首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ObjectiveTo compare a propofol continuous rate infusion (CRI) with a target-controlled infusion (TCI) in dogs.Study designRandomized prospective double-blinded clinical study.AnimalsA total of 38 healthy client-owned dogs.MethodsDogs premedicated intramuscularly with acepromazine (0.03 mg kg–1) and an opioid (pethidine 3 mg kg–1, morphine 0.2 mg kg–1 or methadone 0.2 mg kg–1) were allocated to P-CRI group (propofol 4 mg kg–1 intravenously followed by CRI at 0.2 mg kg–1 minute–1), or P-TCI group [propofol predicted plasma concentration (Cp) of 3.5 μg mL–1 for induction and maintenance of anaesthesia via TCI]. Plane of anaesthesia, heart rate, respiratory rate, invasive blood pressure, oxygen haemoglobin saturation, end-tidal carbon dioxide and body temperature were monitored by an anaesthetist blinded to the group. Numerical data were analysed by unpaired t test or Mann–Whitney U test, one-way analysis of variance and Dunnett’s post hoc test. Categorical data were analysed with Fisher’s exact test. Significance was set for p < 0.005.ResultsOverall, propofol induced a significant incidence of relative hypotension (mean arterial pressure 20% below baseline, 45%), apnoea (71%) and haemoglobin desaturation (65%) at induction of anaesthesia, with a higher incidence of hypotension and apnoea in the P-CRI than P-TCI group (68% versus 21%, p = 0.008; 84% versus 58%, p = 0.0151, respectively). Propofol Cp was significantly higher at intubation in the P-CRI than P-TCI group (4.83 versus 3.5 μg mL–1, p < 0.0001), but decreased during infusion, while Cp remained steady in the P-TCI group. Total propofol administered was similar between groups.Conclusions and clinical relevanceBoth techniques provided a smooth induction of anaesthesia but caused a high incidence of side effects. Titration of anaesthesia with TCI caused fewer fluctuations in Cp and lower risk of hypotension compared with CRI.  相似文献   

2.
The effects of 2 different continuous rate infusions (CRIs) of medetomidine over an 8-hour period on sedation score, selected cardiopulmonary parameters, and serum levels of medetomidine were evaluated in 6 healthy, conscious dogs using a crossover study design. The treatment groups were: CONTROL = saline bolus followed by saline CRI; MED1 = 2 μg/kg body weight (BW) medetomidine loading dose followed by 1 μg/kg BW per hour CRI; and MED2 = 4 μg/kg BW medetomidine loading dose followed by 2 μg/kg BW per hour CRI. Sedation score (SS), heart rate (HR), respiratory rate (RR), temperature (TEMP), systolic arterial pressure (SAP), mean arterial pressure (MAP), and diastolic arterial pressure (DAP), arterial and mixed venous blood gas analyses, lactate, and plasma levels of medetomidine were evaluated at baseline, at various intervals during the infusion, and 2 h after terminating the infusion. Statistical analysis involved a repeated measures linear model. Both infusion rates of medetomidine-induced dose-dependent increases in SS and dose-dependent decreases in HR, SAP, MAP, and DAP were measured. Respiratory rate (RR), TEMP, central venous pH, central venous oxygen tension, and oxygen extraction ratio also decreased significantly in the MED2 group at certain time points. Arterial oxygen and carbon dioxide tensions were not significantly affected by either infusion rate. In healthy dogs, both infusion rates of medetomidine-induced clinically relevant sedative effects, accompanied by typical alpha2 agonist-induced hemodynamic effects, which plateaued during the infusion and subsequently returned to baseline. While additional studies in unhealthy animals are required, the results presented here suggest that medetomidine infusions at the doses studied may be useful in canine patients requiring sedation for extended periods.  相似文献   

3.
An 18-month-old Lurcher was anaesthetized for surgical ligation of a patent ductus arteriosus using a target-controlled infusion (TCI) of propofol and a variable rate infusion of remifentanil. Before anaesthesia, radiographic and echocardiographic examination indicated that the dog had left-sided congestive heart failure and impaired left ventricular systolic function. Ramipril and furosemide were administered pre-operatively. Following pre-anaesthetic medication with morphine, 0.5 mg kg(-1), by intramuscular injection, and pre-oxygenation, remifentanil was infused for 5 minutes at 0.2 microg kg(-1) minute(-1), followed by induction of anaesthesia using intravenous propofol administered by TCI, set at a target concentration of 3.5 microg mL(-1) of propofol in blood. Tracheal intubation was performed and 100% oxygen delivered through a non-rebreathing (Bain) system and then a circle system in the operating theatre. Anaesthesia was maintained with propofol and remifentanil, adjusted according to clinical requirements. Peri-operative analgesia consisted of intercostal bupivacaine nerve block, with meloxicam, morphine and remifentanil.  相似文献   

4.
The objective of this study was to compare the effect on the minimum alveolar concentration (MAC) of isoflurane when ketamine was administered either after or without prior determination of the baseline MAC of isoflurane in rabbits. Using a prospective randomized crossover study, 8 adult, female New Zealand rabbits were allocated to 2 treatment groups. Anesthesia was induced and maintained with isoflurane. Group 1 (same-day determination) had the MAC-sparing effect of ketamine [1 mg/kg bodyweight (BW) bolus followed by a constant rate infusion (CRI) of 40 μg/kg BW per min, given by intravenous (IV)], which was determined after the baseline MAC of isoflurane was determined beforehand. A third MAC determination was started 30 min after stopping the CRI. Group 2 (separate-day determination) had the MAC-sparing effect of ketamine determined without previous determination of the baseline MAC of isoflurane. A second MAC determination was started 30 min after stopping the CRI. In group 1, the MAC of isoflurane (2.15 ± 0.09%) was significantly decreased by ketamine (1.63 ± 0.07%). After stopping the CRI, the MAC was significantly less (2.04 ± 0.11%) than the baseline MAC of isoflurane and significantly greater than the MAC during the CRI. In group 2, ketamine decreased isoflurane MAC (1.53 ± 0.22%) and the MAC increased significantly (1.94 ± 0.25%) after stopping the CRI. Minimum alveolar concentration (MAC) values did not differ significantly between the groups either during ketamine administration or after stopping ketamine. Under the study conditions, prior determination of the baseline isoflurane MAC did not alter the effect of ketamine on MAC. Both methods of determining MAC seemed to be valid for research purposes.  相似文献   

5.
Xylazine and remifentanil in constant rate infusion (CRI) could be used for sedation in horses without adverse effects. The objective was to evaluate behavioral and cardiopulmonary effects of an intravenous (IV) infusion of xylazine and remifentanil for sedation in horses. Xylazine (0.8 mg/kg IV) followed after 3 minutes by a CRI of xylazine and remifentanil (0.65 mg/kg/h and 6 μg/kg/h, respectively) was administered in 10 healthy horses for 60 minutes. Sedation, ataxia, and cardiopulmonary, hematological, and blood gases variables were evaluated. Heart rate decreased significantly during the first 25 minutes after CRI of xylazine and remifentanil, whereas the respiratory rate showed a significant decrease at 20 minutes and remained significantly low until the endpoint. There were no statistically significant fluctuations in blood arterial pressure, blood pH, partial pressure of arterial carbon dioxide, lactate, creatinine, calcium, chlorine, and sodium, compared with baseline values. Blood partial pressure of arterial oxygen and bicarbonate values were significantly higher compared with baseline values, whereas potassium decreased. Sedation and ataxia developed immediately after the administration of xylazine in all horses. All horses recovered successfully within 10 minutes after interruption of the CRI of xylazine and remifentanil, with no ataxia. No adverse effects were observed. The use of a combination of xylazine and remifentanil as sedation protocol has no adverse effects at the described dosage.  相似文献   

6.
The objective of this study was to determine the effects of propofol on the minimum alveolar concentration of sevoflurane needed to prevent motor movement (MACNM) in dogs subjected to a noxious stimulus using randomized crossover design. Six, healthy, adult beagles (9.2 ± 1.3 kg) were used. Dogs were anesthetized with sevoflurane on 3 occasions, at weekly intervals, and baseline MACNM (MACNM-B) was determined on each occasion. Propofol treatments were administered as loading dose (LD) and constant rate infusion (CRI) as follows: Treatment 1 (T1) was 2 mg/kg body weight (BW) and 4.5 mg/kg BW per hour; T2 was 4 mg/kg BW and 9 mg/kg BW per hour; T3 was 8 mg/kg BW and 18 mg/kg BW per hour, respectively. Treatment MACNM (MACNM-T) determination was initiated 60 min after the start of the CRI. Two venous blood samples were collected and combined at each MACNM-T determination for measurement of blood propofol concentration using high-performance liquid chromatography method (HPLC). Data were analyzed using a mixed-model ANOVA and are presented as least square means (LSM) ± standard error of means (SEM).Propofol infusions in the range of 4.5 to 18 mg/kg BW per hour resulted in mean blood concentrations between 1.3 and 4.4 μg/mL, and decreased (P < 0.05) sevoflurane MACNM in a concentration-dependent manner. The percentage decrease in MACNM was 20.5%, 43.0%, and 68.3%, with corresponding blood propofol concentrations of 1.3 ± 0.3 μg/mL, 2.5 ± 0.3 μg/mL, and 4.4 ± 0.3 μg/mL, for T1, T2, and T3, respectively. Venous blood propofol concentrations were strongly correlated (r = 0.855, P < 0.0001) with the decrease in MACNM. In dogs, propofol decreased the sevoflurane MACNM in a concentration-dependent manner.  相似文献   

7.
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol.  相似文献   

8.
The effects of 2 different 8-hour continuous rate infusions (CRIs) of medetomidine on epinephrine, norepinephrine, cortisol, glucose, and insulin levels were investigated in 6 healthy dogs. Each dog received both treatments and a control as follows: MED1 = 2 μg/kg bodyweight (BW) loading dose followed by 1 μg/kg BW per hour CRI; MED2 = 4 μg/kg BW loading dose followed by 2 μg/kg BW per hour CRI; and CONTROL = saline bolus followed by a saline CRI. Both infusion rates of medetomidine decreased norepinephrine levels throughout the infusion compared to CONTROL. While norepinephrine levels tended to be lower with the MED2 treatment compared to the MED1, this difference was not significant. No differences in epinephrine, cortisol, glucose, or insulin were documented among any of the treatments at any time point. At the low doses used in this study, both CRIs of medetomidine decreased norepinephrine levels over the 8-hour infusion period, while no effects were observed on epinephrine, cortisol, glucose, and insulin.  相似文献   

9.
OBJECTIVE: To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats. ANIMALS: 8 adult cats. PROCEDURES: On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, i.v.) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 microg/kg/ min, i.v.) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (> or = 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II). RESULTS: In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 microg of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 microg of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 microg/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes. CONCLUSIONS AND CLINICAL RELEVANCE: Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 microg/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.  相似文献   

10.
Neonatal foals may require prolonged sedation to permit ventilatory support in the first few days of life. The objective of this study was to evaluate and compare the cardiopulmonary effects and clinical recovery characteristics of 2 sedative/analgesia protocols in healthy foals receiving assisted ventilation. Foals were randomized to receive dexmedetomidine, butorphanol, and propofol (DBP) or midazolam, butorphanol, and propofol (MBP) during a 24-hour period. Infusion rates of dexmedetomidine, midazolam, and propofol were adjusted and propofol boluses administered according to set protocols to maintain optimal sedation and muscle relaxation. Ventilatory support variables were adjusted to preset targets. Physiologic variables were recorded, cardiac output (CO) measured (thermodilution), and arterial and mixed venous blood collected for gas analysis at intervals up to 24 hours. Foals in group DBP received dexmedetomidine [2.4 ± 0.5 μg/kg body weight (BW) per hour], butorphanol (13 μg/kg BW per hour), and propofol (6.97 ± 0.86 mg/kg BW per hour), whereas foals in group MBP received midazolam (0.14 ± 0.04 mg/kg BW per hour), butorphanol (13 μg/kg BW per hour), and propofol (5.98 ± 1.33 mg/kg BW per hour). Foals in the DBP group received significantly more propofol boluses (9.0 ± 3.0) than those in the MBP group (4.0 ± 2.0). Although physiologic variables remained within acceptable limits, heart rate (HR), mean arterial pressure (MAP), and cardiac index (CI) were lower in foals in the DBP group than in the MBP group. Times to sternal recumbency, standing, and nursing were significantly shorter in the DBP than MBP group. We found that MBP and DBP protocols are suitable to assist ventilatory support in neonatal foals, although MBP results in a prolonged recovery compared to DBP.  相似文献   

11.
ObjectiveTo determine if acute opioid tolerance (AOT) or opioid-induced hyperalgesia (OIH) could develop and limit the remifentanil-induced reduction in the sevoflurane minimum alveolar concentration (MAC). The response to mechanical nociceptive threshold (MNT) was evaluated and related to OIH.Study designA crossover, randomized, experimental animal study.AnimalsA total of nine Beagle dogs.MethodsThe dogs were anaesthetized with sevoflurane in 50% oxygen. Baseline sevoflurane MAC was measured (MACb1). Remifentanil (0.3 μg kg–1 minute–1) or 0.9% saline constant rate infusion (CRI) was administered intravenously (IV). Sevoflurane MAC was determined 20 minutes after CRI was initiated (MACpostdrug1), 30 minutes after MACpostdrug1 determination (MACpostdrug2) and after 1 week (MACb2). The MNT was determined at baseline (before anaesthesia), 3 and 7 days after anaesthesia. An increase of MACpostdrug2 ≥0.25% compared to MACpostdrug1 was considered evidence of AOT. A decrease in MNT at 3 and 7 days or an increase in MACb2 or both with respect to MACb1 were considered evidence of OIH.ResultsRemifentanil CRI reduced sevoflurane MACpostdrug1 by 43.7% with respect to MACb1. MACpostdrug2 was no different from MACpostdrug1 with the saline (p = 0.62) or remifentanil (p = 0.78) treatments. No significant differences were observed in the saline (p = 0.99) or remifentanil (p = 0.99) treatments between MACb1 and MACb2, or for MNT values between baseline, 3 and 7 days.Conclusion and clinical relevanceIn dogs, under the study conditions, remifentanil efficacy in reducing sevoflurane MAC did not diminish in the short term, suggesting remifentanil did not induce AOT. Hyperalgesia was not detected 3 or 7 days after the administration of remifentanil. Contrary to data from humans and rodents, development of AOT or OIH in dogs is not supported by the findings of this study.  相似文献   

12.
ObjectiveTo compare induction targets, and the haemodynamic and respiratory effects, of propofol, or as an admixture with two different concentrations of alfentanil, delivered via a propofol target-controlled infusion (TCI) system.Study designProspective blinded randomized clinical study.Animals Sixty client-owned dogs scheduled for elective surgery under general anaesthesia. Mean body mass (SD) 28.5 kg (8.7) and mean age (SD) 3.5 years (2.4).MethodsDogs received pre-anaesthetic medication of acepromazine (0.03 mg kg−1) and morphine (0.2 mg kg−1) administered intramuscularly. Animals were randomly assigned to receive one of three induction protocols: propofol alone (group 1), a propofol/alfentanil (11.9 μg mL−1) admixture (group 2), or a propofol/alfentanil (23.8 μg mL−1) admixture (group 3), via a TCI system. Blood target concentrations were increased until endotracheal intubation was achieved, and induction targets were recorded. Heart rate (HR), respiratory rate (fr) and non-invasive arterial blood pressure were recorded pre-induction, at endotracheal intubation (time 0) and at 3 and 5 minutes post-intubation (times 3 and 5, respectively). Data were analysed using anova for normally distributed data or Kruskal–Wallis test, with significance assumed at p < 0.05.ResultsThere were no significant differences between groups with respect to age, body mass, HR, fr, systolic and diastolic blood pressure. The blood propofol targets to achieve endotracheal intubation were significantly higher in group 1 compared with groups 2 and 3. Mean arterial blood pressure (MAP) was significantly higher in group 1 at time 0 when compared with groups 2 and 3.Conclusions and clinical relevanceInduction of anaesthesia with a TCI system can be achieved at lower blood propofol targets when using a propofol/alfentanil admixture compared with using propofol alone. However, despite reduced targets with both propofol/alfentanil admixture groups, MAP was lower immediately following endotracheal intubation than when using propofol alone.  相似文献   

13.
OBJECTIVE: To determine the hemodynamic consequences of the coadministration of a continuous rate infusion (CRI) of medetomidine with a fentanyl bolus in dogs. ANIMALS: 12 healthy sexually intact male dogs weighing 30.3 -/+ 4.2 kg (mean +/- SD). PROCEDURE: Dogs received either fentanyl alone (15.0 microg/kg, i.v. bolus) or the same dose of fentanyl during an 11-hour CRI of medetomidine (1.5 microg/kg/h, i.v.). Prior to drug administration, dogs were instrumented for measurement of cardiac output, left atrial pressure, and systemic arterial blood pressures. Additionally, blood samples were collected from the pulmonary artery and left atrium for blood gas analysis. RESULTS: Medetomidine infusion reduced the cardiac index, heart rate, and O2, delivery while increasing left atrial pressure. Subsequent fentanyl administration further decreased the cardiac index. The Pao2 was not significantly different between the 2 treatment groups; however, fentanyl transiently decreased Pao2 from baseline values in dogs receiving a CRI of medetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Because of the prolonged hemodynamic changes associated with the CRI of medetomidine, its safety should be further evaluated before being clinically implemented in dogs.  相似文献   

14.
ObjectiveTo investigate intravenous (IV) propofol given by intermittent boluses or by continuous rate infusion (CRI) for anaesthesia in swans.Study designProspective randomized clinical study.AnimalsTwenty mute swans (Cygnus olor) (eight immature and 12 adults) of unknown sex undergoing painless diagnostic or therapeutic procedures.MethodsInduction of anaesthesia was with 8 mg kg?1 propofol IV. To maintain anaesthesia, ten birds (group BOLI) received propofol as boluses, whilst 10 (group CRI) received propofol as a CRI. Some physiological parameters were measured. Anaesthetic duration was 35 minutes. Groups were compared using Mann–Whitney U-test. Results are median (range).ResultsAnaesthetic induction was smooth and tracheal intubation was achieved easily in all birds. Bolus dose in group BOLI was 2.9 (1.3–4.3) mg kg?1; interval between and number of boluses required were 4 (1–8) minutes and 6 (4–11) boluses respectively. Total dose of propofol was 19 (12.3–37.1) mg kg?1. Awakening between boluses was very abrupt. In group CRI, propofol infusion rate was 0.85 (0.8–0.9) mg kg?1 minute?1, and anaesthesia was stable. Body temperature, heart and respiratory rates, oxygen saturation (by pulse oximeter) and reflexes did not differ between groups. Oxygen saturations (from pulse oximeter readings) were low in some birds. Following anaesthesia, all birds recovered within 40 minutes. In 55 % of all, transient signs of central nervous system excitement occurred during recovery.Conclusions and clinical relevance8 mg kg?1 propofol appears an adequate induction dose for mute swans. For maintenance, a CRI of 0.85 mg kg?1 minute?1 produced stable anaesthesia suitable for painless clinical procedures. In contrast bolus administration, was unsatisfactory as birds awoke very suddenly, and the short intervals between bolus requirements hampered clinical procedures. Administration of additional oxygen throughout anaesthesia might reduce the incidence of low arterial haemoglobin saturation.  相似文献   

15.
This study assessed the intraoperative analgesic effects of intravenous lidocaine administered by a constant rate infusion (CRI) in surgical canine patients. A prospective, blinded, randomized study was designed with 2 treatment groups: A (lidocaine) and B (placebo), involving 41 dogs. All patients were premedicated with acepromazine and buprenorphine, induced with propofol and midazolam; anesthesia was maintained with isoflurane in oxygen. Group A received 2 mg/kg IV lidocaine immediately after induction, followed within 5 min by a CRI at 50 μg/kg/min. Group B received an equivalent volume of saline instead of lidocaine. Changes in heart rate and blood pressure during maintenance were treated by increasing CRI. Fentanyl was used as a supplemental analgesic when intraoperative nociceptive response was not controlled with the maximum dose of lidocaine infusion. There was a significantly lower use of supplemental intraoperative analgesia in the lidocaine than in the placebo group. Group B dogs had almost twice as high a risk of intraoperative nociceptive response as group A dogs.  相似文献   

16.
ObjectiveTo establish the correlation between the bispectral index (BIS) and different rates of infusion of propofol in dogs.Study designProspective experimental trial.AnimalsEight adult dogs weighing 6–20 kg.MethodsEight animals underwent three treatments at intervals of 20 days. Propofol was used for induction of anesthesia (10 mg kg−1 IV), followed by a continuous rate infusion (CRI) at 0.2 mg kg−1 minute−1 (P2), 0.4 mg kg−1 minute−1 (P4) or 0.8 mg kg−1 minute−1 (P8) for 55 minutes. The BIS values were measured at 10, 20, 30, 40, and 50 minutes (T10, T20, T30, T40, and T50, respectively) after the CRI of propofol was started. Numeric data were submitted to analysis of variance followed by Tukey test (p < 0.05).ResultsThe BIS differed significantly among groups at T40, when P8 was lower than P2 and P4. At T50, P8 was lower than P2. The electromyographic activity (EMG) in P2 and P4 was higher than P8 at T40 and T50.ConclusionsAn increase in propofol infusion rates decreases the BIS values and EMG.  相似文献   

17.
Target-controlled infusion (TCI) anesthesia using target effect-site concentration rather than plasma concentration provides less drug consumption, safer anesthesia, less undesired side effects and improved animal welfare. The aim of this study was to calculate the constant that converts propofol plasma into effect-site concentration ( k e0) in dogs, and to implement it in a TCI system and compare it with the effect on the central nervous system (CNS). All dogs were subjected to general anesthesia using propofol. Fourteen dogs were used as the pilot group to calculate k e0, using the t peak method. Fourteen dogs were used as the test group to test and validate the model. R ugloop ii ® software was used to drive the propofol syringe pump and to collect data from S/5 Datex monitor and cerebral state monitor. The calculated k e0 was incorporated in an existing pharmacokinetic model (Beths Model). The relationship between propofol effect site concentrations and anesthetic planes, and propofol plasma and effect-site concentrations was compared using Pearson's correlation analysis. Average t peak was 3.1 min resulting in a k e0 of 0.7230 min−1. The test group showed a positive correlation between anesthetic planes and propofol effect-site concentration ( R  = 0.69; P <  0.0001). This study proposes a k e0 for propofol with results that demonstrated a good adequacy for the pharmacokinetic model and the measured effect. The use of this k e0 will allow an easier propofol titration according to the anesthetic depth, which may lead to a reduction in propofol consumption and less undesired side effects usually associated to high propofol concentrations in dogs.  相似文献   

18.
OBJECTIVE: To determine the effects of three rates of dexmedetomidine (DMED) constant rate infusion (CRI) on overall tissue perfusion, isoflurane (ISO) requirements, haemodynamics and quality of recovery in canine surgical patients. STUDY DESIGN: Prospective, randomized, blinded clinical study. ANIMALS: Client-owned dogs presented for soft tissue or orthopaedic surgery. METHODS: Following intravenous (IV) pre-medication with DMED (5 microg kg(-1)) and buprenorphine (10 microg kg(-1)) and propofol induction, anaesthesia was maintained with ISO in oxygen/air supplemented with a DMED CRI (1, 2 or 3 microg kg(-1) hour(-1); groups 1, 2 and 3, respectively). Ventilation was controlled in all animals using intermittent positive pressure ventilation (IPPV). Monitoring included end-tidal (ET) gases, ECG, arterial blood pressure, body temperature and sequential arterial blood gas and lactate measurements. Quality of recovery was scored after intramuscular (IM) administration of atipamezole (ATI) (12.5 microg kg(-1)). Immediate post-operative analgesia was provided with carprofen and/or buprenorphine. An analysis of variance was conducted for repeated measurements obtained during 80 minutes after first incision. Categorical data were evaluated with Chi-square analyses. RESULTS: Arterial blood pressure remained stable and within clinically acceptable limits. Mean heart rate in group 2 was significantly lower than in group 1. The incidence of 2nd degree AV block type II was significantly higher in group 3. Mean arterial lactate concentrations remained below 2 mmol/L in all groups during the study, with a significant increase occurring during recovery compared with surgery for group 3. Mean e'ISO% was similar and <1% in all groups. Complete recovery from anaesthesia was achieved after ATI administration and was of good quality in all but three animals. CONCLUSIONS AND CLINICAL RELEVANCE: Dexmedetomidine CRI is a reliable and valuable adjunct to ISO anaesthesia in maintaining surgical anaesthesia in ASA I-II dogs. Data reported indicate adequate overall tissue perfusion and a low ISO requirement while enabling a smooth and rapid recovery following ATI. The DMED CRI of 1 microg kg(-1) hour(-1) following a loading dose of 5 microg kg(-1) produced the most favourable results.  相似文献   

19.
Although sedatives are routinely administered to dogs for diagnostic and minimally invasive procedures, manual restraint is often used. The study compared intra-procedural behavioral response, scored on a 100-point, visual analog scale, and cost of restraint in healthy dogs given 1 of 5 treatments: manual restraint, dexmedetomidine at 125 μg/m2 (Dex 125) or 375 μg/m2 (Dex 375), Dex 125 plus butorphanol at 0.4 mg/kg (Dex 125 + Bu), or Dex 375 plus butorphanol at 0.4 mg/kg (Dex 375 + Bu). Mean behavioral response scores in dogs declined from baseline in the manual restraint group and improved in a linear fashion in the group order Dex 125, Dex 375, Dex 125 + Bu, and Dex 375 + Bu. Dexmedetomidine at 375 μg/m2 or at 125 μg/m2 or at 375 μg/m2 in combination with butorphanol produced the best intra-procedural behavioral response. The cost of sedative drugs was offset by the opportunity cost of diverting personnel from revenue-generating activity to manual restraint.  相似文献   

20.
OBJECTIVE: To compare the constant rate infusion (CRI) of vecuronium required to maintain a level of neuromuscular blockade adequate for major surgeries, e.g. thoracotomy or laparotomy, in dogs anaesthetized with a CRI of fentanyl and either propofol, isoflurane or sevoflurane. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Thirteen male beagles (age, 9-22 months; body mass 6.3-11.3 kg). MATERIALS AND METHODS: Dogs were anaesthetized with propofol (24 mg kg(-1) hour(-1) IV CRI; group P), isoflurane (1.3% end-tidal concentration; group I) or sevoflurane (2.3% end-tidal concentration; group S) with fentanyl (5 microg kg(-1) hour(-1) IV, CRI). Sixty to seventy minutes after induction of anaesthesia, vecuronium was administered at a rate of 0.4, 0.3 and 0.2 mg kg(-1) hour(-1) in groups P, I and S respectively. To determine the degree of neuromuscular block, a peripheral nerve was stimulated electrically using the train-of-four (TO4) stimulus pattern. Evoked muscle contractions were evaluated using a neuromuscular monitoring device. Once the TO4 ratio reached 0, the continuous infusion rate was decreased and adjusted to maintain a TO4 count of 1. Continuous infusion was continued for 2 hours. The infusion rate of vecuronium was recorded 20, 40, 60, 80, 100 and 120 minutes after the start of infusion. RESULTS: The mean continuous infusion rates of vecuronium during stable infusion were 0.22 +/- 0.04 (mean +/- SD), 0.10 +/- 0.02 and 0.09 +/- 0.02 mg kg(-1) hour(-1) in groups P, I and S respectively. There were statistically significant differences between the rates in groups P and I and between the rates in groups P and S. Conclusions and clinical relevance In healthy dogs, the recommended maintenance infusion rate of vecuronium is 0.2 mg kg(-1) hour(-1) under CRI propofol-fentanyl anaesthesia and 0.1 mg kg(-1) hour(-1) during CRI fentanyl-isoflurane or sevoflurane anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号