首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
液压机械全功率换段方法及功率过渡特性   总被引:3,自引:2,他引:1  
为了解决液压机械无级传动换段过程中存在的动力中断和换段冲击等问题,基于当前段与目标段双制动器结合重叠,提出全新的液压机械全功率换段方法,并深入探究全功率换段过程功率过渡机理及控制方法。该文以两段等差式液压机械为研究对象,在双制动器结合重叠的动力换段方式的基础上,提出了五阶段液压机械全功率换段方法,通过理论分析与试验相结合的方法,研究了换段过程中液压机械转矩特性和功率特性随液压回路压差的变化规律,液压回路压差随变排量液压元件排量的变化规律。结果表明,在双制动器结合重叠的动力换段中,通过调节变排量液压元件的排量比,能够控制液压回路的高低压侧压差改变、互换,进而控制当前段制动器转矩向目标制动器有序转移,在双制动器结合重叠中完成换段,实现换段过程传递全功率。输入转速保持1 000 r/min不变,进出换段时定排量液压元件转速无波动,输出扭矩波动量约为5 N·m(负载扭矩为60 N·m和150 N·m)。该研究揭示了液压机械全功率换段的功率过渡机理,可为全功率换段的后续研究及液压机械应用提供了参考。  相似文献   

2.
针对液压机械无级变速器在换段过程中的动力中断和换段冲击问题,该研究以三段式液压机械无级变速器第二段切换第三段为例,通过建立动力学模型分析理论换段点下两段位的液压路功率方向变化规律,提出基于液压路功率方向的两阶段换段离合器转矩交接方法,并使用分段函数对两阶段离合器转矩交接轨迹进行优化,通过仿真对转矩交接方法正确性进行了验证。为了实现转矩的跟踪控制,基于终端滑模控制的方法设计了离合器控制器,通过对油压的跟踪控制实现转矩的跟踪控制,通过试验验证了控制器有效性。仿真和试验结果表明:在负载换段过程中,所提换段离合器转矩交接方法能够实现动力的平稳过渡,终端滑模控制器能够实现离合器油压的跟踪控制,从而实现转矩控制。在输入轴转速1 000 r/min,负载700 N·m工况下,使用终端滑模控制器控制两换段离合器进行换段,输出轴转速的波动范围为-20.6~7.4 r/min,输出轴转矩波动范围为-117.4~107.9 N·m,换段过程中最大冲击度为-6.16 m/s3,换段离合器的最大滑摩功为508.45 J,换段过程中无动力中断。该研究可为液压机械段变速器的换段控制提供参考。  相似文献   

3.
液压机械复合传动阶跃输入恒转速输出双前馈模糊PID控制   总被引:2,自引:1,他引:1  
针对液压机械复合传动系统在阶跃转速输入时输出转速稳定性差、不易控制等问题,该文提出了一种基于液压子系统、机械子系统和液压机械复合传动系统的输入双前馈+模糊PID转速复合控制方法,以系统输出转速恒定为控制目标,将2个子系统转速扰动量折算到变量马达转速变化量,通过排量补偿调节实现对系统输出转速波动控制,最终实现输出转速恒定控制。仿真与试验结果表明:在系统不同初始输入转速基础上,施加特定的阶跃转速扰动,该控制方法具有良好的控制精度和鲁棒性,相比于传统PID控制方法,系统输出转速最大超调量平均降低39.8%,稳定调整时间平均缩短35.53%,系统输出转速平均稳态误差控制在±0.7%之间。该文所提出的双前馈+模糊PID转速复合控制方法,对液压机械复合传动系统阶跃输入扰动引起的输出波动具有抑制作用,控制效果明显,增强系统在非线性输入复杂工况下转速输出的稳定性,可为液压机械复合传动系统在农业机械领域的设计和应用提供参考。  相似文献   

4.
农业拖拉机用多段液压机械无级变速器设计   总被引:15,自引:14,他引:15  
提出一种由单个普通行星排构成的简单高效拖拉机用多段液压机械无级变速器传动结构,分析了变速器的变速特性、转矩特性、平稳换段条件和液压功率分流比,通过装机实例表明其无级变速范围宽,在车辆常用工作速度段液压功率分流比低于20%,在与中耕、犁耕、运输作业对应的高、中、低速度区间可分别实现3个高效率纯机械档,有利于提高车辆的动力性和经济性。  相似文献   

5.
双模式液压机械传动工作特性分析   总被引:6,自引:3,他引:3  
现有一段式液压机械传动传递功率能力不能满足大功率车辆要求,该文提出一种新型双模式复合分流式液压机械传动方案。结合现有车型,建立了系统的稳态运动学模型,分析了液压机械传动系统的转速特性、转矩特性及功率特性等。该方案综合了两种液压机械传动形式优点,具有良好的起步特性,较佳的功率流特性,扩大了液压元件的工作范围,并且提供了液压机械节能传动的良好平台,其发展前景广阔。  相似文献   

6.
基于AMESim的液压机械无级传动换段过程建模与仿真   总被引:9,自引:8,他引:1  
通过对液压机械无级传动换段过程进行研究,建立了液压路和机械路及分汇流系统的数学模型,并基于AMESim软件平台构建了液压机械无级传动系统的仿真模型,在Matlab/Simulink中建立了液压路的仿真模型,进行了联合仿真。通过对仿真结果分析,研究了系统主要参数对换段过程的影响规律,为提高换段品质和制定换段策略提供依据。  相似文献   

7.
拖拉机液压机械无级变速箱换段控制优化与试验   总被引:7,自引:6,他引:1  
为了提高无级变速拖拉机的换段质量,该文对所开发的一种新型液压机械无级变速箱的换段过程进行了试验研究。离合器充油特性试验中,通过改变离合器控制油路参数,获得主油路压力与充油流量对换段时间的影响规律;单因素加载试验中,通过单独改变发动机转速、主油路压力、充油流量、负载转矩,获得各因素单独作用时对换段质量的影响规律;多因素组合加载试验中,设计了3水平4因素组合试验方案,对多个因素综合作用时的变速箱换段质量问题进行了研究;时序优化试验中,通过控制器改变离合器动作时机,获得最佳的换段时序。试验结果表明:离合器主油路压力、充油流量可通过影响换段时间而间接影响到换段质量;重叠时序换段会引起油压陷阱,证明了重叠换段的安全性和可行性;单因素作用时,换段质量与离合器压力、流量正相关,与负载转矩负相关,与发动机转速无关;多因素共同作用时,换段质量的主次影响因素依次为充油流量、负载转矩、主油路压力、发动机转速;此外,采用重叠时序换段可显著改善换段质量。根据试验结果得出,为使该变速箱获得最佳的换段质量,其离合器主油路压力应取值4MPa,充油流量取值5L/min,重叠时序取值120ms。该结论为换段控制策略的制定提供了重要参考。  相似文献   

8.
针对目前液压机械无级变速器(hydro-mechanical continuously variable transmission,HMT)效率模型研究中存在的效率组成不全面、局限于单一工况以及缺少功率损失分析等问题,该研究建立了考虑传动元件及附件功率损失的HMT全工况效率模型。首先建立HMT变量泵-定量马达的通用效率模型,根据效率试验数据辨识相关参数;然后建立HMT其他传动机构及附件的效率模型,将各部分效率模型组合得到完整的HMT效率模型。基于自主研发的HMT进行计算,得到全工况效率图和各组成机构的损失功率。搭建试验台,对HMT进行效率试验以验证模型的准确性,HM1段和HM2段在全工况下的效率平均绝对误差分别为0.0273和0.0261,相较于对比方法准确性提高了64.59%和55.46%。结合效率图和功率损失情况分析HMT效率特性和影响因素,结果表明:1)本文HMT效率主要受负载和液压单元排量比e影响,输入转速影响不显著;2)低负载下本文HMT效率主要影响因素为负载,高负载下为排量比;3)泵马达功率损失对HMT效率影响最大,e < 0时液压损失功率大,HMT效率低;e = 0时液压损失功率为0,HMT效率达到最高;4)齿轮和离合器的功率损失对HMT效率的影响不容忽略,考虑其他附件功率损失有利于提高模型计算精度。提高HMT效率的措施:1)尽量避免HMT长时间在功率循环工况下工作,在优先满足负载需求和保证发动机经济性前提下,推荐在纯机械点及其附近工作点作业;2)避免长时间低负载作业,应保持在高负载工况作业;3)选用高效率液压单元或通过改进参数提高液压单元传动效率;4)满足齿轮和离合器性能要求前提下改进参数,降低功率损失。  相似文献   

9.
为了使有液压机械无级变速器的中小型拖拉机获得更高的燃油经济性,使得拖拉机在任意工况下都能工作在整机经济性最佳的工作点上,该研究结合一种行星比连续可变的液压机械无级变速传动系统(hydro-mechanical continuously variable transmission,HMCVT),提出以发动机燃油消耗率ge与HMCVT传动效率ηb之比为拖拉机整机经济性目标函数,在考虑发动机转速、转矩和HMCVT变速传动系统中变量泵排量比调节的基础上,加入HMCVT变速传动系统中牵引式行星排的行星比这一辅助变量,对发动机工作点和HMCVT工作点进行多参数调节。然后采用参数循环算法对多参数调节中的控制参数进行优化,得到任意负载和目标车速下的最佳发动机转速、转矩和最佳HMCVT变量泵排量比和牵引式行星排的行星比。随后分析了不同作业车速下牵引式行星排的行星比对拖拉机整机经济性的影响,得到低、中、高3种车速工况下的最佳行星比及排量比,最后从HMCVT的传动效率和变速比两个方面验证多参数调控效果。结果表明,具有排量比和行星比双参数可调的液压机械无级变速传动系统能满足中小型拖拉机的犁耕作业,与国标相比牵引式行星排行星比的加入使拖拉机的燃油消耗率降低29.86%;行星比越大,拖拉机整机比油耗越低。本文提出的多参数控制策略能够保证拖拉机在宽速比和高效率区域下工作,且易于实时调控,研究结果可为推动无级变速拖拉机变速器开发应用和进一步改善拖拉机动力性与燃油经济性提供理论参考。  相似文献   

10.
拖拉机液压机械无级变速箱效率特性的仿真与试验   总被引:5,自引:5,他引:0  
为了对一种新型拖拉机液压机械无级变速箱的效率水平进行评估,该文对其满负荷及部分负荷下的效率特性进行了研究。基于SimulationX平台,该文构建了完整的变速箱传动模型,并通过台架试验对其进行了校准,从而确保了模型的可靠性。通过仿真分析,得出了传动效率与发动机转速、负载扭矩和速比的关系,并绘制了较为全面的效率图谱;指出了泵前齿轮副对变速箱效率的影响,从而使得基于效率进行变速箱的结构优化具备了理论上的可操作性。结果表明,该变速箱在HM2、HM4段负排量和HM1、HM3段正排量时存在功率循环,且变速箱的传动效率受到发动机转速和扭矩的双重影响,其在额定工况下的满负荷传动效率为81.5%。因此,该类变速箱的传动效率随工况波动较大,为了使拖拉机在给定的车速、负载水平下高效作业,必须合理匹配其速比与发动机转速的关系。该研究可为变速箱的结构优化及动力匹配提供理论依据。  相似文献   

11.
为解决拖拉机作业过程中因作业阻力波动而导致生产效率降低的问题,该研究以自主开发设计的液压机械无级变速器(Hydraulic Mechanical Continuously Variable Transmission, HMCVT)为研究对象,通过对滑转率区间划分确定了滑转率控制和车速控制的优先级;通过对作业阻力范围划分确定了适合当前阻力状态下的HMCVT传动模式,并以拖拉机最高生产效率为目标制定了HMCVT系统在液压机械传动(HydraulicMechanicalTransmission,HMT)和静液压传动(HydrostaticTransmission,HST)模式下的变速规律,确定了HMT和HST传动模式下的排量比调节曲面。针对油压波动会影响液压泵排量调节精度的问题,提出了基于前馈补偿的滑模控制算法,搭建了HMCVT传动系统和调速策略模型。结果表明,提出的基于滑转率-阻力区间划分的调速控制策略能够在负载或路面条件发生变化时,将驱动轮滑转率约束在容许滑转率区间内;本文制定的变速规律相比于传统动力性变速规律能使拖拉机车速和加速度分别由5.06km/h和0.05 m/s2提升至5.3 km/h和0.15 m/s2,加速度能力更强,可保证拖拉机的生产效率,提高拖拉机对复杂多变作业环境的适应性。  相似文献   

12.
精准描述无级变速系统特性是拖拉机动力装置设计和控制策略制定的前提,是节能减排和动力提高的关键。为解决拖拉机常用无级变速系统特性随工况变化而导致原理论模型精度受限问题,该研究对受工况影响最为显著的液压传动系统的调速和效率特性进行研究。采用台架试验获取液压传动系统特性的样本数据,基于偏最小二乘法对比不同工况对调速和效率特性的影响,结合原理论模型和改进的模拟退火算法,提出液压传动系统特性的模型修正及其参数辨识方法,并分别建立调速特性和效率特性的改进半经验模型。结果表明,输入转速和输出端负载转矩对调速特性的影响程度分别为0.36和0.92;输入转速、输出端负载转矩和排量比对效率特性的影响程度分别为0.05、0.71和0.26;修正后模型参数较少,辨识容易,且精度高,估测值与实际值基本吻合(2参数调速特性半经验模型的决定系数R2为0.97、平均绝对百分比误差为7.93%,5参数效率特性半经验模型的决定系数R2为0.93、平均绝对百分比误差为2.50%)。研究以期为拖拉机等农业机械的动力传动装置的特性分析与评估、优化设计和控制策略制定提供依据和参考。  相似文献   

13.
液压机械传动装置(hydro-mechanical transmission, HMT)是一种机-液耦合的强非线性系统,在换段过程中存在外界负载扰动和建模误差等因素影响其换段品质。该研究在分析HMT组成及工作原理的基础上,建立了HMT换段过程动力学模型和线性二次型控制模型,提出一种基于扰动前馈补偿的换段离合器控制方法,借助扰动观测器估计HMT换段过程的总扰动,将扰动补偿增益引入控制器的前馈项,实现扰动前馈补偿,并设计了抑制换段过程扰动的控制器。仿真结果表明,与未采用扰动前馈补偿控制相比,扰动前馈补偿控制的扰动值最大降低了48.9%、冲击度降低了27.8%、滑摩功减少了29.6%、换段时间减少了15.3%。最后通过试验验证了所提方法在快速处理换段过程扰动的同时,可较好地提升HMT的换段品质。研究结果可为液压机械传动装置的工程应用提供参考。  相似文献   

14.
拖拉机链式金属带功率分流无级变速箱具有多个工作区段,带载换段时容易产生冲击甚至引起动力中断,是该类变速箱研发过程中迫切需要解决的问题。目前该领域研究较少,为了揭示各因素对链式金属带功率分流无级变速拖拉机换段品质的影响规律及作用机理,本研究对其换段过程进行了仿真研究。首先,阐述了所研究拖拉机链式金属带功率分流无级变速箱的传动原理,分别从无级调速特性、牵引特性、PTO功率和燃油经济性等方面对其可行性进行了计算分析;其次,构建了链式金属带功率分流无级变速箱换段液压系统的动力学模型并进行了试验验证,以此为基础,进一步构建了变速箱及拖拉机整机换段动力学模型;最后,给出了换段品质的3项评价指标,并对各因素对换段品质的影响规律及机理进行了仿真研究。仿真结果表明:该变速箱的传动特性与传统机械换挡变速箱相当,但燃油经济性优于传统机械换挡变速箱(低速重载工况下小时油耗降低约0.3 kg/h)和传统金属带无级变速箱(系统比油耗降低约20 g/(kW·h))。此外,较低的发动机转速(1 200 r/min)、适中的充油压力(5 MPa)、较高的充油流量(10 L/min)、理想换段点前换段(提前约0.2 s)与重叠时序换段(重叠约0.2 s)均可改善换段品质,而变速箱输出轴转动惯量、拖拉机质量以及负载等因素对换段品质的影响较为复杂,各项指标对其换段品质的评价并不统一,在拖拉机设计阶段需要综合考虑。链式金属带功率分流无级变速箱非常适合中小功率拖拉机传动,不仅经济,而且换段品质具有可控性,具有继续研究的价值,该研究结果可为中小功率无级变速拖拉机传动系统的设计提供理论支撑。  相似文献   

15.
为了满足量产车辆的自动变速器控制单元(transmission control unit,TCU)软件需求,研究了离合器换挡控制参数自整定控制方法,对自整定控制软件的结构和控制框图进行了介绍。针对换挡过程中,速度阶段和转矩阶段的特点,区别于传统方法对压力传感器、纵向加速度传感器和发动机转矩精度的依赖,分别提出了基于换挡时间的有动力升挡和基于涡轮失速问题的有动力降挡自整定策略。在实车测试过程中,通过软件的自整定参数调整,学习后的换挡时间能够逐步逼近设定的目标值,同时发动机飞车、涡轮失速现象能够逐步消减,换挡品质得到明显提升,保证了不同整车、不同发动机、不同变速器集成之后的换挡品质一致性,以及整车在产品生命周期内的驾驶性能一致性。实车采用该控制方法,在若干次相同工况的重复驾驶后,冲击点能明显弱化直至消除,冲击度逐步消减到低于5 m/s3,达到量产车辆水平,满足了某自主品牌车型投放上市要求。该研究对自动变速器换挡控制参数自整定策略研究和软件开发提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号