make selection decisions not on individual animals with limited individual accuracy but on groups of animals with high average accuracy.  相似文献   

11.
Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP‐LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP‐LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de‐regressed EBV was slightly small (i.e. 0.87%–18.75%). The present study also compared the performance of five genomic prediction models and two cross‐validation methods. The five genomic models predicted EBV and de‐regressed EBV of the ten traits similarly well. Of the two cross‐validation methods, leave‐one‐out cross‐validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle.  相似文献   

12.
Genomic prediction has become the new standard for genetic improvement programs, and currently, there is a desire to implement this technology for the evaluation of Angus cattle in Brazil. Thus, the main objective of this study was to assess the feasibility of evaluating young Brazilian Angus (BA) bulls and heifers for 12 routinely recorded traits using single-step genomic BLUP (ssGBLUP) with and without genotypes from American Angus (AA) sires. The second objective was to obtain estimates of effective population size (Ne) and linkage disequilibrium (LD) in the Brazilian Angus population. The dataset contained phenotypic information for up to 277,661 animals belonging to the Promebo breeding program, pedigree for 362,900, of which 1,386 were genotyped for 50k, 77k, and 150k single nucleotide polymorphism (SNP) panels. After imputation and quality control, 61,666 SNPs were available for the analyses. In addition, genotypes from 332 American Angus (AA) sires widely used in Brazil were retrieved from the AA Association database to be used for genomic predictions. Bivariate animal models were used to estimate variance components, traditional EBV, and genomic EBV (GEBV). Validation was carried out with the linear regression method (LR) using young-genotyped animals born between 2013 and 2015 without phenotypes in the reduced dataset and with records in the complete dataset. Validation animals were further split into progeny of BA and AA sires to evaluate if their progenies would benefit by including genotypes from AA sires. The Ne was 254 based on pedigree and 197 based on LD, and the average LD (±SD) and distance between adjacent single nucleotide polymorphisms (SNPs) across all chromosomes were 0.27 (±0.27) and 40743.68 bp, respectively. Prediction accuracies with ssGBLUP outperformed BLUP for all traits, improving accuracies by, on average, 16% for BA young bulls and heifers. The GEBV prediction accuracies ranged from 0.37 (total maternal for weaning weight and tick count) to 0.54 (yearling precocity) across all traits, and dispersion (LR coefficients) fluctuated between 0.92 and 1.06. Inclusion of genotyped sires from the AA improved GEBV accuracies by 2%, on average, compared to using only the BA reference population. Our study indicated that genomic information could help us to improve GEBV accuracies and hence genetic progress in the Brazilian Angus population. The inclusion of genotypes from American Angus sires heavily used in Brazil just marginally increased the GEBV accuracies for selection candidates.  相似文献   

13.
The benefit of using genomic breeding values (GEBV) in predicting ADG, DMI, and residual feed intake for an admixed population was investigated. Phenotypic data consisting of individual daily feed intake measurements for 721 beef cattle steers tested over 5 yr was available for analysis. The animals used were an admixed population of spring-born steers, progeny of a cross between 3 sire breeds and a composite dam line. Training and validation data sets were defined by randomly splitting the data into training and testing data sets based on sire family so that there was no overlap of sires in the 2 sets. The random split was replicated to obtain 5 separate data sets. Two methods (BayesB and random regression BLUP) were used to estimate marker effects and to define marker panels and ultimately the GEBV. The accuracy of prediction (the correlation between the phenotypes and GEBV) was compared between SNP panels. Accuracy for all traits was low, ranging from 0.223 to 0.479 for marker panels with 200 SNP, and 0.114 to 0.246 for marker panels with 37,959 SNP, depending on the genomic selection method used. This was less than accuracies observed for polygenic EBV accuracies, which ranged from 0.504 to 0.602. The results obtained from this study demonstrate that the utility of genetic markers for genomic prediction of residual feed intake in beef cattle may be suboptimal. Differences in accuracy were observed between sire breeds when the random regression BLUP method was used, which may imply that the correlations obtained by this method were confounded by the ability of the selected SNP to trace breed differences. This may also suggest that prediction equations derived from such an admixed population may be useful only in populations of similar composition. Given the sample size used in this study, there is a need for increased feed intake testing if substantially greater accuracies are to be achieved.  相似文献   

14.
Bootstrap aggregation (bagging) is a resampling method known to produce more accurate predictions when predictors are unstable or when the number of markers is much larger than sample size, because of variance reduction capabilities. The purpose of this study was to compare genomic best linear unbiased prediction (GBLUP) with bootstrap aggregated sampling GBLUP (Bagged GBLUP, or BGBLUP) in terms of prediction accuracy. We used a 600 K Affymetrix platform with 1351 birds genotyped and phenotyped for three traits in broiler chickens; body weight, ultrasound measurement of breast muscle and hen house egg production. The predictive performance of GBLUP versus BGBLUP was evaluated in different scenarios consisting of including or excluding the TOP 20 markers from a standard genome‐wide association study (GWAS) as fixed effects in the GBLUP model, and varying training sample sizes and allelic frequency bins. Predictive performance was assessed via five replications of a threefold cross‐validation using the correlation between observed and predicted values, and prediction mean‐squared error. GBLUP overfitted the training set data, and BGBLUP delivered a better predictive ability in testing sets. Treating the TOP 20 markers from the GWAS into the model as fixed effects improved prediction accuracy and added advantages to BGBLUP over GBLUP. The performance of GBLUP and BGBLUP at different allele frequency bins and training sample sizes was similar. In general, results of this study confirm that BGBLUP can be valuable for enhancing genome‐enabled prediction of complex traits.  相似文献   

15.
Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium‐density single nucleotide polymorphism (SNP) array. Here, the impact of lower‐density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)‐flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single‐step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree‐based prediction (0.50–0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL‐flanking SNP (0.65–0.72) was similar to the panel with 35K SNP (0.65–0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r2 ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long‐range LD likely contributed to the accurate genomic predictions with the low‐density SNP panels. Population structure analysis supported the hypothesis that long‐range LD in this population may be caused by admixture. Results suggest that lower‐cost, low‐density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs.  相似文献   

16.
The reliability of genomic evaluations depends on the proportion of genetic variation explained by the DNA markers. In this study, we have estimated the proportion of variance in daughter trait deviations (DTDs) of dairy bulls explained by 45 993 genome wide single‐nucleotide poly‐ morphism (SNP) markers for 29 traits in Australian Holstein‐Friesian dairy cattle. We compare these proportions to the proportion of variance in DTDs explained by the additive relationship matrix derived from the pedigree, as well as the sum of variance explained by both pedigree and marker information when these were fitted simultaneously. The propor‐ tion of genetic variance in DTDs relative to the total genetic variance (the total genetic variance explained by the genomic relationships and pedigree relationships when both were fitted simultaneously) varied from 32% for fertility to approximately 80% for milk yield traits. When fitting genomic and pedigree relationships simultaneously, the variance unexplained (i.e. the residual variance) in DTDs of the total variance for most traits was reduced compared to fitting either individually, suggesting that there is not complete overlap between the effects. The proportion of genetic variance accounted by the genomic relationships can be used to modify the blending equations used to calculate genomic estimated breeding value (GEBV) from direct genomic breeding value (DGV) and parent average. Our results, from a validation population of young dairy bulls with DTD, suggest that this modification can improve the reliability of GEBV by up to 5%.  相似文献   

17.
旨在提出一种新型基因组关系矩阵并验证其在多品种联合群体中的模拟应用效果。本研究利用QMsim软件模拟牛的表型数据和基因型数据;利用Gmatrix软件构建常规G阵;利用R语言构建新型G阵,新型G阵在常规G阵的基础上,将多品种联合群体的非哈代-温伯格平衡位点考虑在内;利用DMU软件使用“一步”法模型计算基因组估计育种值(estimated genomic breeding value,GEBV);比较不同情况下使用两种G阵的GEBV预测准确性。结果表明,在不同遗传力及QTL数下,不对新型G阵使用A22阵加权就能达到常规G阵使用A22阵加权时的GEBV预测准确性。在系谱部分缺失时,新型G阵不加权较常规G阵加权时GEBV预测准确性高。证明,在系谱有部分缺失时,新型G阵对多品种GEBV的预测有一定优势。  相似文献   

18.
The degree of linkage disequilibrium (LD) between markers differs depending on the location of the genome; this difference biases genetic evaluation by genomic best linear unbiased prediction (GBLUP). To correct this bias, we used three GBLUP methods reflecting the degree of LD (GBLUP‐LD). In the three GBLUP‐LD methods, genomic relationship matrices were conducted from single nucleotide polymorphism markers weighted according to local LD levels. The predictive abilities of GBLUP‐LD were investigated by estimating variance components and assessing the accuracies of estimated breeding values using simulation data. When quantitative trait loci (QTL) were located at weak LD regions, the predictive abilities of the three GBLUP‐LD methods were superior to those of GBLUP and Bayesian lasso except when the number of QTL was small. In particular, the superiority of GBLUP‐LD increased with decreasing trait heritability. The rates of QTL at weak LD regions would increase when selection by GBLUP continues; this consequently decreases the predictive ability of GBLUP. Thus, the GBLUP‐LD could be applicable for populations selected by GBLUP for a long time. However, if QTL were located at strong LD regions, the accuracies of three GBLUP‐LD methods were lower than GBLUP and Bayesian lasso.  相似文献   

19.
The introduction of animals from a different environment or population is a common practice in commercial livestock populations. In this study, we modeled the inclusion of a group of external birds into a local broiler chicken population for the purpose of genomic evaluations. The pedigree was composed of 242,413 birds and genotypes were available for 107,216 birds. A five-trait model that included one growth, two yield, and two efficiency traits was used for the analyses. The strategies to model the introduction of external birds were to include a fixed effect representing the origin of parents and to use unknown parent groups (UPG) or metafounders (MF). Genomic estimated breeding values (GEBV) were obtained with single-step GBLUP using the Algorithm for Proven and Young. Bias, dispersion, and accuracy of GEBV for the validation birds, that is, from the most recent generation, were computed. The bias and dispersion were estimated with the linear regression (LR) method,whereas accuracy was estimated by the LR method and predictive ability. When fixed UPG were fit without estimated inbreeding, the model did not converge. In contrast, models with fixed UPG and estimated inbreeding or random UPG converged and resulted in similar GEBV. The inclusion of an extra fixed effect in the model made the GEBV unbiased and reduced the inflation. Genomic predictions with MF were slightly biased and inflated due to the unbalanced number of observations assigned to each metafounder. When combining local and external populations, the greatest accuracy can be obtained by adding an extra fixed effect to account for the origin of parents plus UPG with estimated inbreeding or random UPG. To estimate the accuracy, the LR method is more consistent among scenarios, whereas the predictive ability greatly depends on the model specification.  相似文献   

20.
旨在探究快速型黄羽肉鸡饲料利用效率性状的遗传参数,评估不同方法所得估计育种值的准确性。本研究以自主培育的快速型黄羽肉鸡E系1 923个个体(其中公鸡1 199只,母鸡724只)为研究素材,采用"京芯一号"鸡55K SNP芯片进行基因分型。分别利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(SSGBLUP)3种方法,基于加性效应模型进行遗传参数估计,通过10倍交叉验证比较3种方法所得估计育种值的准确性。研究性状包括4个生长性状和4个饲料利用效率性状:42日龄体重(BW42D)、56日龄体重(BW56D)、日均增重(ADG)、日均采食量(ADFI)和饲料转化率(FCR)、剩余采食量(RFI)、剩余增长体重(RG)、剩余采食和增长体重(RIG)。结果显示,4个饲料利用效率性状均为低遗传力(0.08~0.20),其他生长性状为中等偏低遗传力(0.11~0.35);4个饲料利用效率性状间均为高度遗传相关,RFI、RIG与ADFI间为中度遗传相关,RFI与ADG间无显著相关性,RIG与ADG间为低度遗传相关。本研究在获得SSGBLUP方法的最佳基因型和系谱矩阵权重比基础上,比较8个性状的估计育种值准确性,SSGBLUP方法获得的准确性分别比传统BLUP和GBLUP方法提高3.85%~14.43%和5.21%~17.89%。综上,以RIG为选择指标能够在降低日均采食量的同时保持日均增重,比RFI更适合快速型黄羽肉鸡的选育目标;采用最佳权重比进行SSGBLUP分析,对目标性状估计育种值的预测性能最优,建议作为快速型黄羽肉鸡基因组选择方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号