首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
联合收获机同轴差速轴流脱粒滚筒设计和试验   总被引:4,自引:0,他引:4  
阐述了联合收获机同轴差速脱粒滚筒的工作原理和结构,并进行了试验研究。在试验的基础上用Matlab离散余弦傅氏分析法,分别建立了单速和差速脱粒情况下不同脱出物轴向分布的数学模型及其分布曲线。结果表明:差速脱粒的籽粒总破碎率为0.67%,杂余产生量为脱出物总量的8.63%,末脱净与夹带损失率为0.76%,分别比单速脱粒下降40.9%、29.5%和32.15%,脱粒的质量优于单速脱粒。同轴差速脱粒装置集高、低转速对脱粒性能的有利作用于一体,使损失率、破碎率和含杂率性能指标同时下降并分别达到优质水平。  相似文献   

2.
小型全喂入双滚筒轴流联合收获机设计与试验   总被引:2,自引:0,他引:2  
为分析小型全喂入双滚筒轴流联合收获机脱粒分离能力与夹带损失,进行整机总结设计并自行设计了双滚筒轴流脱粒装置,分析了结构参数选取,并与同型收获机的单滚筒轴流脱粒装置进行对比试验,测定了两装置的未脱净率与夹带损失率。结果表明:单滚筒未脱净率为0.18%,双滚筒未脱净率接近0;双滚筒夹带损失率平均值0.45%,比单滚筒夹带损失率平均值0.74%降低了39%,新开发的小型全喂入双滚筒联合收获机能有效地解决脱不净与夹带损失等问题。  相似文献   

3.
为解决传统半喂入联合收割机收获超级杂交稻时,存在脱不净、夹带损失与籽粒破碎损失之间矛盾,设计了半喂入联合收割机双速回转脱粒分离装置,该装置主要由同轴双速脱粒滚筒和回转式凹板筛构成,阐述双速回转脱分装置结构及工作原理。以低/高速滚筒转速、回转凹板筛线速度、夹持链速度为试验因素,籽粒损失率、破碎率和含杂率为性能指标,进行三因素二次回归正交旋转组合设计试验,运用Design-Expert 6.0.10软件对试验结果进行分析,建立该脱分装置性能指标数学模型,优化确定最佳工作参数组合,并进行双速回转脱分装置与传统单速脱分装置对比试验。结果表明,双速回转脱分装置低/高速滚筒转速为505/680 r/min、回转凹板筛线速度为1.00 m/s和夹持链速度为1.26 m/s时,籽粒损失率、破碎率和含杂率分别为1.94%、0.21%和0.56%,性能指标优于传统单速脱分装置。本研究可为半喂入联合收割机新型脱分装置的设计提供理论依据。  相似文献   

4.
谷物联合收获机喂入量建模与试验   总被引:2,自引:0,他引:2  
设计了谷物联合收获机脱粒滚筒液压无级变速系统,对该系统中封闭液压油的压力进行测量,用该油压力表示喂入量。通过台架试验,得出喂入量与油压力之间的关系方程,并与脱粒滚筒转速表示喂入量的方法进行了对比。结果表明:在联合收获机稳定工作,物料物理特性一致时,油压力随喂入量的增加呈线性上升,而此时脱粒滚筒转速可以视为常量,所以油压力能够准确地反映喂入量。  相似文献   

5.
油菜联合收获脱粒损失试验研究   总被引:1,自引:0,他引:1  
目前,油菜联合收获机损失率高,严重影响机械化推广,而脱粒损失占很大的比重。针对由于脱粒装置各项参数没有良好的配合使脱粒损失偏高的问题,在研发的移动式脱粒清选试验台上,以喂入量、脱粒间隙、滚筒转速和脱粒元件形式4个因子为影响因素,以脱粒损失率为评价指标进行了正交试验。采用Design-Expert数据处理软件对脱粒滚筒的脱粒损失进行数据分析,得到脱粒间隙和喂入量对油菜脱粒滚筒的脱粒损失有显著影响,最优参数组合形式如下:脱粒间隙9mm,喂入量3.2kg/s,脱粒元件型式为半钉齿半纹杆,滚筒转速1 010r/min。  相似文献   

6.
油菜联合收获机切抛组合式纵轴流脱离装置设计与试验   总被引:4,自引:0,他引:4  
针对传统油菜联合收获机链耙式输送器输送距离长、且易引起油菜高粗茎秆堵塞的问题,设计了一种切抛组合式纵轴流脱离装置,实现油菜的强制喂入、切断抛送、脱粒分离功能于一体,整机关键部件全部采用液压驱动,可保证其无级调速和运转平稳。通过对茎秆的运动学与动力学分析,确定了喂入辊、切碎滚筒和脱粒滚筒的结构参数与工作参数,以夹带损失率和功耗等为评价指标,开展了切碎滚筒转速、脱粒滚筒转速和脱粒间隙的正交试验。正交试验结果表明:较优参数组合为切碎滚筒转速450 r/min、脱粒滚筒转速450 r/min、脱粒间隙30 mm,此时夹带损失率为0. 415%,脱出物短茎秆质量分数为10. 43%,切碎滚筒和脱粒滚筒总功耗为4. 16 kW,排草口茎秆平均长度134. 8 mm,对应的旋风分离清选系统籽粒总损失率为6. 13%、清洁率为91. 97%。田间试验表明,切抛组合式纵轴流脱离装置能实现物料由割台至脱离装置的均匀连续输送和脱粒分离功能,可满足油菜联合收获机的作业要求。  相似文献   

7.
短纹杆—板齿式轴流脱粒分离装置性能试   总被引:11,自引:2,他引:9  
针对目前水稻联合收获机脱粒分离装置的功耗高、脱出物含杂率高及分布不均匀等问题,研制了一种短纹杆-板齿脱粒滚筒并对其进行了水稻脱粒分离试验.建立了脱粒功耗、脱粒损失、脱出物含杂率与脱粒间隙、滚筒线速度、喂入量之间的数学模型,利用Matlab进行多目标优化,得到了短纹杆-板齿脱粒分离系统的最佳工作参数.试验结果表明,短纹杆-板齿脱粒滚筒在脱粒水稻时功耗较低,脱出混合物含杂率低,分布较均匀,能有效地减小清选负荷.  相似文献   

8.
横置差速轴流脱分选系统设计与试验   总被引:1,自引:0,他引:1  
针对横置轴流滚筒长度受限和脱出物在清选筛入口一角堆积严重的问题,设计了以同轴差速脱粒滚筒、圆锥形清选风机、双层振动筛和螺旋板齿式复脱器为主要工作部件的横置差速轴流式脱分选系统。为了提升横置差速轴流脱分选系统工作性能,设计了喂入量为2 kg/s的试验台,采用二次正交旋转组合设计法进行工作性能试验,考察差速滚筒转速组合、圆锥形风机叶片锥度、差速滚筒高低速段长度配比3个因素对损失率、破碎率、含杂率和脱粒功耗4个性能指标的影响。建立了损失率、破碎率、含杂率、脱粒功耗的回归数学模型,利用Matlab优化工具箱对回归数学模型进行了多目标优化计算。结果表明:影响横置差速轴流脱分选系统损失率、含杂率的3个因素主次顺序依次为差速滚筒转速组合、圆锥形风机叶片锥度、差速滚筒高低速段长度配比;影响横置差速轴流脱分选系统破碎率、脱粒功耗的3个因素主次顺序依次为差速滚筒转速组合、差速滚筒高低速段长度配比、圆锥形风机叶片锥度;最优参数组合为:差速滚筒转速组合750、850 r/min,风机叶片锥度3.8°,高速段比例30%;对应工作性能指标为:损失率1.57%、破碎率0.71%、含杂率0.38%,脱粒功耗6.67 k W/kg。田间试验结果表明,横置差速轴流脱分选系统工作性能指标优于行业标准。  相似文献   

9.
履带式全喂入稻麦联合收获机工作装置设计   总被引:3,自引:0,他引:3  
针对当前履带式全喂入联合收获机存在的问题,设计了双动刀往复式切割器、叠加式切割器驱动机构、同轴差速轴流式脱粒滚筒、圆锥型离心式清选风扇和板齿式杂余复脱装置等工作部件。试验表明,改进的工作部件能明显提高切割效率,有效解决了损失率、破碎率和含杂率3项主要性能指标之间的矛盾,使3项指标同时下降至较理想状态。  相似文献   

10.
目前裸燕麦脱粒与分离装置大多采用的滚筒为钉齿式脱粒滚筒和纹杆—钉齿式脱粒滚筒,然而其作业效率以及作业质量有所不同。因此,为提高裸燕麦在收获时的作业效率,减少收获作业的总损失率、降低功率消耗、提高收获作业的质量。根据裸燕麦轴流脱粒与分离试验台,对两种脱粒滚筒在转速500 r/min、800 r/min,其他工况不变情况下进行台架试验,通过对脱粒分离试验时的功耗消耗、脱出物轴向分布情况、脱出物中总损失率以及杂余率比较分析,得出转速在500 r/min、800 r/min时,随着喂入量由1.0 kg/s升高至2.0 kg/s,钉齿式滚筒功率消耗均低于纹杆—钉齿式滚筒,最大相差9.2 kW,钉齿式滚筒总损失率均低于纹杆—钉齿式滚筒,最大时相差8%。钉齿式脱粒滚筒脱出物总质量较纹杆—钉齿式滚筒高10.23%,钉齿式脱粒元件较纹杆—钉齿式脱粒元件杂余率最大相差3.49%。因此确定钉齿式滚筒相对较优,可以减轻收获作业的清选负荷,降低作业损失,节约功耗消耗,提高燕麦收获的效率与质量。  相似文献   

11.
为提高新疆地区食葵收获机械化水平,针对插盘晾晒、分段收获人工成本高、劳动强度大等问题,模仿人工收获工作原理设计一款柔性带式食葵取盘收获机,该机主要部件为模拟人工双手取盘的柔性带式取盘装置和模拟人工敲击葵盘的脱粒装置。根据葵盘的物理特性和取盘的运动过程分析,确定取盘装置中输送带带宽为130 mm、葵秆与竖直方向夹角为11.7°、脱粒辊直径为80 mm、脱粒辊间的间距为170 mm。依据Box Benhnken的中心组合试验方法,以机具行进速度、脱粒辊转速及脱粒辊转差率为试验因素,籽粒损失率为试验指标,开展试验。结果表明:各因素对损失率显著顺序依次为脱粒辊转速、机具行进速度、脱粒辊转差率,最优组合为机具行进速度0.32 m/s、脱粒辊转速400 r/min及脱粒辊转差率016,该参数组合下食葵籽粒损失率为2.97%,所设计的机具基本达到低损收获的设计要求,为插盘式食葵机械收获技术提供参考。  相似文献   

12.
浮动式玉米单穗脱粒装置设计与试验   总被引:5,自引:0,他引:5  
为实现玉米脱粒机脱粒间隙可自动调节,减小玉米脱粒过程中的机械损伤,设计了浮动式玉米单穗脱粒装置。该脱粒装置主要由间隙浮动调节装置、喂入料斗、离散辊、脱粒辊和差速辊等组成,具有脱粒间隙自动调节和玉米果穗喂入自动分离、逐个排出功能。选取离散辊转速、脱粒辊转速和差速辊转速为试验因素,以玉米籽粒的破损率和未脱净率为试验指标,采用二次回归正交旋转组合的试验方法,对浮动式玉米单穗脱粒装置进行了参数优化试验。优化结果为:离散辊转速为234 r/min、脱粒辊转速为511 r/min、差速辊转速为91 r/min,在最优参数组合下的实际籽粒破损率为0.25%、未脱净率为0.76%、玉米芯完整度为100%。  相似文献   

13.
气吸式割前摘脱装置的研究   总被引:7,自引:2,他引:5  
对气吸式割前摘脱装置的流场特性及影响落粒损失的因素进行了理论分析与试验研究。研究结果表明,该摘脱装置利用气流吸运原理,使落粒损失小,且简化了机构,为在行走装置前设置切割搂集机构创造了条件。  相似文献   

14.
针对现有玉米籽粒收获装置对黄淮海夏玉米脱粒时存在籽粒损伤大,未脱净率高等问题,设计了一种轴流式玉米锥形脱粒滚筒,采用“柔性钉齿-短纹杆”组合式脱粒元件,实现籽粒低损高效收获。通过对锥形滚筒及关键部件结构的理论分析,确定了脱粒滚筒的关键参数;利用搭建的脱粒试验装置进行单因素试验,得到滚筒转速、脱粒元件间距及脱粒间隙对脱粒性能的影响关系。在此基础上,以滚筒转速、脱粒元件间距和脱粒间隙为试验因素,对破碎率和未脱净率进行三因素三水平二次回归正交试验,结果表明:滚筒转速、脱粒元件间距、脱粒间隙对破碎率与未脱净率均有显著影响;最优参数组合为滚筒转速425r/min、脱粒元件间距90mm、脱粒间隙45mm,对应的破碎率为5.72%、未脱净率为0.83%,达到国家相关标准要求。该研究可为黄淮海地区玉米脱粒滚筒的研发提供参考。  相似文献   

15.
设计了由机架、液压站、行走机构、弓齿脱粒机构及葡萄果串藤架组成的酿酒葡萄篱架梳脱运动试验台,通过螺旋对辊、两侧梳脱装置的空间位置、对辊转速和行进速度等关键参数的调节,可进行柔性梳脱装置的试验,研究运动中柔性弓齿梳脱作业机理和各因素对梳脱的影响。通过脱粒过程运动学、动力学分析,研究了影响酿酒葡萄运动梳脱效果的主要因素为行进速度、对辊转速和弓齿螺旋角。在室内进行正交试验,结果表明,行进速度和对辊转速对脱粒率有一定影响,弓齿螺旋角的影响不显著,对辊转速从200 r/min增加到300 r/min,脱净率从75.7%提升到了92%,行进速度从0.4 m/s增加到0.7 m/s,脱净率从94.7%降低到78%;对于破损率,3个因素均不显著,约为20%左右。  相似文献   

16.
针对食葵机械化收获过程割台损失大、葵盘输送过程籽粒表皮易划伤、脱粒过程籽粒破损严重等问题,根据食葵生物力学特性、种植模式及机械化收获要求,在传统割台的基础上增设脱粒装置,设计了集分禾、扶禾、拨禾、切割、输送及脱粒等功能于一体的食葵联合收获割台装置,葵盘在割台上实现脱粒,有效缩短了葵盘输送路径,为后续提高清选质量奠定基础。为降低割台损失,依据适收期食葵植株姿态,设计了一种不对行拨杆式拨禾轮,并设计了侧边倾角30°的分禾器,同时在相邻分禾器之间增加软毛刷收集碰撞飞溅籽粒;为减少脱粒过程籽粒破损,设计一种轴流螺旋滚筒式脱粒装置;基于物料抛送过程动力学和运动学分析,得出螺旋输送器拨板安装倾角为18°时葵盘较顺畅进入脱粒装置。为验证割台结构设计的可行性,开展了田间试验,结果表明,留茬高度为700 mm时,联合收获机在1.21~2.11 m/s范围内5组不同速度条件下进行田间作业,割台损失率不大于3%、未脱净率不大于2%、破损率不大于3%,均能够满足食葵收获要求。  相似文献   

17.
针对黄淮海地区籽粒直收时籽粒损伤严重及未脱净率高的问题,结合现有的玉米脱离分离装置的特点,设计了一种纵轴流式变径变间距玉米锥形脱粒滚筒,以及利用可调节双头拉杆调节工作倾角的脱粒分离装置倾角调节装置.设计了脱粒元件在锥形滚筒的安装位置及排列方式,分析了脱粒元件与籽粒接触的脱粒动力学过程,并查阅相关文献确定了脱粒装置关键参...  相似文献   

18.
针对分段收获后胡麻脱出物形状差异小、混杂程度大、清选困难等问题,设计了胡麻脱粒清选装置。为提高胡麻脱粒清选装置作业效率,探究胡麻脱粒物料气流式清选机理,以装置气流清选系统为研究对象,分别建立清选系统CFD模型和胡麻脱出物DEM模型。采用CFD-DEM耦合仿真技术,通过研究各组分脱出物料的运动轨迹与空间位置分布,得出清选系统内胡麻脱出物分离规律,并进行验证试验,校验仿真模型可靠性。仿真试验表明,胡麻脱粒物颗粒在清选系统内气流场的作用下表现出较好的分离清选效果,同时,通过分析模拟试验所得到的胡麻脱粒物颗粒数量和平均速度变化曲线,探明了胡麻脱粒物料在分离清选作业过程中运移的平均速度和数量的变化规律。验证试验表明,该装置在最佳工作状态下作业后胡麻籽粒的清选损失率为2.78%,含杂率为2.23%,与仿真模拟胡麻籽粒损失率(2.05%)、含杂率(1.56%)相比,二者试验结果分别仅相差0.73、0.67个百分点,实际试验结果与仿真模拟结果吻合度较高,验证了模型的可靠性。  相似文献   

19.
针对荞麦机械化收获破碎率高、含杂率大、容易发生“绕辫子”而堵塞脱粒滚筒等问题,研制一种伸缩杆齿式脱粒装置,利用纹杆滚筒和栅格凹板对作物的揉搓、梳刷作用实现脱粒,而与纹杆滚筒相配合的伸缩式杆齿,能够很好地将作物进行翻腾、向后推送,避免了秸秆缠绕,提高了脱粒效果。将该脱粒装置安装于荞麦脱粒性能试验台,选取滚筒转速、脱粒间隙和喂入量作为试验因素建立了三因素正交试验,通过极差分析得到最佳工作参数组合为滚筒转速350r/min,脱粒间隙10mm,喂入量1.0kg/s,该条件下,籽粒破碎率为3.42%,籽粒损失率为0.14%,满足荞麦机械化收获指标,为伸缩杆齿式脱粒装置的应用和荞麦联合收获机的研发提供理论依据。  相似文献   

20.
针对油莎豆收获人工收获难度大、收获效率低、损失率高等问题,提出先脱粒后分离的收获方式,设计一种油莎豆收获筛分装置,该装置主要由脱粒系统和振动筛分系统等组成。采用矩阵法对振动筛分机构进行运动学理论分析,运用ADAMS软件对该机构进行仿真,得到筛面各点的位移、速度、加速度曲线图,分析各点的运动变化规律,找到影响筛面运动的关键因素。以曲柄转速、筛面倾角、振幅为试验因素,以筛分效率和损失率为试验指标,运用Design-Expert软件进行分析。结果表明:曲柄转速为236.51 rad/min、筛面倾角为6.7°、振幅为3.98 mm时,筛分效率为96.56%,损失率为1.83%,满足油莎豆收获机的设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号